首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Collectively called zooxanthellae, photosynthetic dinoflagellates in the family Symbiodiniaceae are typical endosymbionts that unequivocally mediate coral responses to environmental changes. Symbiodiniaceae are genetically diverse, encompassing at least nine phylogenetically distinct genera (clades A–I). The ribosomal internal transcribed spacer 2 (ITS2) region is commonly utilized for determining Symbiodiniaceae diversity within clades. However, ITS2 is often inadvertently interpreted together with the tailing part of the ribosomal RNA genes (5.8S and 28S or equivalent), leading to unresolved taxonomy and equivocal annotations. To overcome this hurdle, we mined in GenBank and expert reference databases for ITS2 sequences of Symbiodiniaceae having explicit boundaries with adjacent rRNAs. We profiled a Hidden Markov Model of the ITS2‐proximal 5.8S‐28S rRNA interaction, which was shown to facilitate the delimitation of Symbiodiniaceae ITS2 from GenBank, while considerably reducing sequence ambiguity and redundancy in reference databases. The delineation of ITS2 sequences unveiled intra‐clade sequence diversity and inter‐clade secondary structure conservation. We compiled the clean data into a non‐redundant database that archives the largest number of Symbiodiniaceae ITS2 sequences known to date with definite genotype/subclade representations and well‐defined secondary structures. This database provides a fundamental reference catalog for consistent and precise genotyping of Symbiodiniaceae and a tool for automated annotation of user‐supplied sequences.  相似文献   

2.
Cai  Lin  Zhou  Guowei  Tong  Haoya  Tian  Ren-Mao  Zhang  Weipeng  Ding  Wei  Liu  Sheng  Huang  Hui  Qian  Pei-Yuan 《Applied microbiology and biotechnology》2018,102(11):4963-4973
Applied Microbiology and Biotechnology - Coral reef ecosystems have great economic, social, and ecological value. The ecological success of coral reef ecosystems critically depends on coral-algal...  相似文献   

3.
4.
5.
Although apicomplexans are a widely recognized and important parasitic group, little is known about those associated with invertebrates, such as reef-building scleractinian corals. To resolve the potential impact of apicomplexans on coral health, it is first necessary to further describe this group of putative parasites and determine their prevalence among host species. Here, it was hypothesized that apicomplexan prevalence would vary seasonally, similar to what occurs in other marine apicomplexans as well as some coral symbionts. To test this, Caribbean scleractinian species Porites astreoides, Montastraea (=Orbicella) annularis, M. (=O.) faveolata, and Siderastrea siderea were sampled seasonally from two reefs each in the Florida Keys and the Bahamas for 9- and 5.5-year periods, respectively. Utilizing a PCR-based screening assay, apicomplexan DNA was detected from most Floridian (80.1 %: n = 555/693) and Bahamian (90.7 %: n = 311/343) coral tissue samples collected over these multi-year periods. Furthermore, apicomplexan DNA was detected from nearly all (98.7 %: n = 78/79) single polyps sampled at multiple locations within six M. faveolata colonies, indicating little to no intracolonial variation in the screening assay. Mixed-model logistic regression was utilized to determine the effects of season, host species, and reef on apicomplexan prevalence. The model identified a significant seasonal effect, with the highest apicomplexan prevalence occurring during fall. There also was a large effect of host species, with apicomplexan prevalence significantly lower among S. siderea colonies relative to the other species. While reef did not have a significant effect in the full model, there was a significant difference in apicomplexan prevalence between Floridian and Bahamian reefs for S. siderea, implying regional differences in this host species. Despite seasonal and species-specific differences in prevalence, apicomplexans are ubiquitous constituents of these particular scleractinian coral species from Florida and the Bahamas.  相似文献   

