共查询到20条相似文献,搜索用时 15 毫秒
1.
Wengenack NL Lopes H Kennedy MJ Tavares P Pereira AS Moura I Moura JJ Rusnak F 《Biochemistry》2000,39(37):11508-11513
Mycobacterium tuberculosis KatG is a multifunctional heme enzyme responsible for activation of the antibiotic isoniazid. A KatG(S315T) point mutation is found in >50% of isoniazid-resistant clinical isolates. Since isoniazid activation is thought to involve an oxidation reaction, the redox potential of KatG was determined using cyclic voltammetry, square wave voltammetry, and spectroelectrochemical titrations. Isoniazid activation may proceed via a cytochrome P450-like mechanism. Therefore, the possibility that substrate binding by KatG leads to an increase in the heme redox potential and the possibility that KatG(S315T) confers isoniazid resistance by altering the redox potential were examined. Effects of the heme spin state on the reduction potentials of KatG and KatG(S315T) were also determined. Assessment of the Fe(3+)/Fe(2+) couple gave a midpoint potential of ca. -50 mV for both KatG and KatG(S315T). In contrast to cytochrome P450s, addition of substrate had no significant effect on either the KatG or KatG(S315T) redox potential. Conversion of the heme to a low-spin configuration resulted in a -150 to -200 mV shift of the KatG and KatG(S315T) redox potentials. These results suggest that isoniazid resistance conferred by KatG(S315T) is not mediated through changes in the heme redox potential. The redox potentials of isoniazid were also determined using cyclic and square wave voltammetry, and the results provide evidence that the ferric KatG and KatG(S315T) midpoint potentials are too low to promote isoniazid oxidation without formation of a high-valent enzyme intermediate such as compounds I and II or oxyferrous KatG. 相似文献
2.
Inhibition of the enzyme Mycobacterium tuberculosis InhA (enoyl-acyl carrier protein reductase) due to formation of an isonicotinoyl-NAD adduct (IN-NAD) from isoniazid (INH) and nicotinamide adenine dinucleotide cofactor is considered central to the mode of action of INH, a first-line treatment for tuberculosis infection. INH action against mycobacteria requires catalase-peroxidase (KatG) function, and IN-NAD adduct formation is catalyzed in vitro by M. tuberculosis KatG under a variety of conditions, yet a physiologically relevant approach to the process has not emerged that allows scrutiny of the mechanism and the origins of INH resistance in the most prevalent drug-resistant strain bearing KatG[S315T]. In this report, we describe how hydrogen peroxide, delivered at very low concentrations to ferric KatG, leads to efficient inhibition of InhA due to formation of the IN-NAD adduct. The rate of adduct formation mediated by wild-type KatG was about 20-fold greater than by the isoniazid-resistant KatG[S315T] mutant under optimal conditions (H2O2 supplied along with NAD+ and INH). Slow adduct formation also occurs starting with NADH and INH, in the presence of KatG even in the absence of added peroxide, due to endogenous peroxide. The poor efficiency of the KatG[S315T] mutant can be enhanced merely by increasing the concentration of INH, consistent with this enzyme's reduced affinity for INH binding to the resting enzyme and the catalytically competent enzyme intermediate (Compound I). Origins of drug resistance in the KatG[S315T] mutant enzyme are analyzed at the structural level through examination of the three-dimensional X-ray crystal structure of the mutant enzyme. 相似文献
3.
