首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Renal cortical plasms membranes were separated by free flow electrophoresis into luminal (brush border microvilli) and contraluminal (basal-lateral membrane) fractions. These membranes were found to contain an intrinsic, self-phosphorylating system which consists of a cyclic AMP-dependent protein kinase, a phosphorprotein phosphatase and the substrate(s) of these enzymes. The kinase, but not the phosphatase, was stimulated by cyclic AMP; maximal (1.7-fold) stimulation was effected at a cyclic AMP concentration of 0.1 muM. The degree of phosphorylation of the brush borders was six times greater than that of the basal-lateral membranes in the absence of cyclic AMP and 2.3-fold greater in the presence of cyclic AMP. This preferential phosphorylation of the luminal membrane by membrane-associated protein kinase(s) may play a role in the parathyroid hormone-mediated alterations of solute reabsorption in the proximal tubule.  相似文献   

2.
Luminal (brush border) and antiluminal (basal-lateral) membranes were isolated from canine renal cortex. The enzyme marker for luminal membrane, alkaline phosphatase was enhanced 19-fold and the antiluminal enzyme marker, (Na+ + K+)-ATPase, was enhanced 22-fold in their respective membrane preparation, while the amount of cross contamination was minimal. Contamination of these preparations by enzyme markers for lysosomes, endoplasmic reticulum and mitochondria was also low. Routinely, more than 50 mg membrane protein was isolated for each membrane. Electron micrographs showed that the membranes were uniform in size, appearance, and vesicular in nature. An examination of the orientation of these membranes showed that 76.5% of the antiluminal membranes and 86% of the luminal membranes were right-side out.  相似文献   

3.
Multiple protein kinase activities were found in the luminal segment of the renal proximal tubule cell plasma membrane (brush border membrane). Membranes were extracted with Lubrol, with no loss in activity, and the extract was chromatographed on diethylaminoethyl cellulose with a salt gradient. With protamine as substrate, activity eluted in two peaks, designated I and IIb, and was cyclic AMP independent. With histone VII-S, one peak, designated IIa, appeared, which eluted slightly ahead of IIb and was cyclic AMP dependent. The three activities eluted in their original patterns following rechromatography. Histone kinase activity in the combined IIa+b fraction was stimulated threefold by cyclic nucleotides (Ka = 0.013 and 0.94 μM for cyclic AMP and cyclic GMP, respectively) by increasing V. Cyclic AMP binding activity eluted with histone kinase activity. Rechromatography of IIa+b on diethylaminoethyl cellulose containing 1 μm cyclic AMP resulted in passage through the column of most of the histone kinase activity (IIa) prior to the salt gradient, but retention of kinase IIb, which again eluted in its original position. Characterization of the separated enzymes revealed that kinase I was highly specific for protamine and totally insensitive to cyclic AMP and a specific protein inhibitor of cyclic AMP-dependent kinases. Kinase IIa was relatively specific for histones and was completely inhibited by the protein inhibitor. Kinase IIb was nonspecific, catalyzing phosphorylation of protamine, casein, histones, and phosvitin in decreasing order of activity, and was insensitive to cyclic AMP and the protein inhibitor. Exposure of intact brush border membranes to elevated temperatures revealed that phosphorylation of intrinsic membrane proteins and protamine was thermolabile, whereas cyclic AMP-dependent histone kinase activity was relatively thermostable. These findings implicate cyclic AMP-independent protamine kinases in the cyclic AMP-independent autophosphorylation of the brush border membrane.  相似文献   

4.
Luminal (brush border) and antiluminal (basal-lateral) membranes were isolated from canine renal cortex. The enzyme marker for luminal membrane, alkaline phosphatase was enhanced 19-fold and the antiluminal enzyme marker, (Na+ + K+)-ATPase, was enhanced 22-fold in their respective membrane preparation, while the amount of cross contamination was minimal. Contamination of these preparations by enzyme markers for lysosomes, endoplasmic reticulum and mitochondria was also low. Routinely, more than 50 mg membrane protein was isolated for each membrane. Electron micrographs showed that the membranes were uniform in size, appearance, and vesicular in nature. An examination of the orientation of these membranes showed that 76.5% of the antiluminal membranes and 86% of the luminal membranes were right-side out.  相似文献   