6.
Stock  Jan H. 《Hydrobiologia》1988,167(1):545-547
Endoparasitic copepods are very numerous in Indo-West Pacific corals. In West Indian corals they were thought to be absent, but recent studies have shown that a varied endoparasitic copepod fauna exists as well. Striking is the taxonomic composition of the coral-inhabiting copepods:In the Indo-West Pacific Lichomolgidae and Xarifiidae are the dominant families, both are absent in the West Indies. On the other hand, Corallovexiidae and Asterocheridae dominate in the West Indies; the former family is absent and the latter is apparently rare and not very diversified in the Indo-West Pacific.  相似文献   

7.
Summary Aggressive interactions among reef corals involving direct interference through extracoelenteric digestion has previously been considered as a potential mechanism for the maintenance of high species diversity. In this report I show that induced development of sweeper tentacles can reverse initial digestive interactions. In the eastern Pacific these reversals contribute to resource monopolization by fast growing pocilloporid corals. This suggests that other mechanisms must account for the maintenance of local species diversity.  相似文献   

8.
The timing of skeletal band formation and concomitant changes in calcification rates and linear skeletal extension were investigated in Pavona corals growing under two distinct thermal regimes along the Pacific coast of Panama: fluctuating, marked by seasonal upwelling (Gulf of Panama) and stable, nonupwelling (Gulf of Chiriqui). The purpose of this study was to test the hypothesis that banding in corals is largely mediated by seasonal variations in temperature (Highsmith 1979). Our results indicate that the timing of band formation is synchronous at these two environmentally distinct locations. The low density (LD) portion of the annual band is accreted over a five month period (January–June) and represents an increase in linear skeletal extension (mm/mo.) as well as a marked increase in calcification rate (g CaCO3 · cm-2 · mo-1) relative to the high density portion which forms over the remaining seven month period (July through December). In contrast to the predictions of the Highsmith model these findings indicate that variations in light levels rather than fluctuation in temperature is a better correlate to changes in skeletal density. Qualitatively, banding patterns were similar at the two sites; however, higher growth rates (particularly with respect to the LD band) for Pavona clavus in the Gulf of Panama indicate that lower water temperatures and higher productivity, or both, may be responsible for quantitative differences in banding between sites. We found that formation of the HD band corresponds to lower light levels and the production of gametes. We propose that banding in corals is a complex phenomenon governed by endogenous processes (e.g. reallocation of energy from growth to reproduction) which may be mediated by exogenous factors (e.g light and productivity).  相似文献   

9.
Spermatozoa ofPocillopora damicornis, Pocillopora elegans (Astrocoeniina, Pocilloporidae) andPavona gigantea (Fungiina, Agariciidae) from the eastern Pacific (Isla del Caño, Costa Rica) were examined using transmission electron microscopy. The hermaphroditic pocilloporidsP. damicornis andP. elegans are spermiomorphologically very similar to hermaphroditic acroporids, being characterized by bullet-shaped nuclei and elongated mitochondria. Such traits have not been found in other families. Thus, the suborder Astrocoeniina, including pocilloporids and acroporids, can clearly be distinguished from other scleractinian suborders. This separation underlines the isolated position of the Astrocoeniina within the order Scleractinia following the evolutionary scheme of Wells. A conical sperm type, known from gonochoric species (sexes separate) from all families except Acroporidae and Pocilloporidae, was found in the gonochoric agariciidPavona gigantea. This supports previous findings that gonochoric corals share a unique and common sperm structure regardless of which family they belong to. However, no gonochoric Astrocoeniina have ever been examined. Hence, the question whether the sperm type common to gonochorists is also represented in Astrocoeniina, which would undermine the ultrastructural distinction of Astrocoeniina and other suborders seen among hermaphrodites, as well as the systematic value of sperm structure within scleractinian corals, remains open.  相似文献   

