首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The protein kinase C (PKC) signal transduction pathway negatively regulates receptor-initiated cell death. In HeLa cells, tumor necrosis factor-alpha (TNF)-mediated cell death involved mitochondria and was blocked by the overexpression of Bcl-2. The PKC-specific inhibitor bisindolylmaleimide and the PKCdelta inhibitor rottlerin enhanced TNF-induced cell death. We have investigated if potentiation of TNF-induced cell death by rottlerin involved amplification of the mitochondrial pathway. TNF induced cleavage of the proapoptotic protein Bid and release of mitochondrial cytochrome c. Rottlerin enhanced activation of caspase-8 and cleavage of Bid. It also enhanced activation of caspase-9 but it did not increase cytochrome c in the cytosol. It, however, increased release of mitochondrial apoptosis-inducing factor (AIF) to the cytosol. Overexpression of Bcl-2 prevented release of both cytochrome c and AIF to the cytosol. Prolonged exposure (> or =6 h) of HeLa cells to rottlerin and TNF decreased the level of cytochrome c but not of AIF in the cytosol. These results suggest that rottlerin activates a cytochrome-c-independent cell death pathway to potentiate cell death by TNF.  相似文献   

2.
Zhang L  Wei LJ 《Life sciences》2007,80(13):1189-1197
ACTX-8 is a protein isolated from Agkistrodon acutus snake venom in our laboratory. It demonstrates cytotoxic activity on various carcinoma cell lines in vitro. However, the mechanism by which ACTX-8 inhibits cell proliferation remains poorly understood. In this study the influence of ACTX-8 on the activation of apoptotic pathway in Hela cells was investigated. We demonstrated that cell death induced by ACTX-8 was concentration- and time-dependent. Apoptotic changes such as phosphatidyl serine externalization and DNA fragmentation were detected in ACTX-8-treated cells. Caspase activation and reactive oxygen species (ROS) production were involved in ACTX-8-induced apoptosis, but pan caspase inhibitor, z-VAD-fmk, could not inhibit cell death induced by ACTX-8 completely, which proved the existence of another pathway for ACTX-8-induced cell death. We found cytochrome c release into cytosol and mitochondrial membrane potential (MMP) dissipation in ACTX-8-treated cells, which indicated that mitochondrial pathway played a role in ACTX-8-induced cell apoptosis. The ratio of expression levels of pro- and anti-apoptotic Bcl-2 family members was not changed by ACTX-8 treatment. However Bad and Bax were translocated from cytosol into mitochondria, and the coimmunoprecipitation result indicated that in mitochondria Bak and Bcl-xL dissociation was followed by the binding of Bad and Bcl-xL. Taken together, the study indicated mitochondrial pathway played an important role in the ACTX-8-induced apoptosis, which was regulated by Bcl-2 family members.  相似文献   

3.
Various anticancer drugs cause mitochondrial perturbations in association with apoptosis. Here we investigated the involvement of caspase- and Bcl-2-dependent pathways in doxorubicin-induced mitochondrial perturbations and apoptosis. For this purpose, we set up a novel three-color flow cytometric assay using rhodamine 123, annexin V-allophycocyanin, and propidium iodide to assess the involvement of the mitochondria in apoptosis caused by doxorubicin in the breast cancer cell line MTLn3. Doxorubicin-induced apoptosis was preceded by up-regulation of CD95 and CD95L and a collapse of mitochondrial membrane potential (Deltapsi) occurring prior to phosphatidylserine externalization. This drop in Deltapsi was independent of caspase activity, since benzyloxycarbonyl-Val-Ala-dl-Asp-fluoromethylketone did not inhibit it. Benzyloxycarbonyl-Val-Ala-dl-Asp-fluoromethylketone also blocked activation of caspase-8, thus excluding an involvement of the death receptor pathway in Deltapsi dissipation. Furthermore, although overexpression of Bcl-2 in MTLn3 cells inhibited apoptosis, dissipation of Deltapsi was still observed. No decrease in Deltapsi was observed in cells undergoing etoposide-induced apoptosis. Immunofluorescent analysis of Deltapsi and cytochrome c localization on a cell-to-cell basis indicates that the collapse of Deltapsi and cytochrome c release are mutually independent in both normal and Bcl-2-overexpressing cells. Together, these data indicate that doxorubicin-induced dissipation of the mitochondrial membrane potential precedes phosphatidylserine externalization and is independent of a caspase- or Bcl-2-controlled checkpoint.  相似文献   

