首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary This report describes the immunolocalization of three monoclonal antibodies along the collecting duct system in rabbit kidney. The antibodies were raised against antigens derived from a membrane fraction of homogenized papillary tissue. Western Blot analysis demonstrated that each of the antibodies recognized a single band of about 190000 (PCD1), 210000 (PCD2) and 50000 (PCD3) daltons. In renal tissue, the antibodies bound specifically to the epithelia of the connecting tubule (CNT), the collecting duct (CD) and the papillary surface epithelium. Differences in the binding patterns of the antisera were limited to the cortex. pCD1 labeled only a few scattered cells in the CNT, and exhibited a heterogeneous binding along the cortical collecting duct (CCD). PCD2 and PCD3 binding patterns were similar. In the CNT, these antibodies bound to the intercalated cells (IC-cells) but not to the CNT-cells proper. In the CCD, both IC-cells and principal cells were labeled. The binding to the medullary collecting duct by all three antisera was identical. The ureter was labeled only by PCD2 and PCD3, and none of the antisera bound to the bladder epithelium.The antibody binding patterns provide information concerning tubular axial heterogeneity and embryogenetic aspects of the CNT and the CCD. These antibodies may be used as differentiation markers in studies of the developing kidney and of renal tissue culture systems.These studies were supported by Deutsche Forschungsgemeinschaft, Forschergruppe Niere, Kr 546/5-1  相似文献   

2.
Kidney function depends on a well-developed vascular system. Any impairment of the blood supply disturbs the integrity and function of the organ. The differentiation of renal vessels has been investigation for many years, but little is known about the relationship between nephrogenesis and vessel development. In the present work the spatial organization of the differentiating vessels was analyzed in precisely oriented tissue sections and in optical sections acquired by laser scan microscopy. Developing vessels as well as small capillaries were visualized with two endothelium-detecting antibodies. Small vessels running in parallel towards the organ capsule were detected in numerous cortico-medullary-oriented tissue sections. Cross-sections of the nephrogenic zone showed a regularly arranged network, which was composed of cells detected by both monoclonal antibodies. Parts of this network were localized in regions of the nephrogenic zone which have been assumed to be free of vessels or vessel-like structures for a long time. These results were confirmed by the laser-scan-microscopic analysis of complete cortex explants. The extraordinarily regular arrangement of the endothelial network in the nephrogenic zone allowed us to reconstruct the developing vascular system. The results presented here underline the close relationship between nephrogenesis and vessel development. Received: 20 May 1996 / Accepted: 11 July 1996  相似文献   

3.
The formation of vascular structures requires precisely controlled proliferation of endothelial cells (ECs), which occurs through strict regulation of the cell cycle. However, the mechanism by which EC proliferation is coordinated during vascular formation remains largely unknown, since a method of analyzing cell-cycle progression of ECs in living animals has been lacking. Thus, we devised a novel system allowing the cell-cycle progression of ECs to be visualized in vivo. To achieve this aim, we generated a transgenic zebrafish line that expresses zFucci (zebrafish fluorescent ubiquitination-based cell cycle indicator) specifically in ECs (an EC-zFucci Tg line). We first assessed whether this system works by labeling the S phase ECs with EdU, then performing time-lapse imaging analyses and, finally, examining the effects of cell-cycle inhibitors. Employing the EC-zFucci Tg line, we analyzed the cell-cycle progression of ECs during vascular development in different regions and at different time points and found that ECs proliferate actively in the developing vasculature. The proliferation of ECs also contributes to the elongation of newly formed blood vessels. While ECs divide during elongation in intersegmental vessels, ECs proliferate in the primordial hindbrain channel to serve as an EC reservoir and migrate into basilar and central arteries, thereby contributing to new blood vessel formation. Furthermore, while EC proliferation is not essential for the formation of the basic framework structures of intersegmental and caudal vessels, it appears to be required for full maturation of these vessels. In addition, venous ECs mainly proliferate in the late stage of vascular development, whereas arterial ECs become quiescent at this stage. Thus, we anticipate that the EC-zFucci Tg line can serve as a tool for detailed studies of the proliferation of ECs in various forms of vascular development in vivo.  相似文献   

