首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Protein-DNA recognition plays an essential role in the regulation of gene expression. The protein-DNA binding specificity is based on direct atomic contacts between protein and DNA and/or the conformational properties of DNA. In this work, we have analyzed the influence of DNA stiffness (E) to the specificity of protein-DNA complexes. The average DNA stiffness parameters for several protein-DNA complexes have been computed using the structure based sequence dependent stiffness scale. The relationship between DNA stiffness and experimental protein-DNA binding specificity has been brought out. We have investigated the importance of DNA stiffness with the aid of experimental free energy changes (DeltaDeltaG) due to binding in several protein-DNA complexes, such as, ETS proteins, 434, lambda, Mnt and trp repressors, 434 cro protein, EcoRV endonuclease V and zinc fingers. We found a correlation in the range 0.65-0.97 between DeltaDeltaG and E in these examples. Further, we have qualitatively analyzed the effect of mutations in the target sequence of lambda repressor and we observed that the DNA stiffness could correctly identify 70% of the correct bases among the considered nine positions.  相似文献   

2.
V K Misra  J L Hecht  A S Yang    B Honig 《Biophysical journal》1998,75(5):2262-2273
A model based on the nonlinear Poisson-Boltzmann (NLPB) equation is used to study the electrostatic contribution to the binding free energy of the lambdacI repressor to its operator DNA. In particular, we use the Poisson-Boltzmann model to calculate the pKa shift of individual ionizable amino acids upon binding. We find that three residues on each monomer, Glu34, Glu83, and the amino terminus, have significant changes in their pKa and titrate between pH 4 and 9. This information is then used to calculate the pH dependence of the binding free energy. We find that the calculated pH dependence of binding accurately reproduces the available experimental data over a range of physiological pH values. The NLPB equation is then used to develop an overall picture of the electrostatics of the lambdacI repressor-operator interaction. We find that long-range Coulombic forces associated with the highly charged nucleic acid provide a strong driving force for the interaction of the protein with the DNA. These favorable electrostatic interactions are opposed, however, by unfavorable changes in the solvation of both the protein and the DNA upon binding. Specifically, the formation of a protein-DNA complex removes both charged and polar groups at the binding interface from solvent while it displaces salt from around the nucleic acid. As a result, the electrostatic contribution to the lambdacI repressor-operator interaction opposes binding by approximately 73 kcal/mol at physiological salt concentrations and neutral pH. A variety of entropic terms also oppose binding. The major force driving the binding process appears to be release of interfacial water from the protein and DNA surfaces upon complexation and, possibly, enhanced packing interactions between the protein and DNA in the interface. When the various nonelectrostatic terms are described with simple models that have been applied previously to other binding processes, a general picture of protein/DNA association emerges in which binding is driven by the nonpolar interactions, whereas specificity results from electrostatic interactions that weaken binding but are necessary components of any protein/DNA complex.  相似文献   

3.
4.
The structural features of protein-DNA interactions have been evaluated using a new information theory algorithm for the analysis of protein structure/function dependence: the so-called resonant recognition model. The physicochemical basis of this analysis was firstly validated with the trp-repressor-operator interaction as a well-defined example. The amino acid and structural features predicted by these procedures to be crucial for repressor-operator interaction were found to be clustered around the known three-dimensional structure of the active site of the trp repressor. Similar methods of analysis have been extended to the less-well-defined example of the Ha-ras p21 protein family. The results of this analysis have indicated two distinct interactive regions in p21, one associated with the guanine-nucleotide-binding site, whilst the second is proposed to be associated with a binding site for an activator protein. These studies indicate that the p21 protein, besides the ability to function as a plasma-membrane-associated guanine-nucleotide-binding regulatory protein and bind free guanine nucleotides in the cytoplasm, has the structural ability to bind guanine incorporated in DNA. Thus, p21-related proteins may have the potential to function as an DNA-binding and regulating protein with the mode of upstream DNA binding closely related to their oncogenic function.  相似文献   

