首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of protein phosphorylation in secretion is not well understood. Here we show that yeast lacking the Snc1,2 v-SNAREs, or bearing a temperature-sensitive mutation in the Sso2 t-SNARE, are rescued at restrictive conditions by the addition of ceramide precursors and analogs to the growth medium. Rescue results from dephosphorylation of the Sso t-SNAREs by a ceramide-activated type 2A protein phosphatase (Sit4) involved in cell cycle control. Sso t-SNARE dephosphorylation correlated with its assembly into complexes with the Sec9 t-SNARE, both in vitro and in vivo, and with an increase in protein trafficking and secretion in cells. SNARE complexes isolated under these conditions contained only Sso and Sec9, suggesting that a t-t-SNARE fusion complex is sufficient to confer exocytosis. Mutation of a single PKA site (Ser79 to Ala79) in Sso1 resulted in a decrease in phosphorylation and was sufficient to confer growth to snc cells at restrictive conditions. Thus, modulation of t-SNARE phosphorylation regulates SNARE complex assembly and membrane fusion in vivo.  相似文献   

2.
Fusion of post-Golgi secretory vesicles with the plasma membrane in yeast requires the function of a Rab protein, Sec4p, and a set of v- and t-SNAREs, the Snc, Sso, and Sec9 proteins. We have tested the hypothesis that a selective interaction between Sec4p and the exocytic SNAREs is responsible for ensuring that secretory vesicles fuse with the plasma membrane but not with intracellular organelles. Assembly of Sncp and Ssop into a SNARE complex is defective in a sec4-8 mutant strain. However, Snc2p binds in vivo to many other syntaxin-like t-SNAREs, and binding of Sncp to the endosomal/Golgi t-SNARE Tlg2p is also reduced in sec4-8 cells. In addition, binding of Sncp to Ssop is reduced by mutations in two other Rab genes and four non-Rab genes that block the secretory pathway before the formation of secretory vesicles. In an alternate approach to look for selective Rab-SNARE interactions, we report that the nucleotide-free form of Sec4p coimmunoprecipitates with Ssop. However, Rab-SNARE binding is nonselective, because the nucleotide-free forms of six Rab proteins bind with similar low efficiency to three SNARE proteins, Ssop, Pep12p, and Sncp. We conclude that Rabs and SNAREs do not cooperate to specify the target membrane.  相似文献   

3.
The 14-3-3 proteins are highly conserved, ubiquitously expressed proteins taking part in numerous cellular processes. Two genes encoding 14-3-3 proteins, ftt1 and ftt2, were isolated and characterised from the filamentous fungus Trichoderma reesei. FTTI showed the highest sequence identity (98% at the amino acid level) to the Trichoderma harzianum protein Th1433. FTTII is relatively distinct from FTTI, showing approximately 75% identity to other fungal 14-3-3 proteins. Despite their sequence divergence, both of the T. reesei ftt genes were equally able to complement the yeast bmh1 bmh2 double disruption. The T. reesei ftt genes were also found to be quite closely linked in the genomic DNA. A C-terminally truncated version of ftt1 (ftt1DeltaC) was first isolated as a multicopy suppressor of the growth defect of the temperature-sensitive yeast secretory mutant sec15-1. Overexpression of ftt1DeltaC also suppressed the growth defect of sec2-41, sec3-101, and sec7-1 strains. Overexpression of ftt1DeltaC in sec2-41 and sec15-1 strains could also rescue the secretion of invertase at the restrictive temperatures, and overexpression of full-length ftt1 enhanced invertase secretion by wild-type yeast cells. These findings strongly suggest that the T. reesei ftt1 has a role in protein secretion.  相似文献   