5.
Some characteristics of the protein kinase activity associated with a synaptosomal plasma membrane (synaptic membrane) fraction and a synaptic junction fraction have been compared. Autoradiography of the phosphorylated fractions separated on sodium dodecyl sulfate polyacrylamide gels showed that cyclic AMP stimulates the phosphorylation of five polypeptides in synaptic membranes, whereas no cyclic AMP dependency could be detected in synaptic junctions. Kinetic studies demonstrated that synaptic junctions contain a high Km and a low Km protein kinase activity while only the high Km activity could be detected in synaptic membranes. The intrinsic ATPase activity of synaptic membranes was shown to strongly interfere with measurements of protein kinase activity. Cyclic AMP binding experiments revealed a 2.6-fold enrichment of cyclic AMP binding capacity in synaptic junctions as compared to synaptic membranes. Protein phosphatase activity was not detected in synaptic junctions but was associated with synaptic membranes, where cyclic AMP was shown to either stimulate or inhibit the dephosphorylation of different polypeptides.  相似文献   

6.
Some characteristics of the protein kinase activity associated with a synaptosomal plasma membrane (synaptic membrane) fraction and a synaptic junction fraction have been compared. Autoradiography of the phosphorylated fractions separated on sodium dodecyl sulfate polyacrylamine gels showed that cyclic AMP stimulates the phosphorylation of five polypeptides in synaptic membranes, whereas no cyclic AMP dependency could be detected in synaptic junctions. Kinetic studies demonstrated that synaptic junctions contain at high Km and a low Km protein kinase activity while only the high Km activity could be detected in synaptic membranes. The intrinsic ATPase activity of synaptic membranes was shown to strongly interfere with measurements of protein kinase activity. Cyclic AMP binding experiments revealed a 2.6-fold enrichment of cyclic AMP binding capacity in synaptic junctions as compared to synaptic membranes. Protein phosphatase activity was not detected in synaptic junctions but was associated with synaptic membranes, where cyclic AMP was shown to either stimulate or inhibit the dephosphorylation of different polypeptides.  相似文献   

7.
Renal basal-lateral and brush border membrane preparations were phosphorylated in the presence of [gamma-32P]ATP. The 32P-labeled membrane proteins were analysed on SDS-polyacrylamide gels. The phosphorylated intermediates formed in different conditions are compared with the intermediates formed in well defined membrane preparations such as erythrocyte plasma membranes and sarcoplasmic reticulum from skeletal muscle, and with the intermediates of purified renal enzymes such as (Na+ + K+)-ATPase and alkaline phosphatase. Two Ca2+-induced, hydroxylamine-sensitive phosphoproteins are formed in the basal-lateral membrane preparations. They migrate with a molecular radius Mr of about 130 000 and 100 000. The phosphorylation of the 130 kDa protein was stimulated by La3+-ions (20 microM) in a similar way as the (Ca2+ + Mg2+)-ATPase from erythrocytes. The 130 kDa phosphoprotein also comigrated with the erythrocyte (Ca2+ + Mg2+)-ATPase. In addition in the same preparation, another hydroxylamine-sensitive 100 kDa phosphoprotein was formed in the presence of Na+. This phosphoprotein comigrates with a preparation of renal (Na+ + K+)-ATPase. In brush border membrane preparations the Ca2+-induced and the Na+-induced phosphorylation bands are absent. This is consistent with the basal-lateral localization of the renal Ca2+-pump and Na+-pump. The predominant phosphoprotein in brush border membrane preparations is a 85 kDa protein that could be identified as the phosphorylated intermediate of renal alkaline phosphatase. This phosphoprotein is also present in basal-lateral membrane preparations, but it can be accounted for by contamination of those membranes with brush border membranes.  相似文献   