KatG, the catalase-peroxidase from Mycobacterium tuberculosis, has been characterized by resonance Raman, electron spin resonance, and visible spectroscopies. The mutant KatG(S315T), which is found in about 50% of isoniazid-resistant clinical isolates, is also spectroscopically characterized. The electron spin resonance spectrum of ferrous nitrosyl KatG is consistent with a proximal histidine ligand. The Fe-His stretching vibration observed at 244 cm(-1) for ferrous wild-type KatG and KatG(S315T) confirms the imidazolate character of the proximal histidine in their five-coordinate high-spin complexes. The ferrous forms of wild-type KatG and KatG(S315T) are mixtures of six-coordinate low-spin and five-coordinate high-spin hemes. The optical and resonance Raman signatures of ferric wild-type KatG indicate that a majority of the heme exists in a five-coordinate high-spin state, but six-coordinate hemes are also present. At room temperature, more six-coordinate low-spin heme is observed in ferrous and ferric KatG(S315T) than in the WT enzyme. While the nature of the sixth ligand of LS ferric wild-type KatG is not completely clear, visible, resonance Raman, and electron spin resonance data of KatG(S315T) indicate that its sixth ligand is a neutral nitrogen donor. Possible effects of these differences on enzyme activity are discussed. 相似文献
4.
Purification and characterization of Mycobacterium tuberculosis KatG, KatG(S315T), and Mycobacterium bovis KatG(R463L) 总被引:1,自引:0,他引:1
Wengenack NL Lane BD Hill PJ Uhl JR Lukat-Rodgers GS Hall L Roberts GD Cockerill FR Brennan PJ Rodgers KR Belisle JT Rusnak F 《Protein expression and purification》2004,36(2):232-243
Isoniazid, a first-line antibiotic used for the treatment of tuberculosis, is a prodrug that requires activation by the Mycobacterium tuberculosis enzyme KatG. The KatG(S315T) mutation causes isoniazid resistance while the KatG(R463L) variation is thought to be a polymorphism. Much of the work to date focused on isoniazid activation by KatG has utilized recombinant enzyme overexpressed in Escherichia coli. In this work, native KatG and KatG(S315T) were purified from M. tuberculosis, and KatG(R463L) was purified from Mycobacterium bovis. The native molecular weight, enzymatic activity, optical, resonance Raman, and EPR spectra, K(D) for isoniazid binding, and isoniazid oxidation rates were measured and compared for each native enzyme. Further, the properties of the native enzymes were compared and contrasted with those reported for recombinant KatG, KatG(S315T), and KatG(R463L) in order to assess the ability of the recombinant enzymes to act as good models for the native enzymes. 相似文献
5.
Mycobacterium tuberculosis (Mtb) KatG is a catalase-peroxidase that is thought to activate the antituberculosis drug isoniazid (INH). The local environment of Mtb KatG and its most prevalent INH-resistant mutant, KatG(S315T), is investigated with the exogenous ligands CO and NO in the absence and presence of INH by using resonance Raman, FTIR, and transient absorption spectroscopy. The Fe-His stretching vibration is detected at 244 cm(-)(1) in the ferrous forms of both the wild-type enzyme and KatG(S315T). The ferrous-CO complex of both enzymes exhibits nu(CO), nu(Fe-CO), and delta(Fe-C-O) vibrations at 1925, 525, and 586 cm(-)(1), respectively, indicating a positive electrostatic environment for the CO complex, which is probably weakly hydrogen-bonded to a distal residue. The CO geometry is nonlinear as indicated by the unusually high intensity of the Fe-C-O bending vibration. The nu(Fe(III)-NO) and delta(Fe(III)-N-O) vibrations are detected at 596 and 571 cm(-)(1), respectively, in the ferric forms of wild-type and mutant enzyme and are indicative of a nonlinear binding geometry in support of the CO data. Although the presence of INH does not affect the vibrational frequencies of the CO- and NO-bound forms of either enzyme, it seems to perturb slightly their Raman intensities. Our results suggest a minimal, if any, perturbation of the distal heme pocket in the S315T mutant. Instead, the S315T mutation seems to induce small changes in the KatG conformation/dynamics of the ligand access channel as indicated by CO rebinding kinetics in flash photolysis experiments. The implications of these findings for the catalytic mechanism and mechanism of INH resistance in KatG(S315T) are discussed. 相似文献
6.