10.
Huang D 《PloS one》2012,7(3):e34459
A substantial proportion of the world's living species, including one-third of the reef-building corals, are threatened with extinction and in pressing need of conservation action. In order to reduce biodiversity loss, it is important to consider species' contribution to evolutionary diversity along with their risk of extinction for the purpose of setting conservation priorities. Here I reconstruct the most comprehensive tree of life for the order Scleractinia (1,293 species) that includes all 837 living reef species, and employ a composite measure of phylogenetic distinctiveness and extinction risk to identify the most endangered lineages that would not be given top priority on the basis of risk alone. The preservation of these lineages, not just the threatened species, is vital for safeguarding evolutionary diversity. Tests for phylogeny-associated patterns show that corals facing elevated extinction risk are not clustered on the tree, but species that are susceptible, resistant or resilient to impacts such as bleaching and disease tend to be close relatives. Intensification of these threats or extirpation of the endangered lineages could therefore result in disproportionate pruning of the coral tree of life.  相似文献   

11.
Recruitment hotspots are locations where organisms are added to populations at high rates. On tropical reefs where coral abundance has declined, recruitment hotspots are important because they have the potential to promote population recovery. Around St. John, US Virgin Islands, coral recruitment at five sites revealed a hotspot that has persistent for 14 years. Recruitment created a hotspot in density of juvenile corals that was 600 m southeast of the recruitment hotspot. Neither hotspot led to increased coral cover, thus revealing the stringency of the demographic bottleneck impeding progression of recruits to adult sizes and preventing population growth. Recruitment hotspots in low-density coral populations are valuable targets for conservation and sources of corals for restoration.  相似文献   

12.
13.
Coral reefs comprise a variety of microhabitats, each with a characteristic pattern of water movement. Variation in flow microhabitat is likely to influence the distribution and abundance of suspension feeders, including the corals. Water flow was measured concurrently with wave heights at 8 depths along the forereef slope in Salt River Canyon, St Croix, U.S.V.I. The greatest flow speeds occurred on the shallow forereef at 7 m depth, where oscillatory wave-induced flow reached speeds over 50 cm s–1. From 7 m to at least 15 m depth, flow decreased and was primarily bidirectional. Below 15 m depth, flow decreased even further, to less than one fifth of that experienced by shallow corals, and was unidirectional. The relationship between particle capture by the corals Meandrina meandrites and Madracis decactis and water flow was studied in the field. Colony morphology and the resulting modification of flow influenced the relationship of flow to feeding success; prey capture by the branching Madracis colonies increased with flow, while that of the flat Meandrina colonies did not. Such relationships may contribute to differences in distribution of corals of divergent morphologies. In transect surveys from 7 to 45 m depth,; branching and mounding corals with tentacular feeding modes were most common in the shallow forereef habitats, and plating corals with small polyps (ciliary mucus feeders) were ubiquitous in the deeper zones.This paper was presented at the Fifth International Conference on Coelenterate Biology at Southampton, UK in July 1989. A synopsis appears in the Proceedings (Hydrobiologia 216/217: 247–248, 1991).This paper was presented at the Fifth International Conference on Coelenterate Biology at Southampton, UK in July 1989. A synopsis appears in the Proceedings (Hydrobiologia 216/217: 247–248, 1991).  相似文献   