4.
SNAP receptor (SNARE) and Sec1/Munc18 (SM) proteins are required for all intracellular membrane fusion events. SNAREs are widely believed to drive the fusion process, but the function of SM proteins remains unclear. To shed light on this, we screened for dominant-negative mutants of yeast Sec1 by random mutagenesis of a GAL1-regulated SEC1 plasmid. Mutants were identified on the basis of galactose-inducible growth arrest and inhibition of invertase secretion. This effect of dominant-negative sec1 was suppressed by overexpression of the vesicle (v)-SNAREs, Snc1 and Snc2, but not the target (t)-SNAREs, Sec9 and Sso2. The mutations isolated in Sec1 clustered in a hotspot within domain 3a, with F361 mutated in four different mutants. To test if this region was generally involved in SM protein function, the F361-equivalent residue in mammalian Munc18-1 (Y337) was mutated. Overexpression of the Munc18-1 Y337L mutant in bovine chromaffin cells inhibited the release kinetics of individual exocytosis events. The Y337L mutation impaired binding of Munc18-1 to the neuronal SNARE complex, but did not affect its binary interaction with syntaxin1a. Taken together, these data suggest that domain 3a of SM proteins has a functionally important role in membrane fusion. Furthermore, this approach of screening for dominant-negative mutants in yeast may be useful for other conserved proteins, to identify functionally important domains in their mammalian homologs.  相似文献   

5.
Earlier we demonstrated that activation of a ceramide-activated protein phosphatase (CAPP) conferred normal growth and secretion to yeast lacking their complement of exocytic v-SNAREs (Snc1,2) or bearing a temperature-sensitive mutation in an exocytic t-SNARE (Sso2). CAPP activation led to Sso dephosphorylation and enhanced the assembly of t-SNAREs into functional complexes. Thus, exocytosis in yeast is modulated by t-SNARE phosphorylation. Here, we show that endocytic defects in cells lacking the v- and t-SNAREs involved in endocytosis are also rescued by CAPP activation. Yeast lacking the Tlg1 or Tlg2 t-SNAREs, the Snc v-SNAREs, or both, undergo endocytosis after phosphatase activation. CAPP activation correlated with restored uptake of FM4-64 to the vacuole, the uptake and degradation of the Ste2 receptor after mating factor treatment, and the dephosphorylation and assembly of Tlg1,2 into SNARE complexes. Activation of the phosphatase by treatment with C(2)-ceramide, VBM/ELO gene inactivation, or by the overexpression of SIT4 was sufficient to confer rescue. Finally, we found that mutation of single PKA sites in Tlg1 (Ser31 to Ala31) or Tlg2 (Ser90 to Ala90) was sufficient to restore endocytosis, but not exocytosis, to snc cells. These results suggest that endocytosis is also modulated by t-SNARE phosphorylation in vivo.  相似文献   

6.
We recently isolated from the filamentous fungus Trichoderma reesei (Hypocrea jecorina) a gene encoding RHOIII as a multicopy suppressor of the yeast temperature-sensitive secretory mutation, sec15-1. To characterize this gene further, we tested its ability to suppress other late-acting secretory mutations. The growth defect of yeast strains with sec1-1, sec1-11, sec3-2, sec6-4 and sec8-9 mutations was suppressed. Expression of rho3 also improved the impaired actin organization of sec15-1 cells at +38 degrees C. Overproduction of yeast Rho3p using the same expression vector as T. reesei RHOIII appeared to be toxic in sec3-101, sec5-24, sec8-9, sec10-2 and sec15-1 cells. When expressed from the GAL1 promoter, RHO3 suppressed the growth defect of sec1 at the restrictive temperature and inhibited the growth of sec3-101 at the permissive temperature. Disruption of the rho3 gene in the T. reesei genome did not affect the hyphal or colony morphology nor the cellular cytoskeleton organization. Furthermore, the growth of T. reesei was not affected on glucose by the rho3 disruption. Instead, both growth and protein secretion of T. reesei in cellulose cultures was remarkably decreased in rho3 disruptant strains when compared with the parental strain. These results suggest that rho3 is involved in secretion processes in T. reesei.  相似文献   