The antitubercular agent isoniazid can be activated by Mycobacterium tuberculosis KatG using either a peroxidase compound I/II or a superoxide-dependent oxyferrous pathway. The identity of activated isoniazid is unknown, but it has been suggested that it may be a free radical intermediate. In this work, EPR spin trapping experiments detected isoniazid-derived radicals generated during KatG-mediated oxidation via the peroxidase compound I/II pathway. On the basis of hyperfine splitting patterns and oxygen dependence, these radicals were identified as the acyl, acyl peroxo, and pyridyl radicals of isoniazid. Isoniazid-resistant KatG(S315T) produced the same radicals found with KatG, while the less potent antitubercular agent nicotinic acid hydrazide produced the corresponding nicotinyl radicals. The time course of radical production was similar for KatG and KatG(S315T), while a lower steady-state level of radicals was produced from nicotinic acid hydrazide. These results support an earlier finding that the peroxidase pathway does not correlate with isoniazid resistance conferred by KatG(S315T). Trace amounts of radicals were detected via the superoxide-dependent pathway. The low level of isoniazid-derived radicals found in the superoxide-dependent pathway may be due to scavenging by superoxide. 相似文献
7.
Kapetanaki SM Chouchane S Yu S Magliozzo RS Schelvis JP 《Journal of inorganic biochemistry》2005,99(6):1401-1406
The reaction of Mycobacterium tuberculosis KatG and the mutant KatG(S315T) with two different organic peroxides is studied using resonance Raman spectroscopy. For the first time, an intermediate is observed in a catalase-peroxidase with vibrations that are characteristic of Compound II. The observation of this intermediate is consistent with photoreduction of Compound I and is in agreement with the formation of Compound I during the catalytic cycle of KatG. The same intermediate is detected in KatG(S315T), a mutant associated with resistance to isoniazid (INH), but with a lower yield, indicating that the organic peroxides cannot react with the heme iron in KatG(S315T) as efficiently as in wild-type KatG. Our results are consistent with catalytic competence of the S315T mutant and support the model that the S315T mutation confers antibiotic resistance by modifying the interaction between the enzyme and the drug. 相似文献
8.
Kenton R. Rodgers Gudrun S. Lukat-Rodgers Lei Tang 《Journal of biological inorganic chemistry》2000,5(5):642-654
This report presents a spectroscopic investigation of the nitrosyl adducts of FixL, the sensor in the signal transduction system responsible for regulating nitrogen fixation in Rhizobium meliloti. Variable-temperature resonance Raman (RR), electron spin resonance (ESR), and variable-temperature UV-visible absorption data are presented for the ferrous NO adducts of two FixL deletion derivatives, FixLN (the heme-containing domain) and FixL* (a functional heme-kinase). A temperature-dependent equilibrium is observed between the five-coordinate (5-c) and six-coordinate (6-c) ferrous nitrosyl adducts, with lower temperatures favoring formation of the 6-c nitrosyl adduct. This equilibrium is perturbed as the solution freezes, and the amount of 5-c FixL-NO increases sharply until a nearly constant ratio of 6-c to 5-c adducts is obtained. Complexation between the heme domain of FixL and its response regulator, FixJ, is revealed through specfic FixJ-induced increase in the energy separation between 5-c and 6-c FixL-NO. Ferric nitrosyl adducts of FixL* and FixLN autoreduce to their corresponding ferrous nitrosyl adducts. The kinetic behavior of this reduction is monophasic for FixL*-NO, while the reaction for ferric FixLN-NO is biphasic. These results suggest conformational inhomogeneity in the heme pocket of FixLN and conformational homogeneity in that of FixL*. Hence the kinase domain plays a role in distal pocket conformational stability. Implications for the signal transduction mechanism are discussed. 相似文献
9.
