首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
研究以克隆得到正确序列的大肠杆菌ubiC基因目的,实验通过PCR方法从大肠杆菌基因组中扩增得到了ubiC基因,扩增产物克隆到pUC118载体,转化大肠杆菌JM109,DNA序列分析结果表明克隆得到的大肠杆菌ubiC基因碱基序列正确。  相似文献   

3.
4.
Adenylate kinase prepared from a temperature-sensitive adk mutant of Escherichia coli was thermolabile at 40 degrees C while the wild type enzyme was stable. The degree of thermolability of the mutant enzyme was concentration-dependent in that a much greater thermolability was observed in the concentrated crude homogenate than in a 50-fold dilution of the crude homogenate. This concentration dependence was lost after extensive purification of the mutant adenylate kinase, although the enzyme was still thermolabile. A protein was identified that co-purified with the wild type and mutant enzyme through several purification steps and that altered the degree of thermolability of the mutant adenylate kinase. A homogeneous preparation of the adenylate kinase-associated protein gave a single band on a sodium dodecyl sulfate-polyacrylamide gel with Mr = 34,000. The interaction of this protein with adenylate kinase explains why the thermolability of the mutant adenylate kinase changed during purification and the dependence of the thermolability on concentration. The adenylate kinase-associated protein may be important in regulating the activity of adenylate kinase and subsequently affecting the rate of cell growth.  相似文献   

5.
The glpK gene, which codes for Escherichia coli K-12 glycerol kinase (EC 2.1.7.30, ATP:glycerol 3-phosphotransferase), has been cloned into the HindIII site of pBR322. The gene was contained in a 2.8-kilobase DNA fragment which was obtained from a lambda transducing bacteriophage, lambda dglpK100 (Conrad, C.A., Stearns, G.W., III, Prater, W.E., Rheiner, J.A., and Johnson, J.R. (1984) Mol. Gen. Genet. 195, 376-378). The DNA sequence of 2 kilobases of the cloned HindIII fragment was obtained using the dideoxynucleotide method. The start of the open reading frame for the glpK gene was identified from the N-terminal sequence of the first 22 amino acid residues of the purified enzyme, which was determined by automated Edman degradation. The open reading frame codes for a protein of 502 amino acids and a molecular weight of 56,106 which is in good agreement with the value previously determined by sedimentation equilibrium. The primary structure of the protein as deduced from the gene sequence was corroborated by the isolation and sequencing of four tryptic peptides, which were found to occur at the following amino acid locations: 173-177, 203-211, 279-281, 464-468. The N-terminal sequence of the purified enzyme shows that the enzyme undergoes post-translational processing. Restriction digestion as well as DNA sequencing of the supercoiled plasmid shows that the HindIII fragment is inserted into pBR322 such that the glpK gene is transcribed in a counterclockwise direction. Examination of the upstream DNA sequence reveals two possible promoters of essentially the same efficiency: the P1 promoter of pBR322 and a hybrid promoter which contains both bacterial and pBR322 DNA sequences.  相似文献   

6.
We have determined the sequence of the gene encoding the large subunit of Escherichia coli exonuclease VII (xseA) and the amino acid sequence of the protein it encodes. The coding region of the xseA gene is 1368 base pairs. The protein encoded by the gene contains 456 amino acids and has a calculated molecular weight of 51,823. The promoter for xseA is close to that for guaB, and these two genes are transcribed in opposite directions: xseA clockwise and guaB counterclockwise on the standard E. coli genetic map. The cloned xseA gene can complement an xseA deletion mutant strain. In an xseA+ genetic background production of large quantities of the xseA gene product appeared to decrease the amount of exonuclease VII activity in cell extracts. In fact, no exonuclease VII activity at all could be detected following induction of strains in which the xseA gene was under lambda pL regulation. These observations suggest that the proper ratio of the large and small exonuclease VII subunits must be maintained in order to produce active enzyme.  相似文献   

7.
The adenylate cyclase gene of Escherichia coli has been cloned on the plasmid vector pBR325. The hybrid plasmid pTH4 obtained has a molecular weight of 6,4 megadalton and represents pBR325 plasmid with the insertion of 2,8 megadalton in the Pst1 site. The cya mutant bacteria carrying pTH4 recover their ability to utilize mannitol, lactose and other carbohydrates as carbon sources, and lose this ability again in the case of rare spontaneous excision of the DNA insert from the Pst1 site. The phenotypical effect of pTH4 in cya mutants can be only seen in the crp+ genome. The strains carrying pTH4 are also characterized by the ability of beta-galactosidase induction under conditions of catabolite repression. Besides, the bacteria containing cya+ allele on the plasmid do not grow on glycerol, which seems to be caused by toxic concentrations of methylglyoxal formed as a result of the increased intracellular level of cyclic adenosine monophosphate.  相似文献   