14.
Elevated seawater temperatures have long been accepted as the principal stressor causing the loss of symbiotic algae in corals and other invertebrates with algal symbionts (i.e., bleaching). A secondary factor associated with coral bleaching is solar irradiance, both its visible (PAR: 400–700 nm) and ultraviolet (UVR: 290–400 nm) portions of the spectrum. Here we examined the synergistic role of solar radiation on thermally induced stress and subsequent bleaching in a common Caribbean coral, Montastraea faveolata. Active fluorescent measurements show that steady-state quantum yields of photosystem II (PSII) fluorescence in the zooxanthellae are markedly depressed when exposed to high solar radiation and elevated temperatures, and the concentration of D1 protein is significantly lower in high light when compared to low light treatments under the same thermal stress. Both photosynthetic pigments and mycosporine-like amino acids (MAAs) are also depressed after experimental exposure to high solar radiation and thermal stress. Host DNA damage is exacerbated under high light conditions and is correlated with the expression of the cell cycle gene p 53, a cellular gatekeeper that modulates the fate of damaged cells between DNA repair processes and apoptotic pathways. These markers of cellular stress in the host and zooxanthellae have in common their response to the enhanced production of reactive oxygen species during exposure to high irradiances of solar radiation and elevated temperatures. Taking these results and previously published data into consideration, we conclude that thermal stress during exposure to high irradiances of solar radiation, or irradiances higher than the current photoacclimatization state, causes damage to both photochemistry and carbon fixation at the same time in zooxanthellae, while DNA damage, apoptosis, or necrosis are occurring in the host tissues of symbiotic cnidarians.Abbreviations PSII Functional absorption cross-section for PSII - Fo, Fm Minimum and maximum yields of chlorophyll a fluorescence measured after dark acclimation (relative units) - Fv Variable fluorescence after dark acclimation (=Fm–Fo), dimensionless - Fv/Fm Maximum quantum yield of photochemistry in PSII measured after dark acclimation, dimensionless - F, Fm Steady-state and maximum yields of chlorophyll a fluorescence measured under ambient light (relative units) - F/Fm Quantum yield of photochemistry in PSII measured at steady state under ambient light Communicated by R.C. Carpenter  相似文献   

15.
Dimethylsulfoniopropionate (DMSP) is an important component of the global sulfur cycle and may be involved, via its cleavage product dimethylsulfide, in climate regulation. Although it is common in many algae, reports of DMSP in animals, particularly tropical invertebrates, are limited. This study examined the distribution of DMSP in a diverse group of coral reef invertebrates. DMSP was present in all 22 species of cnidarians and ranged from 9 to 723 μmol g−1 of dry mass (DM) with a mean (± 1SD) of 110 ± 180 μmol g−1 DM. It was not detected in a flatworm and an ascidian or in two of five sponges. Concentrations in sponges ranged from undetectable to 16 μmol g−1 DM with a mean of 4 ± 7 μmol g−1 DM. Within the cnidarians, DMSP concentrations did not differ among orders. Among cnidarian species, DMSP concentrations were correlated with symbiotic zooxanthellae densities. Within cnidarian species, DMSP concentrations of individuals were positively correlated with zooxanthellae densities in three of the four species examined. We speculate that DMSP is dietarily derived in sponges and derived from zooxanthellae in the cnidarians. The functions of DMSP in coral reef invertebrates are not known.  相似文献   

16.
New information on the presence and relative abundances of 41 reef-building (zooxanthellate) coral species at 11 eastern Pacific and 3 central Pacific localities is examined in a biogeographic analysis and review of the eastern Pacific coral reef region. The composition and origin of the coral fauna and other reef-associated taxa are assessed in the context of dispersal and vicariance hypotheses. A minimum variance cluster analysis using coral species presence–absence classification data at the 14 localities revealed three eastern Pacific reef-coral provinces: (1) equatorial– mainland Ecuador to Costa Rica, including the Galápagos and Cocos Islands; (2) northern– mainland México and the Revillagigedo Islands; (3) island group– eastern Pacific Malpelo Island and Clipperton Atoll, and central Pacific Hawaiian, Johnston and Fanning Islands. Coral species richness is relatively high in the equatorial (17–26 species per locality) and northern (18–24 species) provinces, and low at two small offshore island localities (7–10 species). A high proportion (36.6%, 15 species) of eastern Pacific coral species occurs at only one or two localities; of these, three disappeared following the 1982–83 ENSO event, three occur as death assemblages at several localities, and five are endangered with known populations of ten or fewer colonies. Principal component analysis using ordinal relative density data for the 41 species at the 14 localities indicated three main species groupings, i.e., those with high, mid, and narrow spatial distributions. These groupings correlated with species population-dynamic characteristics. These results were compared with data for riverine discharges, ocean circulation patterns, shoreline habitat characteristics, and regional sea surface temperature data to help clarify the analyses as these measures of environmental variability affect coral community composition. Local richness was highest at localities with the highest environmental variability. Recent information regarding the strong affinity between eastern and central Pacific coral faunas, abundance of teleplanic larvae in oceanic currents, high genetic similarity of numerous reef-associated species, and appearances of numerous Indo-west Pacific species in the east Pacific following ENSO activity, suggest the bridging of the east Pacific filter bridge (formerly east Pacific barrier). Accepted: 20 September 1999  相似文献   