4.
5.
Past studies have shown that TNF-related apoptosis-inducing ligand (TRAIL) induced apoptosis in a high proportion of cultured melanoma by caspase-dependent mechanisms. In the present studies we have examined whether TRAIL-induced apoptosis of melanoma was mediated by direct activation of effector caspases or whether apoptosis was dependent on changes in mitochondrial membrane potential (MMP) and mitochondrial-dependent pathways of apoptosis. Changes in MMP were measured by fluorescent emission from rhodamine 123 in mitochondria. TRAIL, but not TNF-alpha or Fas ligand, was shown to induce marked changes in MMP in melanoma, which showed a high correlation with TRAIL-induced apoptosis. This was associated with activation of proapoptotic protein Bid and release of cytochrome c into the cytosol. Overexpression of B cell lymphoma gene 2 (Bcl-2) inhibited TRAIL-induced release of cytochrome c, changes in MMP, and apoptosis. The pan caspase inhibitor z-Val-Ala-Asp-fluoromethylketone (zVAD-fmk) and the inhibitor of caspase-8 (z-Ile-Glu-Thr-Asp-fluoromethylketone; zIETD-fmk) blocked changes in MMP and apoptosis, suggesting that the changes in MMP were dependent on activation of caspase-8. Activation of caspase-9 also appeared necessary for TRAIL-induced apoptosis of melanoma. In addition, TRAIL, but not TNF-alpha or Fas ligand, was shown to induce clustering of mitochondria around the nucleus. This process was not essential for apoptosis but appeared to increase the rate of apoptosis. Taken together, these results suggest that TRAIL induces apoptosis of melanoma cells by recruitment of mitochondrial pathways to apoptosis that are dependent on activation of caspase-8. Therefore, factors that regulate the mitochondrial pathway may be important determinants of TRAIL-induced apoptosis of melanoma.  相似文献   

6.
Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family of cytokines that promotes apoptosis and NF-kappaB activation. Here we show that recombinant hu-TRAIL initiates the activation of multiple caspases, the loss of mitochondrial transmembrane potential, the cleavage of BID and the redistribution of mitochondrial cytochrome c. However, whereas Bcl-2 efficiently blocked UV radiation-induced cytochrome c release and consequent apoptosis of CEM cells, it failed to do either in the context of TRAIL treatment. Thus, TRAIL engages a death pathway that is at least partially routed via the mitochondria, but in contrast with other stimuli that engage this pathway, TRAIL-induced cytochrome c release is not regulated by Bcl-2.  相似文献   

7.
Tumor necrosis factor (TNF)-alpha-mediated death signaling induces oligomerization of proapoptotic Bcl-2 family member Bax into a high molecular mass protein complex in mitochondrial membranes. Bax complex formation is associated with the release of cytochrome c, which propagates death signaling by acting as a cofactor for caspase-9 activation. The adenovirus Bcl-2 homologue E1B 19K blocks TNF-alpha-mediated apoptosis by preventing cytochrome c release, caspase-9 activation, and apoptosis of virus-infected cells. TNF-alpha induces E1B 19K-Bax interaction and inhibits Bax oligomerization. Oligomerized Bax may form a pore to release mitochondrial proteins, analogous to the homologous pore-forming domains of bacterial toxins. E1B 19K can also bind to proapoptotic Bak, but the functional significance is not known. TNF-alpha signaling induced Bak-Bax interaction and both Bak and Bax oligomerization. E1B 19K was constitutively in a complex with Bak, and blocked the Bak-Bax interaction and oligomerization of both. The TNF-alpha-mediated cytochrome c and Smac/DIABLO release from mitochondria was inhibited by E1B 19K expression in adenovirus-infected cells. Since either Bax or Bak is essential for death signaling by TNF-alpha, the interaction between E1B 19K and both Bak and Bax may be required to inhibit their cooperative or independent oligomerization to release proteins from mitochondria which promote caspase activation and cell death.  相似文献   