8.
9.
A 4.2-kilobase-pair fragment of the Escherichia coli chromosome which contains the genes for xylose isomerase and xylulose kinase was cloned into plasmid pBR322. The hybrid plasmid (designated pECX14) complements strains deficient in either or both of the two enzymes. Deletion derivatives of pECX14 were used to localize the two genes on the cloned fragment. The entire nucleotide sequence of the cloned fragment was determined. Open reading frames which, if translated, would encode proteins of molecular weights 54,000 and 52,000 were found. These were identified as the isomerase and kinase structural genes, respectively.  相似文献   

10.
The bacterioferritin (BFR) of Escherichia coli K-12 is an iron-storage hemoprotein, previously identified as cytochrome b1. The bacterioferritin gene (bfr) has been cloned, sequenced, and located in the E. coli linkage map. Initially a gene fusion encoding a BFR-lambda hybrid protein (Mr 21,000) was detected by immunoscreening a lambda gene bank containing Sau3A restriction fragments of E. coli DNA. The bfr gene was mapped to 73 min (the str-spc region) in the physical map of the E. coli chromosome by probing Southern blots of restriction digests of E. coli DNA with a fragment of the bfr gene. The intact bfr gene was then subcloned from the corresponding lambda phage from the gene library of Kohara et al. (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987). The bfr gene comprises 474 base pairs and 158 amino acid codons (including the start codon), and it encodes a polypeptide having essentially the same size (Mr 18,495) and N-terminal sequence as the purified protein. A potential promoter sequence was detected in the 5' noncoding region, but it was not associated with an "iron box" sequence (i.e., a binding site for the iron-dependent Fur repressor protein). BFR was amplified to 14% of the total protein in a bfr plasmid-containing strain. An additional unidentified gene (gen-64), encoding a relatively basic 64-residue polypeptide and having the same polarity as bfr, was detected upstream of the bfr gene.  相似文献   

11.
A 4.2-kilobase-pair fragment of the Escherichia coli chromosome which contains the genes for xylose isomerase and xylulose kinase was cloned into plasmid pBR322. The hybrid plasmid (designated pECX14) complements strains deficient in either or both of the two enzymes. Deletion derivatives of pECX14 were used to localize the two genes on the cloned fragment. The entire nucleotide sequence of the cloned fragment was determined. Open reading frames which, if translated, would encode proteins of molecular weights 54,000 and 52,000 were found. These were identified as the isomerase and kinase structural genes, respectively.  相似文献   

12.
Phosphoglycerate mutase is an essential glycolytic enzyme for Zymomonas mobilis, catalyzing the reversible interconversion of 3-phosphoglycerate and 2-phosphoglycerate. The pgm gene encoding this enzyme was cloned on a 5.2-kbp DNA fragment and expressed in Escherichia coli. Recombinants were identified by using antibodies directed against purified Z. mobilis phosphoglycerate mutase. The pgm gene contains a canonical ribosome-binding site, a biased pattern of codon usage, a long upstream untranslated region, and four promoters which share sequence homology. Interestingly, adhA and a D-specific 2-hydroxyacid dehydrogenase were found on the same DNA fragment and appear to form a cluster of genes which function in central metabolism. The translated sequence for Z. mobilis pgm was in full agreement with the 40 N-terminal amino acid residues determined by protein sequencing. The primary structure of the translated sequence is highly conserved (52 to 60% identity with other phosphoglycerate mutases) and also shares extensive homology with bisphosphoglycerate mutases (51 to 59% identity). Since Southern blots indicated the presence of only a single copy of pgm in the Z. mobilis chromosome, it is likely that the cloned pgm gene functions to provide both activities. Z. mobilis phosphoglycerate mutase is unusual in that it lacks the flexible tail and lysines at the carboxy terminus which are present in the enzyme isolated from all other organisms examined.  相似文献   

13.
The Escherichia coli dnaW mutation is an allele of the adk gene   总被引:3,自引:0,他引:3  
Summary A dnaW mutant, isolated on the basis of inability to effect conjugal DNA transfer at high temperature, has been shown by complementation and enzyme assay to be defective in the adk (adenylate kinase; EC 2.7.4.3) locus. The adk mutant, known to have reduced ATP concentration at the nonpermissive temperature (Cousin and Belaich 1966), was used to demonstrate a donor energy requirement for stable aggregate formation and for chromosome transfer in conjugation.  相似文献   