17.
18.
Self-shading of light by algae growing in a column of water plays an important role in the dynamics of algal blooms. Thus without self-shading the algal concentration would increase more rapidly, making the nutrient limitation too strong. Apart from the practical importance of self-shading, its inherent nonlinearity in the growth dynamics leads to an interesting mathematical problem, which warrants detailed analytical investigation. Our mathematical model for the self-shading effect includes vertical diffusion, algal settling, gross production, and collective losses of algae. Steady-state solutions of the model equation are investigated in detail by the phase plane method, and their stability examined. Finally we discuss the vertical profile of algal concentration.Contribution No. 291 of the Marine Sciences Research Center  相似文献   

19.
The 'impassable' Eastern Pacific Barrier (EPB), ca 5000 km of deep water separating the eastern from the central Pacific, is the World's widest marine biogeographic barrier. Sequencing of mitochondrial DNA in 20 reef fish morphospecies encountered on both sides of the barrier revealed cryptic speciation in two. Among the other 18 species only two showed significant differentiation (as revealed by haplotype networks and FST statistics) between the eastern and the central Pacific. Coalescence analyses indicated that genetic similarity in the 18 truly transpacific species resulted from different combinations of ages of most recent invasion and of levels of recurrent gene flow, with estimated times of initial separation ranging from approximately 30000 to 1 Myr (ago). There is no suggestion of simultaneous interruptions of gene flow among the species. Migration across the EPB was previously thought to be exclusively eastward, but our evidence showed two invasions from east to west and eight cases in which subsequent gene flow possibly proceeded in the same direction. Thus, the EPB is sporadically permeable to propagules originating on either side.  相似文献   

20.
Mutualistic organisms can be particularly susceptible to climate change stress, as their survivorship is often limited by the most vulnerable partner. However, symbiotic plasticity can also help organisms in changing environments by expanding their realized niche space. Coral–algal (Symbiodinium spp.) symbiosis exemplifies this dichotomy: the partnership is highly susceptible to ‘bleaching’ (stress‐induced symbiosis breakdown), but stress‐tolerant symbionts can also sometimes mitigate bleaching. Here, we investigate the role of diverse and mutable symbiotic partnerships in increasing corals' ability to thrive in high temperature conditions. We conducted repeat bleaching and recovery experiments on the coral Montastraea cavernosa, and used quantitative PCR and chlorophyll fluorometry to assess the structure and function of Symbiodinium communities within coral hosts. During an initial heat exposure (32 °C for 10 days), corals hosting only stress‐sensitive symbionts (Symbiodinium C3) bleached, but recovered (at either 24 °C or 29 °C) with predominantly (>90%) stress‐tolerant symbionts (Symbiodinium D1a), which were not detected before bleaching (either due to absence or extreme low abundance). When a second heat stress (also 32 °C for 10 days) was applied 3 months later, corals that previously bleached and were now dominated by D1a Symbiodinium experienced less photodamage and symbiont loss compared to control corals that had not been previously bleached, and were therefore still dominated by Symbiodinium C3. Additional corals that were initially bleached without heat by a herbicide (DCMU, at 24 °C) also recovered predominantly with D1a symbionts, and similarly lost fewer symbionts during subsequent thermal stress. Increased thermotolerance was also not observed in C3‐dominated corals that were acclimated for 3 months to warmer temperatures (29 °C) before heat stress. These findings indicate that increased thermotolerance post‐bleaching resulted from symbiont community composition changes, not prior heat exposure. Moreover, initially undetectable D1a symbionts became dominant only after bleaching, and were critical to corals' resilience after stress and resistance to future stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号