8.
Yin XM 《Cell research》2000,10(3):161-167
Two major apoptosis pathways have been defined in mammalian cells,the Fas/TNF-R1 death receptor pathway and the mitochondria pathway.The Bcl-2 family proteins consist of both anti-apoptosis and pro-apoptosis members that regulate apoptosis,mainly by controlling the release of cytochrome c and other mitochondrial apoptotic events.However,death signals mediated by Fas/TNF-R1 receptors can usually activate caspases directly,bypassing the need for mitochondria and escaping the regulation by Bcl-2 family proteins.Bid is a novel pro-apoptosis Bcl-2 family protein that is activated by caspase 8 in response to Fas/TNF-R1 death receptor signals.Activated Bid is translocated to mitochondria and induces cytochrome c release,which in turn activates downstream caspases.Such a connection between the two apoptosis pathways could be important for induction of apoptosis in certain types of cells and responsible for the pathogenesis of a number of human diseases.  相似文献   

9.
Growth factors signaling through the phosphoinositide 3-kinase/Akt pathway promote cell survival. The mechanism by which the serine/threonine kinase Akt prevents cell death remains unclear. We have previously shown that Akt inhibits the activity of DEVD-targeted caspases without changing the steady-state levels of Bcl-2 and Bcl-x(L). Here we show that Akt inhibits apoptosis and the processing of procaspases to their active forms by delaying mitochondrial changes in a caspase-independent manner. Akt activation is sufficient to inhibit the release of cytochrome c from mitochondria and the alterations in the inner mitochondrial membrane potential. However, Akt cannot inhibit apoptosis induced by microinjection of cytochrome c. We also demonstrated that Akt inhibits apoptosis and cytochrome c release induced by several proapoptotic Bcl-2 family members. Taken together, our results show that Akt promotes cell survival by intervening in the apoptosis cascade before cytochrome c release and caspase activation via a mechanism that is distinct from Bad phosphorylation.  相似文献   

10.
Mechanosensory hair cells of the inner ear are especially sensitive to death induced by exposure to aminoglycoside antibiotics. This aminoglycoside-induced hair cell death involves activation of an intrinsic program of cellular suicide. Aminoglycoside-induced hair cell death can be prevented by broad-spectrum inhibition of caspases, a family of proteases that mediate apoptotic and programmed cell death in a wide variety of systems. More specifically, aminoglycoside-induced hair cell death requires activation of caspase-9. Caspase-9 activation requires release of mitochondrial cytochrome c into the cytoplasm, indicating that aminoglycoside-induced hair cell death is mediated by the mitochondrial (or "intrinsic") cell death pathway. The Bcl-2 family of pro-apoptotic and anti-apoptotic proteins are important upstream regulators of the mitochondrial apoptotic pathway. Bcl-2 is an anti-apoptotic protein that localizes to the mitochondria and promotes cell survival by preventing cytochrome c release. Here we have utilized transgenic mice that overexpress Bcl-2 to examine the role of Bcl-2 in neomycin-induced hair cell death. Overexpression of Bcl-2 significantly increased hair cell survival following neomycin exposure in organotypic cultures of the adult mouse utricle. Furthermore, Bcl-2 overexpression prevented neomycin-induced activation of caspase-9 in hair cells. These results suggest that the expression level of Bcl-2 has important effects on the pathway(s) important for the regulation of aminoglycoside-induced hair cell death.  相似文献   