14.
15.
Summary Five DNA fragments carrying the thrB gene (homoserine kinase E.C. 2.7.1.39) of Brevibacterium lactofermentum were cloned by complementation of Escherichia coli thrB mutants using pBR322 as vector. All the cloned fragments contained a common 3.1 kb DNA sequence. The cloned fragments hybridized among themselves and with a 9 kb BamHI fragment of the chromosomal DNA of B. lactofermentum but not with the DNA of E. coli. None of the cloned fragments were able to complement thrA and thrC mutations of E. coli. Plasmids pULTH2, pULTH8 and pULTH11 had the cloned DNA fragments in the same orientation and were very stable. On the contrary, plasmid pULTH18 was very unstable and showed the DNA inserted in the opposite direction. E. coli minicells transformed with plasmids pULTH8 or pULTH11 (both carrying the common 3.1 kb fragment) synthesize a protein with an M r of 30,000 that is similar in size to the homoserine kinase of E. coli.Abbreviations SSC 0.15 M NaCl, 0.015 M sodium citrate - SDS sodium dodecyl sulphate - TSB tripticase soy broth - m-DAP meso-diaminopimelic acid - Smr, Cpr, Kmr, Amr, Apr, Tcr, MA15r resistance to streptomycin, cephalotin, kanamycin, amykacin, ampicillin, tetracycline and microcin A 15, respectively  相似文献   

16.
Cloning of the aspartase gene (aspA) of Escherichia coli   总被引:7,自引:0,他引:7  
The aspartase gene (aspA) of Escherichia coli has been isolated in two plasmids, pGS73 and pGS94, which contain segments of bacterial DNA (12.5 and 2.8 kb, respectively) inserted into the tet gene of the vector pBR322. The plasmids were constructed by sequential sub-cloning from a larger ColE1-frd+ hybrid plasmid. The location of the aspA gene confirmed predictions based on a correlation between the genetic and restriction maps of the corresponding region. The aspartase activities of plasmid-containing aspA mutants were amplified four- to sixfold relative to aspA+ parental strains. The aspA gene product was tentatively identified as a polypeptide of Mr 55 000, which is somewhat larger than previous estimates (Mr 45000 to 48000) for aspartase.  相似文献   

17.
mop is the structural gene for the molybdenum-pterin binding protein, which is the major molybdenum binding protein in Clostridium pastuerianum. The mop gene was detected by immunoscreening genomic libraries of C. pastuerianum and identified by determining the nucleotide sequence of the cloned insert of clostridial DNA. The deduced amino acid sequence of an open reading frame proved to be identical to the first twelve residues of purified Mop. The DNA sequence flanking the mop gene contains promoter-like consensus sequences which are probably responsible for the expression of Mop in Escherichia coli. The deduced amino acid composition shows that the protein is hydrophobic, lacks aromatic and cysteine residues and has a calculated molecular weight of 7,038. The N-terminal amino acid sequence of Mop has sequence homology with DNA binding proteins. The pattern and type of residues in the N-terminal region suggest it forms the helix-turn-helix structure observed in DNA binding proteins. We propose that Mop may be a regulatory protein binding the anabolic source of molybdenum.  相似文献   

18.
Escherichia coli contains pyrroloquinoline quinone-dependent glucose dehydrogenase. We cloned and sequenced the gene (gcd) encoding this enzyme and showed that the derived amino acid sequence is highly homologous to that of the gdhA gene product of Acinetobacter calcoaceticus. Stretches of homology also exist between the amino acid sequence of E. coli glucose dehydrogenase and other pyrroloquinoline quinone-dependent dehydrogenases from several bacterial species. The position of gcd on the chromosomal map of E. coli was determined to be at 3.1 min.  相似文献   

19.
The gene encoding peptide methionine sulfoxide reductase was cloned from an Escherichia coli genomic library using an oligonucleotide probe based on the amino-terminal sequence of the protein. The nucleotide sequence revealed that the gene codes for a polypeptide of 212 amino acid residues with a calculated molecular weight of 23,314. The protein has been overexpressed in E. coli and is present as a soluble active species.  相似文献   

20.
H Mori  A Iida  S Teshiba    T Fujio 《Journal of bacteriology》1995,177(17):4921-4926
We attempted to clone an inosine kinase gene of Escherichia coli. A mutant strain which grows slowly with inosine as the sole purine source was used as a host for cloning. A cloned 2.8-kbp DNA fragment can accelerate the growth of the mutant with inosine. The fragment was sequenced, and one protein of 434 amino acids long was found. This protein was overexpressed. The overexpressed protein was purified and characterized. The enzyme had both inosine and guanosine kinase activity. The Vmaxs for guanosine and inosine were 2.9 and 4.9 mumol/min/mg of protein, respectively. The Kms for guanosine and inosine were 6.1 microM and 2.1 mM, respectively. This enzyme accepted ATP and dATP as a phosphate donor but not p-nitrophenyl phosphate. These results show clearly that this enzyme is not a phosphotransferase but a guanosine kinase having low (Vmax/Km) activity with inosine. The sequence of the gene we have cloned is almost identical to that of the gsk gene (K.W. Harlow, P. Nygaard, and B. Hove-Jensen, J. Bacteriol. 177:2236-2240, 1995).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号