4.
以单核细胞增生李斯特菌细胞碎片免疫BALB/c小鼠,间接ELISA法成功筛选获得2株稳定分泌抗LM的单克隆杂交瘤细胞株4A7、4H11.抗体效价为1∶160 000以及1∶20 000,亚型为IgG1、IgG2a,Dot-ELISA结果表明4A7和4H11单克隆抗体具有很好的属特异性,Western blot分析表明4A7、4H11抗体分别与单核细胞增生李斯特菌62 kDa以及32 kDa外膜蛋白抗原表位结合,胶体金免疫电镜实验进一步确证以上抗体可有效识别单核细胞增生李斯特菌细胞表面抗原.  相似文献   

5.
6.
Ischemic injuries permanently affect kidney tissue and challenge cell viability, promoting inflammation and fibrogenesis. Ischemia results in nutrient deprivation, which triggers endoplasmic reticulum stress, ultimately resulting in the unfolded protein response (UPR). The aim of this study was to test whether the UPR could promote an angiogenic response independently of the HIF-1α pathway during ischemic stress in the human kidney epithelium. Glucose deprivation induced the secretion of vascular endothelial growth factor A (VEGFA), basic fibroblast growth factor (bFGF) and angiogenin (ANG) in human kidney epithelial cells independently of HIF-1α. Glucose deprivation, but not hypoxia, triggered endoplasmic reticulum stress and activated the UPR. RNA interference-mediated inhibition of the gene encoding the kinase PERK decreased VEGFA and bFGF expression, but neither gene was affected by the inhibition of IRE1α or ATF6. Furthermore, we show that the expression of angiogenin, which inhibits protein synthesis, is regulated by both IRE1α and PERK, which could constitute a complementary function of the UPR in the repression of translation. In a rat model of acute ischemic stress, we show that the UPR is activated in parallel with VEGFA, bFGF, and ANG expression and independently of HIF-1α.  相似文献   

7.
Circulating endothelial cells (CECs) and circulating endothelial progenitors (CEPs) are currently being investigated in a variety of diseases as markers of vascular turnover or damage and, also in the case of CEPs, vasculogenesis. CEPs appear to have a “catalytic” role in different steps of cancer progression and recurrence after therapy, and there are preclinical and clinical data suggesting that CEC enumeration might be useful to select and stratify patients who are candidates for anti-angiogenic treatments. In some types of cancer, CECs and CEPs might be one of the possible hidden identities of cancer stem cells. The definition of CEC and CEP phenotype and the standardization of CEC and CEP enumeration strategies are highly desirable goals in order to exploit these cells as reliable biomarkers in oncology clinical trials.  相似文献   

8.
近20年来,人们制备了许多小麦种子贮藏蛋白的单克隆抗体(Monoclonal Antibody,McAb),一方面作为有效工具研究胚乳贮藏蛋白(主要是麦谷蛋白聚集体、特定的谷蛋白亚基及醇溶蛋白)的结构与功能关系;另一方面用作诊断试剂(diagnostic tools),为筛选具有合适加工品质的小麦品种提供依据。本文综述了国内外单克隆抗体技术在小麦贮藏蛋白研究及其遗传改良中的应用进展,并展望其应用前景。  相似文献   

9.
The turnover rates of prolyl hydroxylase and immunologically related (cross reacting) protein were examined using labeled leucine as precursor or by measuring the decay of elevated prolyl hydroxylase and immunologically cross-reacting protein back to basal levels. Prolyl hydroxylase and immunologically cross-reacting protein were purified from neonatal rabbit skin at various times following the administration of [3H]leucine. Prolyl hydroxylase was purified by affinity chromatography. Immunologically cross-reacting protein was purified by antibody precipitation from the dialyzed 70% (NH4)SO4 supernatants and subsequent electrophoresis on 10% sodium dodecyl sulfate-polyacrylamide slab gels. The radioactivity of the species isolated, which corresponded to the two major subunits of prolyl hydroxylase, was used in the turnover studies of immunologically cross-reacting protein. The peak incorporation of label into prolyl hydroxylase was found to be 12 h while for immunologically cross-reacting protein this occured within 2 h. The loss of radioactivity from these protein pools denotes an apparent t12 for prolyl hydroxylase of 73 h and a 12 for immunologically cross-reacting protein of 53 h. From the specific activity of free skin leucine pools, the effect of reutilization could be corrected and a true t12 for prolyl hydroxylase of 45 h was determined. The t12 values of these proteins were determined by a second method in which prolyl hydroxylase and immunologically cross-reacting protein in the aorta and liver of adult male rabbits were elevated by daily epinephrine-thyroxine treatment for 12 days. The decline of prolyl hydroxylase and immunologically cross-reacting protein with termination of treatment in the aorta denotes values of 42 h for enzyme and 53 h for immunologically cross-reacting protein. Calculated enzyme κd values, by both methods, indicate that breakdown of enzyme does not account for tissue immunologically cross-reacting protein.  相似文献   