Resonance Raman spectra of native, overexpressed M. tuberculosis catalase-peroxidase (KatG), the enzyme responsible for activation of the antituberculosis antibiotic isoniazid (isonicotinic acid hydrazide), have confirmed that the heme iron in the resting (ferric) enzyme is high-spin five-coordinate. Difference Raman spectra did not reveal a change in coordination number upon binding of isoniazid to KatG. Stopped-flow spectrophotometric studies of the reaction of KatG with stoichiometric equivalents or small excesses of hydrogen peroxide revealed only the optical spectrum of the ferric enzyme with no hypervalent iron intermediates detected. Large excesses of hydrogen peroxide generated oxyferrous KatG, which was unstable and rapidly decayed to the ferric enzyme. Formation of a pseudo-stable intermediate sharing optical characteristics with the porphyrin pi-cation radical-ferryl iron species (Compound I) of horseradish peroxidase was observed upon reaction of KatG with excess 3-chloroperoxybenzoic acid, peroxyacetic acid, or tert-butylhydroperoxide (apparent second-order rate constants of 3.1 x 10(4), 1.2 x 10(4), and 25 M(-1) s(-1), respectively). Identification of the intermediate as KatG Compound I was confirmed using low-temperature electron paramagnetic resonance spectroscopy. Isoniazid, as well as ascorbate and potassium ferrocyanide, reduced KatG Compound I to the ferric enzyme without detectable formation of Compound II in stopped-flow measurements. This result differed from the reaction of horseradish peroxidase Compound I with isoniazid, during which Compound II was stably generated. These results demonstrate important mechanistic differences between a bacterial catalase-peroxidase and the homologous plant peroxidases and yeast cytochrome c peroxidase, in its reactions with peroxides as well as substrates. 相似文献
10.
Ranguelova K Suarez J Metlitsky L Yu S Brejt SZ Brejt SZ Zhao L Schelvis JP Magliozzo RS 《Biochemistry》2008,47(47):12583-12592
The catalase-peroxidase (KatG) of Mycobacterium tuberculosis (Mtb) is important for the virulence of this pathogen and also is responsible for activation of isoniazid (INH), an antibiotic in use for over 50 years in the first line treatment against tuberculosis infection. Overexpressed Mtb KatG contains a heterogeneous population of heme species that present distinct spectroscopic properties and, as described here, functional properties. A six-coordinate (6-c) heme species that accumulates in the resting enzyme after purification is defined as a unique structure containing weakly associated water on the heme distal side. We present the unexpected finding that this form of the enzyme, generally present as a minority species along with five-coordinate (5-c) enzyme, is the favored reactant for ligand binding. The use of resting enzyme samples with different proportional composition of 5-c and 6-c forms, as well as the use of KatG mutants with replacements at residue 315 that have different tendencies to stabilize the 6-c form, allowed demonstration of more rapid cyanide binding and preferred peroxide binding to enzyme containing 6-c heme. Optical-stopped flow and equilibrium titrations of ferric KatG with potassium cyanide reveal complex behavior that depends in part on the amount of 6-c heme in the resting enzymes. Resonance Raman and low-temperature EPR spectroscopy clearly demonstrate favored ligand (cyanide or peroxide) binding to 6-c heme. The 5-c and 6-c enzyme forms are not in equilibrium on the time scale of the experiments. The results provide evidence for the likely participation of specific water molecule(s) in the first phases of the reaction mechanism of catalase-peroxidase enzymes. 相似文献
11.