11.
BID, a pro-apoptotic Bcl-2 family member, promotes cytochrome c release during apoptosis initiated by CD95L or TNF. Activation of caspase-8 in the latter pathways results in cleavage of BID, translocation of activated BID to mitochondria, followed by redistribution of cytochrome c to the cytosol. However, it is unclear whether BID participates in cytochrome c release in other (non-death receptor) cell death pathways. Here, we show that BID is cleaved in response to multiple death-inducing stimuli (staurosporine, UV radiation, cycloheximide, etoposide). However BID cleavage in these contexts was blocked by Bcl-2, suggesting that proteolysis of BID occurred distal to cytochrome c release. Furthermore, addition of cytochrome c to Jurkat post-nuclear extracts triggered breakdown of BID at Asp-59 which was catalysed by caspase-3 rather than caspase-8. We provide evidence that caspase-3 catalysed cleavage of BID represents a feedback loop for the amplification of mitochondrial cytochrome c release during cytotoxic drug and UV radiation-induced apoptosis.  相似文献   

12.
Previous studies have shown that histone deacetylase 6 (HDAC6) plays critical roles in many cellular processes related to cancer. However, its biological roles in the development of melanoma remain unexplored. Our aim was to investigate whether HDAC6 has a biological role in human melanoma development and to understand its underlying mechanism. In the present study, HDAC6 expression was up-regulated in melanoma tissues and cell lines. Knockdown of HDAC6 significantly inhibited the proliferation and colony formation ability of A375.S2 cells, promoted cell arrest at G0/G1 phase and apoptosis. Additionally, western blotting assay showed that HDAC6 silencing suppressed Bcl-2 level and enhanced Bax level, then activated caspase-9 and caspase-3, and further activated the release of cytochrome c from mitochondria to cytoplasm, finally induced cell apoptosis involving the mitochondrial pathway. Knockdown of HDAC6 triggered a significant generation of ROS and disruption of mitochondrial membrane potential (MMP). Furthermore, ROS inhibitor, NAC reduced HDAC6 siRNA-induced ROS production, and blocked HDAC6 siRNA-induced loss of MMP and apoptosis. NAC also significantly blocked HDAC6 siRNA-induced mtDNA copy number decrease and mitochondrial biogenesis and degradation imbalance. In conclusion, the results showed that knockdown of HDAC6 induced apoptosis in human melanoma A375.S2 cells through a ROS-dependent mitochondrial pathway.  相似文献   

13.
Smac/DIABLO is a mitochondrial protein that potentiates some forms of apoptosis, possibly by neutralizing one or more members of the IAP family of apoptosis inhibitory proteins. Smac has been shown to exit mitochondria and enter the cytosol during apoptosis triggered by UV- or gamma-irradiation. Here, we report that Smac/DIABLO export from mitochondria into the cytosol is provoked by cytotoxic drugs and DNA damage, as well as by ligation of the CD95 death receptor. Mitochondrial efflux of Smac/DIABLO, in response to a variety of pro-apoptotic agents, was profoundly inhibited in Bcl-2-overexpressing cells. Thus, in addition to modulating apoptosis-associated mitochondrial cytochrome c release, Bcl-2 also regulates Smac release, suggesting that both molecules may escape via the same route. However, whereas cell stress-associated mitochondrial cytochrome c release was largely caspase independent, release of Smac/DIABLO in response to the same stimuli was blocked by a broad-spectrum caspase inhibitor. This suggests that apoptosis-associated cytochrome c and Smac/DIABLO release from mitochondria do not occur via the same mechanism. Rather, Smac/DIABLO efflux from mitochondria is a caspase-catalysed event that occurs downstream of cytochrome c release.  相似文献   