10.
Summary [3H] progesterone was injected into the uterine lumen of rabbits toward the end of preimplantation period (162 h post coitum). Light-microscopic autoradiography showed accumulation of label in single cell groups of the uterine epithelium. Fluorographs of thin layer chromatograms of steroid extracts indicated the metabolization of progesterone in the uterine tissue. Incubation of uterine sections with fluorescein isothiocyanate-conjugated progesterone-rabbit serum albumin revealed binding sites for this reagent: 162 h post coitum, staining was also localized in single cell groups of the uterine epithelium. Pretreatment with a monospecific antiserum showed Uteroglobin to be the binding protein.  相似文献   

11.
Hu S  Li Y  Liu G  Song Q  Wang L  Han Y  Zhang Y  Song Y  Yao X  Tao Y  Zeng H  Yang H  Wang J  Zhu H  Chen ZN  Wu L 《Proteomics》2007,7(13):2151-2161
Proteomics research in humans and other eukaryotes demands a large number of high-quality mAbs. Here, we report a new approach to produce high-quality mAbs against human liver proteins using a combined force of high-throughput mAb production and protein microarrays. After immunizing mice with live cells from human livers, we isolated 54 hybridomas with binding activities to human cells and identified the corresponding antigens for five mAbs via screening on a protein microarray of 1058 unique human liver proteins. Finally, we demonstrated that using the five mAbs we could characterize the expression profiles of their corresponding antigens by using tissue microarrays. Among them, we discovered that eIF1A expressed only in normal liver tissues, not in hepatocellular carcinoma in humans.  相似文献   

12.
Two monoclonal antibodies (ADM-1-11 and 79-31 mAbs) were raised against daunomycin (DM) conjugated to bovine serum albumin via the cross-linker N-(gamma-maleimidobutyryloxy)succinimide. The monoclonal antibodies (mAbs) specifically detected DM as well as its analogs doxorubicin and epirubicin, but did not react with other anticancer antibiotics, including pepleomycin, mitomycin C, and actinomycin D. The mAbs reacted strongly with glutaraldehyde-conjugated DM in an enzyme linked immunosorbent assay (ELISA) used as a model system for immunocytochemistry as well as in appropriately pretreated sections of tissues from animals injected with DM. No staining occurred in tissues from uninjected animals. In order to perform DM ICC a number of tissue treatment conditions critical to the detection of low molecular weight substances were employed. Uptake of DM was studied in rats after a single i.v. or i.p. administration of the drug. In the heart, accumulation of DM occurred in nuclei and in the cytoplasm. In the kidney, DM immunoreactivity accumulated in all segments of the nephron except for the proximal tubules. Since the proximal tubules are known to be where a variety of transport systems including P-glycoprotein (Pgp) and organic anion-transporting polypeptides (OATPs) in drug interactions occur, the absence of DM accumulation in these segments may reflect a transport phenomenon depending upon such transporters. The availability of methods to study sites of accumulation of DM offers possibilities for understanding toxic side effects of this drug on the heart and kidney. Moreover, the immunocytochemical methodology developed may prove useful for the localization of other low molecular weight drugs that can be fixed in situ by glutaraldehyde.  相似文献   