8.
Sarcolemmal membranes isolated from guinea pig heart ventricles contained endogenous protein kinase activity and protein substrates for this enzyme. Phosphorylation of sarcolemma was modestly stimulated by cyclic AMP with the half-maximal stimulation at 0.5 μm cyclic AMP. The phosphorylation of sarcolemma due to endogenous kinase was dependent on Mg2+. The apparent affinity for Mg2+ was found to be 1.4 and 0.53 mm in the absence and presence of 1 μm cyclic AMP, respectively. The apparent affinity for ATP was 55 μm. Sarcolemmal membranes were also phosphorylated by exogenous (purified) cyclic AMP-dependent protein kinase(s). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of phosphorylated membranes, followed by slicing and determination of the radioactivity in the gel slices, showed that endogenous protein kinase activity promoted the phosphorylation of specific protein peaks, arbitrarily designated a–g in order of increasing relative mobility (relative molecular weights 125,000, 110,000, 86,000, 58,000, 48,000, 22,000, and 16,000, respectively); peak e (48,000) was the major phosphorylated band. Exogenous protein kinase stimulated the phosphorylation of all peaks. However, the degree of stimulation of the low molecular weight peaks f and g was more marked. Results obtained after treatment of phosphorylated membranes with hydroxylamine at acid pH indicated the absence of any significant amount of acyl phosphate-type incorporation of phosphate. Purified phosphoprotein phosphatase from rabbit liver effected dephosphorylation of previously phosphorylated sarcolemma; this treatment resulted in dephosphorylation of all peaks (a–g). Pretreatment of sarcolemma with trypsin (membrane to trypsin ratio of 100) was found to markedly reduce both the total membrane phosphorylation as well as relative phosphorylation of peaks c, f, and g. On the other hand, pretreatment of sarcolemma with phospholipase c slightly stimulated total membrane phosphorylation with nondiscriminatory enhancement of the phosphorylation of all peaks. Microsomal membrane vesicles (enriched in sarcoplasmic reticulum fragments) isolated from guinea pig heart ventricle also contained endogenous protein kinase activity. Cyclic AMP modestly increased the kinase. Polypeptides of molecular weights 56,000, 22,000, and 16,000 were found to be phosphorylated. Exogenous (purified) cyclic AMP-dependent protein kinase increased the phosphorylation of microsomes and of 22,000 and 16,000 molecular weight polypeptides.  相似文献   

9.
Luminal brush border and contraluminal basal-lateral segments of the plasma membrane from the same kidney cortex were prepared. The brush border membrane preparation was enriched in trehalase and gamma-glutamyltranspeptidase, whereas the basal-lateral membrane preparation was enriched in (Na+ + K+1)-ATPase. However, the specific activity of (Na+ + K+)-ATPase in brush border membranes also increased relative to that in the crude plasma membrane fraction, suggesting that (Na+ + K+)-ATPase may be an intrinsic constituent of the renal brush border membrane in addition to being prevalent in the basal-lateral membrane. Adenylate cyclase had the same distribution pattern as (Na+ + K+)-ATPase, i.e. higher specific activity in basal-lateral membranes and present in brush border membranes. Adenylate cyclase in both membrane preparations was stimulated by parathyroid hormone, calcitonin, epinephrine, prostaglandins and 5'-guanylylimidodiphosphate. When the agonists were used in combination enhancements were additive. In contrast to the distribution of adenylate cyclase, guanylate cyclase was found in the cytosol and in basal-lateral membranes with a maximal specific activity (NaN3 plus Triton X-100) 10-fold that in brush border membranes. ATP enhanced guanylate cyclase activity only in basal-lateral membranes. It is proposed that guanylate cyclase, in addition to (Na+ + K+)-ATPase, be used as an enzyme "marker" for the renal basal-lateral membrane.  相似文献   

10.
Plasma membranes can be isolated without disruption of cells by the plasma membrane vesiculation technique (Scott, R.E. (1976) Science 194, 743-745). A major advantage of this technique is that it avoids contamination of plasma membranes with intracellular membrane components. Using this method, we prepared plasma membranes from L6 myoblasts grown in tissue culture and studied the characteristics of the protein phosphorylation system. We found that these plasma membrane preparations contain protein kinase which is tightly bound to the membrane and cannot be removed by washing in EDTA or in high ionic strength salt solutions. This protein kinase activity can catalyze the phosphorylation of several exogenous substrates with decreasing efficiency as acceptors of phosphate: calf thymus histones f2b, protamine and caseine. Cyclic AMP causes a dose-dependent stimulation of protein kinase activity; the highest stimulation (4-fold) is achieved at concentration 10(-5) M cyclic AMP. Cyclic AMP-dependent stimulation can be completely inhibited by heat-stable protein kinase inhibitor isolated from rabbit skeletal muscle. On the other hand, cyclic GMP does not affect the activity of protein kinase. Plasma membrane-bound protein kinase also catalyzes the phosphorylation of endogenous membrane protein substrates and this is also stimulated by addition of cyclic AMP. Analysis of plasma membrane proteins by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis showed that specific polypeptides are phosphorylated by cyclic AMP-independent and by cyclic AMP-dependent protein kinase systems. The results of these studies demonstrate the presence of endogenous cyclic AMP-dependent and -independent protein phosphorylating systems (enzyme activity and substrates) in purified plasma membrane preparations. These data provide a basis for further investigations on the role of plasma membrane phosphorylation as a regulator of membrane functions including those that may control cellular differentiation.  相似文献   