5.
The electrostatic field of the large fragment of Escherichia coli DNA polymerase I (Klenow fragment) has been calculated by the finite difference procedure on a 2 A grid. The potential field is substantially negative at physiological pH (reflecting the net negative charge at this pH). The largest regions of positive potential are in the deep crevice of the C-terminal domain, which is the proposed binding site for the DNA substrate. Within the crevice, the electrostatic potential has a partly helical form. If the DNA is positioned to fulfil stereochemical requirements, then the positive potential generally follows the major groove and (to a lesser extent) the negative potential is in the minor groove. Such an arrangement could stabilize DNA configurations related by screw symmetry. The histidine residues of the Klenow fragment give the positive field of the groove a sensitivity to relatively small pH changes around neutrality. We suggest that the histidine residues could change their ionization states in response to DNA binding, and that this effect could contribute to the protein-DNA binding energy.  相似文献   

6.
We have used an alkaline phosphatase protection assay to investigate the interaction of the trp repressor with its operator sequence. The assay is based on the principle that the trp repressor will protect a terminally 5'-32P-labeled operator DNA fragment from attack by alkaline phosphatase. The optimal oligonucleotide for investigating the trp repressor/operator interaction extends two base pairs from each end of the genetically defined target sequence predicted by in vivo studies [Bass et al. (1987) Genes Dev. 1, 565-572]. The assay works well over a 10,000-fold range of protein/DNA affinity and is used to show that the corepressor, L-tryptophan, causes the liganded repressor to bind a 20 base pair trp operator duplex 6400 times more strongly than the unliganded aporepressor. The affinity of the trp repressor for operators containing symmetrical mutations was interpreted in terms of the trp repressor/operator crystal structure as follows: (1) Direct hydrogen bonds with the functional groups of G-9 of the trp operator and the side chain of Arg 69 of the trp repressor contribute to DNA-binding specificity. (2) G-6 of the trp operator is critical for DNA-binding specificity probably because of the two water-mediated hydrogen bonds between its functional groups and the N-terminus of the trp repressor's E-helix. (3) Sequence-dependent aspects of the trp operator's conformation help stabilize the trp repressor/operator complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
9.
We have employed equilibrium dialysis to help study the mechanism by which the unliganded Escherichia coli trp aporepressor is activated by L-tryptophan to the liganded trp repressor. By measuring the relative affinity of L-tryptophan and various tryptophan analogues for the co-repressor's binding site, we have estimated the extent to which each of the functional groups of L-tryptophan contributes to the liganding process and discuss their role in the context of the crystal structures of the trp repressor and aporepressor. We have found that the indole ring and alpha carboxyl group of L-tryptophan are mainly responsible for its affinity to the aporepressor. The alpha amino group, however, has a small negative contribution to the affinity of L-tryptophan for the aporepressor which may be associated with its essential role in operator-specific binding.  相似文献   

10.
This study investigates the effect of Mg(2+) bound to the DNA major groove on DNA structure and dynamics. The analysis of a comprehensive dataset of B-DNA crystallographic structures shows that divalent cations are preferentially located in the DNA major groove where they interact with successive bases of (A/G)pG and the phosphate group of 5'-CpA or TpG. Based on this knowledge, molecular dynamics simulations were carried out on a DNA oligomer without or with Mg(2+) close to an ApG step. These simulations showed that the hydrated Mg(2+) forms a stable intra-strand cross-link between the two purines in solution. ApG generates an electrostatic potential in the major groove that is particularly attractive for cations; its intrinsic conformation is well-adapted to the formation of water-mediated hydrogen bonds with Mg(2+). The binding of Mg(2+) modulates the behavior of the 5'-neighboring step by increasing the BII (ε-ζ>0°) population of its phosphate group. Additional electrostatic interactions between the 5'-phosphate group and Mg(2+) strengthen both the DNA-cation binding and the BII character of the 5'-step. Cation binding in the major groove may therefore locally influence the DNA conformational landscape, suggesting a possible avenue for better understanding how strong DNA distortions can be stabilized in protein-DNA complexes.  相似文献   