14.
Upon apoptosis induction, the proapoptotic protein Bax is translocated from the cytosol to mitochondria, where it promotes release of cytochrome c, a caspase-activating protein. However, the molecular mechanisms by which Bax triggers cytochrome c release are unknown. Here we report that before the initiation of apoptotic execution by etoposide or staurosporin, an active calpain activity cleaves Bax at its N-terminus, generating a potent proapoptotic 18-kDa fragment (Bax/p18). Both the calpain-mediated Bax cleavage activity and the Bax/p18 fragment were found in the mitochondrial membrane-enriched fraction. Cleavage of Bax was followed by release of mitochondrial cytochrome c, activation of caspase-3, cleavage of poly(ADP-ribose) polymerase, and fragmentation of DNA. Unlike the full-length Bax, Bax/p18 did not interact with the antiapoptotic Bcl-2 protein in the mitochondrial fraction of drug-treated cells. Pretreatment with a specific calpain inhibitor calpeptin inhibited etoposide-induced calpain activation, Bax cleavage, cytochrome c release, and caspase-3 activation. In contrast, transfection of a cloned Bax/p18 cDNA into multiple human cancer cell lines targeted Bax/p18 to mitochondria, which was accompanied by release of cytochrome c and induction of caspase-3-mediated apoptosis that was not blocked by overexpression of Bcl-2 protein. Therefore, Bax/p18 has a cytochrome c-releasing activity that promotes cell death independent of Bcl-2. Finally, Bcl-2 overexpression inhibited etoposide-induced calpain activation, Bax cleavage, cytochrome c release, and apoptosis. Our results suggest that the mitochondrial calpain plays an essential role in apoptotic commitment by cleaving Bax and generating the Bax/p18 fragment, which in turn mediates cytochrome c release and initiates the apoptotic execution.  相似文献   

15.
Mitochondrial cytochrome c, which functions as an electron carrier in the respiratory chain, translocates to the cytosol in cells undergoing apoptosis, where it participates in the activation of DEVD-specific caspases. The apoptosis inhibitors Bcl-2 or Bcl-xL prevent the efflux of cytochrome c from mitochondria. The mechanism responsible for the release of cytochrome c from mitochondria during apoptosis is unknown. Here, we report that cytochrome c release from mitochondria is an early event in the apoptotic process induced by UVB irradiation or staurosporine treatment in CEM or HeLa cells, preceding or at the time of DEVD-specific caspase activation and substrate cleavage. A reduction in mitochondrial transmembrane potential (Deltapsim) occurred considerably later than cytochrome c translocation and caspase activation, and was not necessary for DNA fragmentation. Although zVAD-fmk substantially blocked caspase activity, a reduction in Deltapsim and cell death, it failed to prevent the passage of cytochrome c from mitochondria to the cytosol. Thus the translocation of cytochrome c from mitochondria to cytosol does not require a mitochondrial transmembrane depolarization.  相似文献   

16.
In this study, we have compared several features of cell death triggered by classical inducers of apoptotic pathways (etoposide and tumour necrosis factor (TNF)-α) versus exogenous reactive oxygen species (ROS; hydrogen peroxide (H?O?), tert-butyl hydroperoxide (t-BHP)) or a ROS generator (paraquat). Our aim was to characterize relationships that exist between ROS, mitochondrial perturbations, Bcl-2 and caspases, depending on source and identity of ROS. First, we have found that these five inducers trigger oxidative stress, mitochondrial membrane permeabilization (MMP), cytochrome c (cyt c) release from mitochondria and cell death. In each case, cell death could be inhibited by several antioxidants, showing that it is primarily ROS dependent. Second, we have highlighted that during etoposide or TNF-α treatments, intracellular ROS level, MMP and cell death are all regulated by caspases and Bcl-2, with caspases acting early in the process. Third, we have demonstrated that H?O?-induced cell death shares many of these characteristics with etoposide and TNF-α, whereas t-BHP induces both caspase-dependent and caspase-independent cell death. Surprisingly, paraquat-induced cell death, which harbours some characteristics of apoptosis such as cyt c release and caspase-3 activation, is not modulated by Bcl-2 and caspase inhibitors, suggesting that paraquat also triggers non-apoptotic cell death signals. On the one hand, these results show that endogenous or exogenous ROS can trigger multiple cell death pathways with Bcl-2 and caspases acting differentially. On the other hand, they suggest that H?O? could be an important mediator of etoposide and TNF-α-dependent cell death since these inducers trigger similar phenotypes.  相似文献   