11.
Plasma membranes can be isolated without disruption of cells by the plasma membrane vesiculation technique (Scott, R.E. (1976) Science 194, 743–745). A major advantage of this technique is that it avoids contamination of plasma membranes with intracellular membrane components. Using this method, we prepared plasma membranes from L6 myoblasts grown in tissue culture and studied the characteristics of the protein phosphorylation system.We found that these plasma membrane preparations contain protein kinase which is tightly bound to the membrane and cannot be removed by washing in EDTA or in high ionic strength salt solutions. This protein kinase activity can catalyze the phosphorylation of several exogenous substrates with decreasing efficiency as acceptors of phosphate: calf thymus histones f2b, protamine and caseine. Cyclic AMP causes a dose-dependent stimulation of protein kinase activity; the highest stimulation (4-fold) is achieved at concentration 10?5 M cyclic AMP. Cyclic AMP-dependent stimulation can be completely inhibited by heat-stable protein kinase inhibitor isolated from rabbit skeletal muscle. On the other hand, cyclic GMP does not affect the activity of protein kinase.Plasma membrane-bound protein kinase also catalyzes the phosphorylation of endogenous membrane protein substrates and this is also stimulated by addition of cyclic AMP. Analysis of plasma membrane proteins by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis showed that specific polypeptides are phosphorylated by cyclic AMP-independent and by cyclic AMP-dependent protein kinase systems.The results of these studies demonstrate the presence of endogenous cyclic AMP-dependent and -independent protein phosphorylating systems (enzyme activity and substrates) in purified plasma membrane preparations. These data provide a basis for further investigations on the role of plasma membrane missing data  相似文献   

12.
Free flow electrophoresis was employed to separate renal cortical plasma membranes into luminal (brush border microvilli) and contraluminal (basal-lateral membrane) fractions. During the separation adenylate cyclase activity was found to parallel the activity of Na+-K+-activated ATPase, an enzyme which is present in contraluminal but not in luminal membranes. In the basal-lateral membrane fraction the specific activities of adenylate cyclase and Na+-K+-activated ATPase were 4.4 and 4.6 times greater, respectively, than in the brush border fraction. The adenylate cyclase of the basal-lateral membrane fraction was specifically stimulated by parathyroid hormone which maximally increased enzyme activity eightfold. The biologically active (1-34) peptide fragment of paratyhroid hormone produced a 350% increase in adenylate cyclase activity. In contrast, calcitonin, epinephrine and vasopressin maximally stimulated the enzyme by only 55, 35 and 30%, respectively. These results indicate that adenylate cyclase, specifically stimulated by parathyroid hormone, is distributed preferentially in the contraluminal region of the plasma membrane of renal cortical epithelial cells.  相似文献   

13.
Kinase(s) in brush border membranes, isolated from rabbit renal proximal tubules, phosphorylated proteins intrinsic to the membrane and exogenous proteins. cAMP stimulated phosphorylation of histone; phosphorylation of protamine was cAMP independent. cAMP-dependent increases in phosphorylation of endogenous membrane protein were small, but highly reproducible. Most of the 32P incorporated into membranes represented phosphorylation of serine residues, with phosphorylthreonine comprising a minor component. cAMP did not alter the electrophoretic pattern of 32P-labeled membrane polypeptides. The small cAMP-dependent phosphorylation of brush border membrane proteins was not due to membrane phosphodiesterase or adenylate cyclase activities. Considerable cAMP was found “endogenously” bound to the membranes as prepared. However, this did not result in preactivation of the kinase since activity was not inhibited by a heat-stable protein inhibitor of cAMP-dependent protein kinases. With intrinsic membrane protein as phosphate acceptor, the relationship between rate of phosphorylation and ATP concentration appeared to follow Michaelis-Menton kinetics. With histone the relationship was complex. cAMP did not affect the apparent Km for histone. One-half maximal stimulation of the rate of histone phosphorylation was obtained with 7 × 10?8m cAMP. The Ka values for dibutyryl cAMP, cIMP, and cGMP were one to two orders of magnitude greater. Treatment of brush border membranes with detergent greatly increased the dependency of histone phosphorylation on cAMP. Phosphorylations of intrinsic membrane protein and histone were nonlinear with time, due in part to the lability of the protein kinase, the hydrolysis of ATP, and minimally to the presence of phosphoprotein phosphatase in the border membrane. The membrane phosphoprotein phosphatase was unaffected by cyclic nucleotides. Protein kinase activity was also found in cytosolic and crude particulate fractions of the renal cortex. Activity was enriched in the brush border membrane relative to that in the crude membrane preparation. The kinase activities in the different loci were distinct both in relative activities toward different substrates and in responsiveness to cAMP.  相似文献   