11.
Sac7d is a small, chromatin protein from Sulfolobus acidocaldarius which induces a sharp kink in DNA with intercalation of valine and methionine side chains. The crystal structure of the protein-DNA complex indicates that a surface tryptophan (W24) plays a key role in DNA binding by hydrogen bonding to the DNA at the kink site. We show here that substitution of the solvent-exposed tryptophan with alanine (W24A) led to a significant loss in not only DNA binding affinity but also protein stability. The W24A substitution proved to be one of the most destabilizing surface substitutions in Sac7d. A global linkage analysis of the pH and salt dependence of stability indicated that the protein stability surface (DeltaG vs temperature, pH, and salt concentration) was lowered overall by 2 kcal/mol (from 0 to 100 degrees C, pH 0 to 7, and 0 to 0.3 M KCl). The lower free energy of unfolding could not be attributed to significant structural perturbations of surface electrostatic interactions. Residual dipolar coupling of partially aligned protein and the NMR solution structure of W24A confirmed that the surface substitution resulted in no significant change in structure. Stabilization of this hyperthermophile protein and its DNA complex by a surface cluster of hydrophobic residues involving W24 and the two intercalating side chains is discussed.  相似文献   

12.
Flexibility of the DNA-binding domains of trp repressor   总被引:9,自引:0,他引:9  
An orthorhombic crystal form of trp repressor (aporepressor plus L-tryptophan ligand) was solved by molecular replacement, refined to 1.65 A resolution, and compared to the structure of the repressor in trigonal crystals. Even though these two crystal forms of repressor were grown under identical conditions, the refined structures have distinctly different conformations of the DNA-binding domains. Unlike the repressor/aporepressor structural transition, the conformational shift is not caused by the binding or loss of the L-tryptophan ligand. We conclude that while L-tryptophan binding is essential for forming a specific complex with trp operator DNA, the corepressor ligand does not lock the repressor into a single conformation that is complementary to the operator. This flexibility may be required by the various binding modes proposed for trp repressor in its search for and adherence to its three different operator sites.  相似文献   

13.
The trp repressor of Escherichia coli specifically binds to operator DNAs in three operons involved in tryptophan metabolism. The NMR spectra of repressor and a chymotryptic fragment lacking the six amino-terminal residues are compared. Two-dimensional J-correlated spectra of the two forms of the protein are superimposable except for cross-peaks that are associated with the N-terminal region. The chemical shifts and relaxation behavior of the N-terminal resonances suggest mobile "arms". Spin-echo experiments on a ternary complex of repressor with L-tryptophan and operator DNA indicate that the termini are also disordered in the complex, although removal of the arms reduces the DNA binding energy. Relaxation measurements on the armless protein show increased mobility for several residues, probably due to helix fraying in the newly exposed N-terminal region. DNA binding by the armless protein does not reduce the mobility of these residues. Thus, it appears that the arms serve to stabilize the N-terminal helix but that this structural role does not explain their contribution to the DNA binding energy. These results suggest that the promiscuous DNA binding by the arms seen in the X-ray crystal structure is found in solution as well.  相似文献   

14.
The interaction of Trp repressor protein with partial trp operators was studied in vitro and in vivo. At high ratios of protein to DNA, Trp holorepressor formed stable complexes with DNA molecules containing half operators. When plasmids conferring the capacity to hyperproduce Trp repressor were present in trpOc strains of Escherichia coli, repression of downstream tryptophan synthase occurred. Palindromicity of the trp operator may facilitate stable interaction with Trp repressor, but this attribute need not be regarded as a critically essential structural feature. Sufficient information for the recognition by Trp repressor protein of an appropriate target resides within a DNA sequence of approximately ten base-pairs.  相似文献   

15.
Enhanced operator binding by trp superrepressors of Escherichia coli   总被引:8,自引:0,他引:8  
The trp repressor of Escherichia coli binds to the operators of three operons concerned with tryptophan biosynthesis and regulates their expression. trp superrepressors can repress expression of the trp operon in vivo at lower tryptophan concentrations than those required by the wild-type repressor. The five known superrepressors have been purified and characterized using a modified filter binding assay. In four of the five superrepressors, EK13, EK18, DN46 and EK49, negatively charged wild-type residues located on the surface of the repressor that faces the operator are replaced by positively charged or neutral residues. Each of these proteins has higher affinity for the trp operator than wild-type repressor. Decreased rates of dissociation of the repressor-operator complex were found to be responsible for the higher affinities. The fifth superrepressor, AV77, has an amino acid substitution in the turn of the helix-turn-helix DNA-binding motif. This superrepressor was indistinguishable from wild-type repressor in our filter binding assay. We conclude that rapid dissociation of repressor from operator is important for trp repressor function in vivo. The negatively charged wild-type residues that are replaced in superrepressors are probably responsible for the characteristic rapid dissociation of the trp repressor from the trp operator.  相似文献   