Conformational differences in Mycobacterium tuberculosis catalase-peroxidase KatG and its S315T mutant revealed by resonance Raman spectroscopy 总被引:1,自引:0,他引:1
Kapetanaki S Chouchane S Girotto S Yu S Magliozzo RS Schelvis JP 《Biochemistry》2003,42(13):3835-3845
KatG from Mycobacterium tuberculosis is a heme-containing catalase-peroxidase, which belongs to the class I peroxidases and is important for activation of the prodrug isoniazid (INH), a front-line antituberculosis drug. In many clinical isolates, resistance to INH has been linked to mutations on the katG gene, and the most prevalent mutation, S315T, suggests that modification of the heme pocket has occurred. Electronic absorption and resonance Raman spectra of ferric wild-type (WT) KatG and its INH-resistant mutant KatG(S315T) at different pH values and their complexes with INH and benzohydroxamic acid (BHA) are reported. At neutral pH, a quantum mechanically mixed spin state (QS) is revealed, which coexists with five-coordinate and six-coordinate high-spin hemes in WT KatG. The QS heme is the major species in KatG(S315T). Addition of either INH or BHA to KatG induces only minor changes in the resonance Raman spectra, indicating that both compounds do not directly interact with the heme iron. New vibrational modes are observed at 430, 473, and 521 cm(-1), and these modes are indicative of a change in conformation in the KatG heme pocket. The intensity of these modes and the relative population of the QS heme are stable in KatG(S315T) but not in the WT enzyme. This indicates that there are differences in heme pocket stability between WT KatG and KatG(S315T). We will discuss the stabilization of the QS heme and propose a model for the inhibition of INH oxidation by KatG(S315T). 相似文献
12.
Cronje FJ Carraway MS Freiberger JJ Suliman HB Piantadosi CA 《Free radical biology & medicine》2004,37(11):1802-1812
The biochemical paradigm for carbon monoxide (CO) is driven by the century-old Warburg hypothesis: CO alters O(2)-dependent functions by binding heme proteins in competitive relation to 1/oxygen partial pressure (PO(2)). High PO(2) thus hastens CO elimination and toxicity resolution, but with more O(2), CO-exposed tissues paradoxically experience less oxidative stress. To help resolve this paradox we tested the Warburg hypothesis using a highly sensitive gas-reduction method to track CO uptake and elimination in brain, heart, and skeletal muscle in situ during and after exogenous CO administration. We found that CO administration does increase tissue CO concentration, but not in strict relation to 1/PO(2). Tissue gas uptake and elimination lag behind blood CO as predicted, but 1/PO(2) vs. [CO] fails even at hyperbaric PO(2). Mechanistically, we established in the brain that cytosol heme concentration increases 10-fold after CO exposure, which sustains intracellular CO content by providing substrate for heme oxygenase (HO) activated after hypoxia when O(2) is resupplied to cells rich in reduced pyridine nucleotides. We further demonstrate by analysis of CO production rates that this heme stress is not due to HO inhibition and that heme accumulation is facilitated by low brain PO(2). The latter becomes rate limiting for HO activity even at physiological PO(2), and the heme stress leads to doubling of brain HO-1 protein. We thus reveal novel biochemical actions of both CO and O(2) that must be accounted for when evaluating oxidative stress and biological signaling by these gases. 相似文献
13.
Chouchane S Girotto S Kapetanaki S Schelvis JP Yu S Magliozzo RS 《The Journal of biological chemistry》2003,278(10):8154-8162
Mycobacterium tuberculosis catalase-peroxidase (KatG) is a heme enzyme considered important for virulence, which is also responsible for activation of the anti-tuberculosis pro-drug isoniazid. Here, we present an analysis of heterogeneity in KatG heme structure using optical, resonance Raman, and EPR spectroscopy. Examination of ferric KatG under a variety of conditions, including enzyme in the presence of fluoride, chloride, or isoniazid, and at different stages during purification in different buffers allowed for assignment of spectral features to both five- and six-coordinate heme. Five-coordinate heme is suggested to be representative of "native" enzyme, since this species was predominant in the enzyme examined immediately after one chromatographic protocol. Quantum mechanically mixed spin heme is the most abundant form in such partially purified enzyme. Reduction and reoxidation of six-coordinate KatG or the addition of glycerol or isoniazid restored five-coordinate heme iron, consistent with displacement of a weakly bound distal water molecule. The rate of formation of KatG Compound I is not retarded by the presence of six-coordinate heme either in wild-type KatG or in a mutant (KatG[Y155S]) associated with isoniazid resistance, which contains abundant six-coordinate heme. These results reveal a number of similarities and differences between KatG and other Class I peroxidases. 相似文献
14.