13.
Chronic kidney disease (CKD) is strongly associated with increased cardiovascular risk. Impaired endothelial function, a key initiating step in the pathogenesis of cardiovascular disease, has been reported in patients with CKD, but the mechanisms responsible for endothelial dysfunction in CKD remain elusive. Emerging evidence reveals that trimethylamine-N-oxide (TMAO), a gut microbiota-generated metabolite, is involved in the pathogenesis of many cardiovascular diseases. Circulating TMAO is elevated in CKD. Here we tested the hypothesis that elevated TMAO plays a contributory role in the pathogenesis of endothelial dysfunction in CKD. Rats underwent 5/6 nephrectomy to induce CKD or sham operation, and were treated with 1.0% 3,3-Dimethyl-1-butanol (DMB, an inhibitor of trimethylamine formation) or vehicle. Eight weeks after nephrectomy and DMB treatment, circulating TMAO levels were markedly elevated in CKD-vehicle rats compared with sham-vehicle rats, but were reduced in CKD-DMB rats. Acetylcholine-induced endothelium-dependent vasodilation was impaired in CKD-vehicle rats compared with sham-vehicle rats as indicated by reduced maximal relaxation (Emax) and decreased area under the curve (AUC). Emax and AUC were both normalized in CKD-DMB rats. No difference in sodium nitroprusside-induced endothelial-independent vasodilation was observed across groups. Molecular studies revealed that endothelial nitric-oxide synthase activity was decreased, while superoxide production and proinflammatory cytokine expression were increased in the aorta of CKD-vehicle rats compared with sham-vehicle rats. Of note, the abnormalities in above molecular parameters were completely restored in CKD-DMB rats. These results suggest that CKD elevates circulating TMAO levels, which may reduce eNOS-derived NO production by increasing vascular oxidative stress and inflammation, contributing to CKD-associated endothelial dysfunction and cardiovascular disease.  相似文献   

14.
AIM: To establish and characterize a spontaneously immortalized human dermal microvascular endothelial cell line, iHDME1.METHODS: We developed a spontaneous immortalization method. This approach is based on the application of optimized culture media and culture conditions without addition of any exogenous oncogenes or carcinogens. Using this approach, we have successfully established a microvascular endothelial cell line, iHDME1, from primary human dermal microvascular endothelial cells. iHDME1 cells have been maintained in culture dishes for more than 50 passages over a period of 6 mo. Using a GFP expressing retrovirus, we generated a GFP-stable cell line (iHDME1-GFP).RESULTS: iHDME1 retain endothelial morphology and uniformly express endothelial markers such as VEGF receptor 2 and VE-cadherin but not α-smooth muscle actin (α-SM-actin) and cytokeratin 18, markers for smooth muscle cells and epithelial cells respectively. These cells retain endothelial properties, migrate in response to VEGF stimulation and form 3-D vascular structures in Matrigel, similar to the parental cells. There is no significant difference in cell cycle profile between the parental cells and iHDME1 cells. Further analysis indicates enhanced stemness in iHDME1 cells compared to parental cells. iHDME1 cells display elevated expression of CD133 and hTERT.CONCLUSION: iHDME1 cells will be a valuable source for studying angiogenesis.  相似文献   

15.
The activity and isozyme distribution of hexokinase were studied in bone marrow cells from normal and anemic rabbits seperated by density centrifugation or by unit-gravity sedimentation. The specific activity of the enzyme was found to be about 150-fold higher in the basophilic erythroblasts as compared with the mature circulating erythrocytes. Mos of the falls in hexokinase activity take place whent the cell completes its final division and matures from the polychromatic stage to the orthochromatic stage. Concomitant with this strong decrease in enzyme activity, qualitative as well as quantitative changes in the hexokinase isozymic pattern become apparent. While in the basophilic and polychromatic erythroblasts the only hexokinase isozyme present is hexokinase type I, the orthochromatic cells also contain hexokinase Ib. This last isozymic form, which increases further at the reticulocyte stage, is also present in the circulating reticulocytes but not in mature red blood cells.  相似文献   

16.
The PKD1 gene is essential for a number of biological functions, and its loss-of-function causes autosomal dominant polycystic kidney disease (ADPKD). The gene is developmentally regulated and believed to play an essential role in renal development. Previous studies have shown that manipulating murine renal organ cultures with dominant-negative forms of the Pkd1 gene impaired ureteric bud (UB) branching. In the current study, we analyzed different stages of renal development in two distinct mouse models carrying either a null mutation or inactivation of the last two exons of Pkd1. Surprisingly, metanephric explants from Pkd1-deleted kidneys harvested at day E11.5 did not show defects of UB branching and elongation, estimated by cytokeratin staining on fixed tissues or by Hoxb7-GFP time-lapse imaging. However, renal explants from Pkd1-mutants isolated at day E14.5 showed impaired nephrogenesis. Notably, we observed cell migratory defects in the developing endothelial compartment. Previous studies had implicated the Pkd1 gene in controlling cell migration and collagen deposition through PI3 kinases. In line with these studies, our results show that wild-type explants treated with PI3-kinase inhibitors recapitulate the endothelial defects observed in Pkd1 mutants, whereas treatment with VEGF only partially rescued the defects. Our data are consistent with a role for the Pkd1 gene in the endothelium that may be required for proper nephrogenesis.  相似文献   