14.
《Molecular membrane biology》2013,30(3-4):177-185
A simple, efficient procedure is described for the preparative scale isolation of basal-lateral membranes from the rat intestinal epithelium. The intestinal mucosa was mildly homogenized and soluble protein and RNA were separated from the homogenate by differential centrifugation. The basal-lateral membranes were then separated from nuclei, mitochondria, and brush border membranes by differential centrifugation in a medium close to the equilibrium density of the basal-lateral membranes. Final purification of the basal-lateral membranes was achieved on a linear density gradient in a high-capacity zonal rotor. The final product (usually at least 40 mg protein) represented a 34% yield of basal-lateral membranes purified 18-fold with respect to protein, 26-fold with respect to brush border membranes, and 53-fold with respect to mitochondria.  相似文献   

15.
A simple, efficient procedure is described for the preparative scale isolation of basal-lateral membranes from the rat intestinal epithelium. The intestinal mucosa was mildly homogenized and soluble protein and RNA were separated from the homogenate by differential centrifugation. The basal-lateral membranes were then separated from nuclei, mitochondria, and brush border membranes by differential centrifugation in a medium close to the equilibrium density of the basal-lateral membranes. Final purification of the basal-lateral membranes was achieved on a linear density gradient in a high-capacity zonal rotor. The final product (usually at least 40 mg protein) represented a 34% yield of basal-lateral membranes purified 18-fold with respect to protein, 26-fold with respect to brush border membranes, and 53-fold with respect to mitochondria.  相似文献   

16.
We have examined endogenous cyclic AMP-stimulated phosphorylation of subcellular fractions of rat brain enriched in synaptic plasma membranes (SPM), purified synaptic junctions (SJ), and postsynaptic densities (PSD). The analyses of these fractions are essential to provide direct evidence for cyclic AMP-dependent endogenous phosphorylation at discrete synaptic junctional loci. Protein kinase activity was measured in subcellular fractions using both endogenous and exogenous (histones) proteins as substrates. The SJ fraction possessed the highest kinase activity toward endogenous protein substrates, 5-fold greater than SPM and approximately 120-fold greater than PSD fractions. Although the kinase activity as measured with histones as substrates was only slightly higher in SJ than SPM fractions, there was a marked preference of kinase activity toward endogenous compared to exogenous substrates in SJ fractions but in SPM fractions. Although overall phosphorylation in SJ fractions was increased only 36% by 5 micron cyclic AMP, there were discrete proteins of Mr = 85,000, 82,000, 78,000, and 55,000 which incorporated 2- to 3-fold more radioactive phosphate in the presence of cyclic AMP. Most, if not all, of the cyclic AMP-independent kinase activity is probably catalyzed by catalytic subunit derived from cyclic AMP-dependent kinase, since the phosphorylation of both exogenous and endogenous proteins was greatly decreased in the presence of a heat-stable inhibitor protein prepared from the soluble fraction of rat brain. The specific retention of SJ protein kinase(s) activity during purification and their resistance to detergent solubilization was achieved by chemical treatments which produce interprotein cross-linking via disulfide bridges. Two SJ polypeptides of Mr = 55,000 and 49,000 were photoaffinity-labeled with [32P]8-N3-cyclic AMP and probably represent the regulatory subunits of the type I and II cyclic AMP-dependent protein kinases. The protein of Mr = 55,000 was phosphorylated in a cyclic AMP-stimulated manner suggesting autophosphorylation as previously observed in other systems.  相似文献   