Catalase-peroxidase (KatG) from Mycobacterium tuberculosis is responsible for the activation of the antitubercular drug isonicotinic acid hydrazide (INH) and is important for survival of M. tuberculosis in macrophages. Characterization of the structure and catalytic mechanism of KatG is being pursued to provide insights into drug (INH) resistance in M. tuberculosis. Site-directed mutagenesis was used to prepare the INH-resistant mutant KatG[S315T], and the overexpressed enzyme was characterized and compared with wild-type KatG. KatG[S315T] exhibits a reduced tendency to form six-coordinate heme, because of coordination of water to iron during purification and storage, and also forms a highly unstable Compound III (oxyferrous enzyme). Catalase activity and peroxidase activity measured using t-butylhydroperoxide and o-dianisidine were moderately reduced in the mutant compared with wild-type KatG. Stopped-flow spectrophotometric experiments revealed a rate of Compound I formation similar to wild-type KatG using peroxyacetic acid to initiate the catalytic cycle, but no Compound I was detected when bulkier peroxides (chloroperoxybenzoic acid, t-butylhydroperoxide) were used. The affinity of resting (ferric) KatG[S315T] for INH, measured using isothermal titration calorimetry, was greatly reduced compared with wild-type KatG, as were rates of reaction of Compound I with the drug. These observations reveal that although KatG[S315T] maintains reasonably good steady state catalytic rates, poor binding of the drug to the enzyme limits drug activation and brings about INH resistance. 相似文献
15.
16.
Dennis E. Epps Roger A. Poorman Gary L. Petzold Christopher W. Stuchly Alice L. Laborde John H. Van Drie 《The protein journal》1998,17(7):699-712
The active site of the catalytic domain of stromelysin-1 (matrix metalloproteinase-3, MMP-3) was probed by fluorescence quenching,
lifetime, and polarization of its three intrinsic tryptophans and by the environmentally sensitive fluorescent reporter molecule
bisANS. Wavelength-dependent acrylamide quenching identified three distinct emitting tryptophan species, only one of which
changes its emission and fluorescence lifetime upon binding of the competitive inhibitor Batimastat. Significant changes in
the tryptophan fluorescence polarization occur upon binding by any of the three hydroxamate inhibitors Batimastat, CAS108383-58-0,
and Celltech CT1418, all of which bind in the P2′-P3′ region of the active site. In contrast, the inhibitor CGS27023A, which
is t hought to bind in the P1-P1′ region, does not induce any change in tryptophan fluorescence polarization. The use of the
fluorescent probe bisANS revealed the existence of an auxiliary binding site extrinsic to the catalytic cleft. BisANS acts
as a competitive inhibitor of stromelysin with a dissociation constant ofK
i=22 μM. In addition to this binding to the active site, it also binds to the auxiliary site with a dissociation constant of
3.40±0.17 μM. The auxiliary site is open, hydrophobic, and near the fluorescing tryptophans. The binding of bisANS to the
auxiliary site is greatly enhanced by Batimastat, but not by the other competitive inhibitors tested. 相似文献
17.