16.
Lebrun A  Lavery R 《Biopolymers》1999,49(5):341-353
Molecular modeling is used to demonstrate that the major structural deformations of DNA caused by four different minor groove binding proteins, TBP, SRY, LEF-1, and PurR, can all be mimicked by stretching the double helix between two 3'-phosphate groups flanking the binding region. This deformation reproduces the widening of the minor groove and the overall bending and unwinding of DNA caused by protein binding. It also reproduces the principal kinks associated with partially intercalated amino acid side chains, observed with such interactions. In addition, when protein binding involves a local transition to an A-like conformation, phosphate neutralization, via the formation of protein-DNA salt bridges, appears to favor the resulting deformation.  相似文献   

17.
Comparison of interaction energy between an oligonucleotide and a DNA-binding ligand in the minor and major groove modes was made by use of restrained molecular dynamics. Distortion in DNA was found for the major groove mode whereas less significant changes for both ligand and DNA were detected for the minor groove binding after molecular dynamics simulation. The conformation of the ligand obtained from the major groove mode resembles that computed with the ligand soaked in water. The van der Waals contact energy was found to be as significant as electrostatic energy and more important for difference in binding energy between these two binding modes. The importance of van der Waals force in groove binding was supported by computations on the complex formed by the repressor peptide fragment from the bacteriophage 434 and its operator oligonucleotide.  相似文献   

18.
The sequence of non-contacted bases at the center of the 434 repressor binding site affects the strength of the repressor-DNA complex by influencing the structure and flexibility of DNA (Koudelka, G. B., and Carlson, P. (1992) Nature 355, 89-91). We synthesized 434 repressor binding sites that differ in their central sequence base composition to test the importance of minor groove substituents and/or the number of base pair hydrogen bonds between these base pairs on DNA structure and strength of the repressor-DNA complex. We show here that the number of base pair H-bonds between the central bases apparently has no role in determining the relative affinity of a DNA site for repressor. Instead we find that the affinity of DNA for repressor depends on the absence or presence the N2-NH(2) group on the purine bases at the binding site center. The N2-NH(2) group on bases at the center of the 434 binding site appears to destabilize 434 repressor-DNA complexes by decreasing the intimacy of the specific repressor-DNA contacts, while increasing the reliance on protein contacts to the DNA phosphate backbone. Thus, the presence of an N2-NH(2) group on the purines at the center of a binding site globally alters the precise conformation of the protein-DNA interface.  相似文献   

19.
Ultrafast electron transfer (ET) phenomenon in protein and protein-DNA complex is very much crucial and often leads to the regulation of various kinds of redox reactions in biological system. Although, the conformation of the protein in protein-DNA complex is concluded to play the key role in the ET process, till date very little evidences exist in the literature. λ-repressor-operator DNA interaction, particularly O(R)1 and O(R)2, is a key component of the λ-genetic switch and is a model system for understanding the chemical principles of the conformation-dependent ET reaction, governed by differential protein dynamics upon binding with different DNA target sequences. Here, we have explored the photoinduced electron transfer from the tryptophan moieties of the protein λ-repressor to two operators DNA of different sequences (O(R)1 and O(R)2) using picosecond-resolved fluorescence spectroscopy. The enhanced flexibility and different conformation of the C-terminal domain of the repressor upon complexation with O(R)1 DNA compared to O(R)2 DNA are found to have pronounced effect on the rate of ET. We have also observed the ET phenomenon from a dansyl chromophore, bound to the lysine residue, distal from the DNA-binding domain of the protein to the operator DNA with a specific excitation at 299 nm wavelength. The altered ET dynamics as a consequence of differential protein conformation upon specific DNA sequence recognition may have tremendous biological implications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号