17.
Luminal brush border and contraluminal basal-lateral segments of the plasma membrane from the same kidney cortex were prepared. The brush border membrane preparation was enriched in trehalase and γ-glutamyltranspeptidase, whereas the basal-lateral membrane preparation was enriched in (Na+ + K+)-ATPase. However, the specific activity of (Na+ + K+)-ATPase in brush border membranes also increased relative to that in the crude plasma membrane fraction, suggesting that (Na+ + K+)-ATPase may be an intrinsic constituent of the renal brush border membrane in addition to being prevalent in the basal-lateral membrane. Adenylate cyclase had the same distribution pattern as (Na+ + K+)-ATPase, i.e. higher specific activity in basal-lateral membranes and present in brush border membranes. Adenylate cyclase in both membrane preparations was stimulated by parathyroid hormone, calcitonin, epinephrine, prostaglandins and 5′-guanylylimidodiphosphate. When the agonists were used in combination enhancements were additive. In contrast to the distribution of adenylate cyclase, guanylate cyclase was found in the cytosol and in basal-lateral membranes with a maximal specific activity (NaN3 plus Triton X-100) 10-fold that in brush border membranes. ATP enhanced guanylate cyclase activity only in basal-lateral membranes. It is proposed that guanylate cyclase, in addition to (Na+ + K+)-ATPase, be used as an enzyme “marker” for the renal basal-lateral membrane.  相似文献   

18.
Synaptosomal plasma membranes from mammalian brain contain protein kinase activity which phosphorylates endogenous membrane proteins and is stimulated by cyclic AMP. Using polyacrylamide gel electrophoresis it was shown that at least ten proteins in the synaptosomal plasma membrane fraction could be phosphorylated by endogenous cyclic AMP-stimulated protein kinase activity. The number of proteins whose phosphorylation was stimulated by cyclic AMP was strongly influenced by the pH and Mg2+ concentration used in the phosphorylation reaction. A complex pattern of cyclic AMP-stimulated protein phosphorylation was obtained only with synaptosomal plasma membranes and a crude microsomal fraction. Mitochondrial and myelin fractions exhibited no cyclic AMP-stimulated protein kinase activity. Investigation of the distribution of substrates for cyclic AMP-stimulated phosphorylation among various brain regions failed to reveal any regional differences.  相似文献   

19.
Summary To test the possibility that stimulation of secretion leads Na,K-ATPase to be recruited from cytoplasmic pools and inserted into basal-lateral plasma membranes, we surveyed the subcellular distributions of Na, K-ATPase in resting and stimulated fragments of rat exorbital lacrimal gland. After a two-dimensional separation procedure based on differential sedimentation and density gradient centrifugation, we defined sixdensity windows, which differ from one another in their contents of biochemical markers. The membranes equilibrating inwindow I could be identified as a sample of basal-lateral membranes; in resting preparations these membranes contained Na,K-ATPase enriched 16.6-fold with respect to the initial homogenates.Windows II throughVI contained various cytoplasmic membrane populations; these accounted for roughly 80% of the total recovered Na,K-ATPase activity. Thirty-minute stimulation with 10 m carbachol caused a 1.4-fold increase (P<0.05) in the total Na,K-ATPase content ofwindow I; this increase could be largely accounted for by a 1.7-fold decrease in the total Na,K-ATPase content ofdensity window V. Acid phosphatase activity also redistributed following stimulation, but it was recruited from a different source, and it was inserted into membranes equilibrating inwindows II andIII as well as into the membranes ofwindow I.  相似文献   

20.
Phosphoproteins of the Adrenal Chromaffin Granule Membrane   总被引:4,自引:1,他引:3  
A fraction of chromaffin granule membranes contained a number of substrates for endogenous protein kinase activity as well as endogenous phosphatase activity. The major 32P-labelled polypeptide of molecular weight 43,000 appeared to be the alpha-subunit of pyruvate dehydrogenase of residual mitochondria. Several polypeptides showed cyclic AMP stimulation of phosphorylation of which the major polypeptide of molecular weight 59,000 shows half-maximal phosphorylation with 0.49 microM cyclic AMP. The phosphorylation of several other polypeptides is inhibited at high cyclic AMP concentrations. From studies with immunoprecipitation and two-dimensional electrophoresis it was found that alpha- and beta-tubulin and actin were absent from the granule membranes. However 32P labelling of a proportion of the copies of dopamine-beta-hydroxylase was demonstrated. The majority of the substrates for endogenous protein kinase activity are probably on the cytoplasmic side of the granule membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号