17.
AIMP1 was first found as a factor associated with the aminoacyl-tRNA synthetase (ARS) complex. However, it is also secreted and acts on different target cells such as endothelial cells, macrophages, and fibroblasts as an extracellular regulator, respectively, of angiogenesis, inflammatory responses and dermal regeneration. AIMP1 has also been reported to suppress in vivo tumor growth. In this study, we investigated the signaling pathways activated by exogenous AIMP1 in an in vitro endothelial model. AIMP1 decreases EC viability through an α5β1 integrin-dependent mechanism and inhibits cell adhesion, is internalized and shows an asymmetric pattern of distribution and accumulation in cell protrusions. Experiments of affinity purification, pull down, and co-immunoprecipitation showed that AIMP1 interacts with four cytoskeletal proteins (filamin-A, α-tubulin, vinculin, and cingulin). α-Tubulin also gets phosphorylated upon cell treatment with AIMP1 and colocalization between AIMP1 and filamin-A as well as between AIMP1 and cingulin was observed through immunofluorescence assays. In this work, we propose that AIMP1 effect on EC adhesion is mediated by the assembly of a cytoskeletal protein complex on the cytosolic face of the cell membrane which could regulate cellular architecture maintenance and remodeling. Moreover, this activity is able to indirectly influence cell viability.  相似文献   

18.
There are few studies defining CHO host cell proteins (HCPs) and the flux of these throughout a downstream purification process. Here we have applied quantitative iTRAQ proteomics to follow the HCP profile of an antibody (mAb) producing CHO‐S cell line throughout a standard downstream purification procedure consisting of a Protein A, cation and anion exchange process. We used both 6 sample iTRAQ experiment to analyze technical replicates of three samples, which were culture harvest (HCCF), Protein A flow through and Protein A eluate and an 8 sample format to analyze technical replicates of four sample types; HCCF compared to Protein A eluate and subsequent cation and anion exchange purification. In the 6 sample iTRAQ experiment, 8781 spectra were confidently matched to peptides from 819 proteins (including the mAb chains). Across both the 6 and 8 sample experiments 936 proteins were identified. In the 8 sample comparison, 4187 spectra were confidently matched to peptides from 219 proteins. We then used the iTRAQ data to enable estimation of the relative change of individual proteins across the purification steps. These data provide the basis for application of iTRAQ for process development based upon knowledge of critical HCPs.  相似文献   

19.
Summary The regenerated tissue which fills the gap between the stumps of sectioned and unsutured rabbit calcaneal tendon was studied by immuno-fluorescence, light and electron microscopy from 2 days to 30 weeks after surgery. In the early stages, the newly formed tissue consisted of few connective tissue cells of variable shape dispersed in an abundant intercellular matrix. At 7 days after tenotomy most of the cells were spindle shaped and arranged along the major tendon axis. They showed a well developed rough endoplasmic reticulum, a prominent Golgi complex and bundles of thin and thick filaments. Moreover, they appeared intensely stained when treated with anti-actin and anti-myosin sera. The bulk of the intercellular matrix consisted of bundles of collagen fibers, mostly arranged parallel to the cells.In the subsequent stages the regenerating tissue became more compact, acquiring the morphological characteristics of tendon tissue. At 30 weeks after tenotomy, however, it did not show yet the typical texture of the normal adult tendon. The tenocytes were more numerous and less uniformly distributed, and contained a greater amount of ergastoplasm and contractile proteins. The collagen fibers were similar in size to those of the neonatal normal tendon and the elastic fibers appeared often immature.These findings suggest that, at least on the experimental conditions under which this study was performed, the regenerated tendon does not acquire the typical morphology of the normal adult tendon, possibly owing to the reduced mechanical stress acting on it.  相似文献   

20.
Accumulating evidence indicates that various aspects of angiogenesis, such as proliferation, migration, and morphogenesis of endothelial cells, can be regulated by specific miRNAs in an endothelial-specific manner. As novel molecular targets, miRNAs have a potential value for treatment of angiogenesis-associated diseases such as cancers, inflammation, and vascular diseases. In this article, we review the latest advances in the identification and validation of angiogenesis-regulatory miRNAs and their targets, and discuss their roles and mechanisms in regulating endothelial cell function and angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号