17.
In the intrinsic pathway of apoptosis, mitochondria play a crucial role by releasing cytochrome c from the intermembrane space into the cytoplasm. Cytochrome c release through Bax/Bak-dependent channels in mitochondria has been well documented. In contrast, cyclophilin D (CypD), an important component of permeability transition pore-dependent protein release, remains largely undefined, and no apoptogenic proteins that act specifically in a CypD-dependent manner have been reported to date. Here, we describe a novel and evolutionarily conserved protein, apoptogenic protein (Apop). Mouse Apop-1 expression induces apoptotic death by releasing cytochrome c from mitochondria into the cytosolic space followed by activation of caspase-9 and -3. Apop-1-induced apoptosis is not blocked by Bcl-2 or Bcl-xL, inhibitors of Bax/Bak-dependent channels, whereas it is completely blocked by cyclosporin A, an inhibitor of permeability transition pore. Cells lacking CypD were resistant to Apop-induced apoptosis. Moreover, inhibition of Apop expression prevented the cell death induced by apoptosis-inducing substances. Our findings, thus, indicate that the expression of Apop-1 induces apoptosis though CypD-dependent pathway and that Apop-1 plays roles in cell death under physiological conditions.  相似文献   

18.
Caspase-2 is one of the earliest identified caspases, but the mechanism of caspase-2-induced apoptosis remains unknown. We show here that caspase-2 engages the mitochondria-dependent apoptotic pathway by inducing the release of cytochrome c (Cyt c) and other mitochondrial apoptogenic factors into the cell cytoplasm. In support of these observations we found that Bcl-2 and Bcl-xL can block caspase-2- and CRADD (caspase and RIP adaptor with death domain)-induced cell death. Unlike caspase-8, which can process all known caspase zymogens directly, caspase-2 is completely inactive toward other caspase zymogens. However, like caspase-8, physiological levels of purified caspase-2 can cleave cytosolic Bid protein, which in turn can trigger the release of Cyt c from isolated mitochondria. Interestingly, caspase-2 can also induce directly the release of Cyt c, AIF (apoptosis-inducing factor), and Smac (second mitochondria-derived activator of caspases protein) from isolated mitochondria independent of Bid or other cytosolic factors. The caspase-2-released Cyt c is sufficient to activate the Apaf-caspase-9 apoptosome in vitro. In combination, our data suggest that caspase-2 is a direct effector of the mitochondrial apoptotic pathway.  相似文献   

19.
Experimental sarcoplasmic reticulum damage induced by 3 microM thapsigargin or 1 microg/ml tunicamycin provoked viability loss of the cell population in approximately 72 h. Release of cytochrome c from mitochondria was an early event and Bax translocation to the mitochondria preceded or was simultaneous with cytochrome c release. The release of cytochrome c was not related with mitochondria depolarization or caspase activation. Irreversible stress in the sarcoplasmic reticulum, detected by the early activation of caspase 12, was functionally linked to the mitochondrial apoptotic pathway. Caspase 3 processing was blocked by cells preincubation with a selective inhibitor of either caspase 9 or caspase 8 whereas caspase 8 activation was inhibited by a selective caspase 9 inhibitor. This was consistent with the involvement of caspase 8 in a positive feedback loop leading to amplify the caspase cascade. Caspase inhibition did not protect against cell death indicating the existence of alternative caspase-independent mechanisms.  相似文献   

20.
Many human pathologies are associated with defects in mitochondria such as diabetes, neurodegenerative diseases or cancer. This tiny organelle is involved in a plethora of processes in mammalian cells, including energy production, lipid metabolism and cell death. In the so-called intrinsic apoptotic pathway, the outer mitochondrial membrane (MOM) is premeabilized by the pro-apoptotic Bcl-2 members Bax and Bak, allowing the release of apoptogenic factors such as cytochrome c from the inter-membrane space into the cytosol. At the same time, mitochondria fragment in response to Drp-1 activation suggesting that mitochondrial fission could play a role in mitochondrial outer-membrane permeabilization (MOMP). In this review, we will discuss the link that could exist between mitochondrial fission and fusion machinery, Bcl-2 family members and MOMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号