Dennis E. Epps Roger A. Poorman Gary L. Petzold Christopher W. Stuchly Alice L. Laborde John H. Van Drie 《Journal of Protein Chemistry》1998,17(7):699-712
The active site of the catalytic domain of stromelysin-1 (matrix metalloproteinase-3, MMP-3) was probed by fluorescence quenching,
lifetime, and polarization of its three intrinsic tryptophans and by the environmentally sensitive fluorescent reporter molecule
bisANS. Wavelength-dependent acrylamide quenching identified three distinct emitting tryptophan species, only one of which
changes its emission and fluorescence lifetime upon binding of the competitive inhibitor Batimastat. Significant changes in
the tryptophan fluorescence polarization occur upon binding by any of the three hydroxamate inhibitors Batimastat, CAS108383-58-0,
and Celltech CT1418, all of which bind in the P2′-P3′ region of the active site. In contrast, the inhibitor CGS27023A, which
is t hought to bind in the P1-P1′ region, does not induce any change in tryptophan fluorescence polarization. The use of the
fluorescent probe bisANS revealed the existence of an auxiliary binding site extrinsic to the catalytic cleft. BisANS acts
as a competitive inhibitor of stromelysin with a dissociation constant ofK
i=22 μM. In addition to this binding to the active site, it also binds to the auxiliary site with a dissociation constant of
3.40±0.17 μM. The auxiliary site is open, hydrophobic, and near the fluorescing tryptophans. The binding of bisANS to the
auxiliary site is greatly enhanced by Batimastat, but not by the other competitive inhibitors tested. 相似文献
18.
Catalase-peroxidases (KatGs) are bifunctional enzymes possessing both catalase and peroxidase activities. Four crystal structures of different KatGs revealed the presence of a novel Met-Tyr-Trp cross-link which has been suggested to impart catalatic activity to the KatGs. To decipher the individual roles of the two cross-links in the Met-Tyr-Trp adduct, we have focused on recombinant Mycobacterium tuberculosis KatG(M255I). UV-visible spectroscopic and mass spectrometric studies of the peptide fragments resulting from tryptic digestion of KatG(M255I) confirmed the presence of the single Tyr-Trp cross-link, as well as a 2e- oxidized form which is postulated to be an intermediate generated during Met-Tyr-Trp cross-link formation. KatG(M255I) lacking the Tyr-Trp cross-link was also prepared, and incubation with peroxyacetic acid, but not 2-methyl-1-phenyl-2-propyl hydroperoxide, resulted in complete formation of the Tyr-Trp cross-link. A mechanism for Tyr-Trp autocatalytic formation by KatG compound I is proposed from these studies. Optical stopped-flow studies with KatG(M255I) were performed, allowing characterization of compounds I, II, and III. Interestingly, two compound II intermediates were identified: (KatG*)(Por)Fe(III)-OH, where KatG* represents a protein-based radical, and oxoferryl (KatG)(Por)Fe(IV)=O. Insight into the contributions of the individual Tyr-Trp and Met-Tyr cross-links to catalase activity is presented, as is the overall contribution of the Met-Tyr-Trp cross-link to the structure-function-spectroscopy relationship and catalase-peroxidase mechanism in KatG. 相似文献
19.
20.
Biochemical and mutational characterization of the heme chaperone CcmE reveals a heme binding site 下载免费PDF全文
CcmE is a heme chaperone that binds heme transiently in the periplasm of Escherichia coli and delivers it to newly synthesized and exported c-type cytochromes. The chemical nature of the covalent bond between heme and H130 is not known. We have purified soluble histidine-tagged CcmE and present its spectroscopic characteristics in the visible range. Alanine scanning mutagenesis of conserved amino acids revealed that H130 is the only residue found to be strictly required for heme binding and delivery. Mutation of the hydrophobic amino acids F37, F103, L127, and Y134 to alanine affected CcmE more than mutation of charged and polar residues. Our data are in agreement with the recently solved nuclear magnetic resonance structure of apo-CcmE (PDB code 1LIZ) and suggest that heme is bound to a hydrophobic platform at the surface of the protein and then attached to H130 by a covalent bond. Replacement of H130 with cysteine led to the formation of a covalent bond between heme and C130 at a low level. However, the H130C mutant CcmE was not active in cytochrome c maturation. Isolation and characterization of the heme-binding peptides obtained after a tryptic digest of wild-type and H130C CcmE support the hypothesis that heme is bound covalently at a vinyl group. 相似文献