7.
The v-SNARE proteins Snc1p and Snc2p are required for fusion of secretory vesicles with the plasma membrane in yeast. Mutation of a methionine-based sorting signal in the cytoplasmic domain of either Sncp inhibits Sncp endocytosis and prevents recycling of Sncp to the Golgi after exocytosis. snc1-M43A mutant yeast have reduced growth and secretion rates and accumulate post-Golgi secretory vesicles and fragmented vacuoles. However, cells continue to grow and secrete for several hours after de novo Snc2-M42A synthesis is repressed. DPL1, the structural gene for dihydrosphingosine phosphate lyase, was selected as a high copy number snc1-M43A suppressor. Because DPL1 also partially suppresses the growth and secretion phenotypes of a snc deletion, we propose that enhanced degradation of dihydrosphingosine-1-phosphate allows an alternative protein to replace Sncp as the secretory vesicle v-SNARE.  相似文献   

8.
We have shown that protein kinase A phosphorylation of t-SNAREs inhibits SNARE assembly and suppresses endo- and exocytosis in yeast. Herein, we show that protein kinase A phosphorylation of the Sso exocytic t-SNAREs promotes the binding of Vsm1, a potential SNARE regulator identified previously in our laboratory. Phosphorylation of Sso increases its affinity for Vsm1 by more than fivefold in vitro and both phosphorylated Sso1, as well as Sso1 bearing an aspartate substitution at position 79, interact tightly with Vsm1. Vsm1 binding is dependent upon the NH2-terminal autoinhibitory domain of Sso, and constitutively "open" forms of the t-SNARE show a reduction in Vsm1 binding in vivo. The substitution of serine-79 in Sso1 with an alanine residue or the treatment of yeast with C2-ceramide, which results in the dephosphorylation of serine-79, both inhibit Vsm1 binding in vivo. Importantly, Vsm1 binding to Sso seems to preclude Sso binding to its partner t-SNARE, Sec9, and vice versa. This is consistent with the idea that Vsm1 is an inhibitor of SNARE assembly in yeast. Thus, one way by which phosphorylation inhibits SNARE assembly could be by regulating the association of inhibitory factors that control the ability of t-SNAREs to form complexes in vivo.  相似文献   

9.
In yeast, homologues of the synaptobrevin/VAMP family of v-SNAREs (Snc1 and Snc2) confer the docking and fusion of secretory vesicles at the cell surface. As no v-SNARE has been shown to confer endocytosis, we examined whether yeast lacking the SNC genes, or possessing a temperature-sensitive allele of SNC1 (SNC1(ala43)), are deficient in the endocytic uptake of components from the cell surface. We found that both SNC and temperature-shifted SNC1(ala43) yeast are deficient in their ability to deliver the soluble dye FM4-64 to the vacuole. Under conditions in which vesicles accumulate, FM4-64 stained primarily the cytoplasm as well as fragmented vacuoles. In addition, alpha-factor-stimulated endocytosis of the alpha-factor receptor, Ste2, was fully blocked, as evidenced using a Ste2-green fluorescent protein fusion protein as well as metabolic labeling studies. This suggests a direct role for Snc v-SNAREs in the retrieval of membrane proteins from the cell surface. Moreover, this idea is supported by genetic and physical data that demonstrate functional interactions with t-SNAREs that confer endosomal transport (e.g., Tlg1,2). Notably, Snc1(ala43) was found to be nonfunctional in cells lacking Tlg1 or Tlg2. Thus, we propose that synaptobrevin/VAMP family members are engaged in anterograde and retrograde protein sorting steps between the Golgi and the plasma membrane.  相似文献   

10.
Yeast cells secrete a variety of glycosylated proteins. At least two of these proteins, invertase and acid phosphatase, fail to be secreted in a new class of mutants that are temperature-sensitive for growth. Unlike the yeast secretory mutants previously described (class A sec mutants; Novick, P., C. Field, and R. Schekman, 1980, Cell., 21:205-420), class B sec mutants (sec 53, sec 59) fail to produce active secretory enzymes at the restrictive temperature (37 degrees C). sec 53 and sec 59 appear to be defective in reactions associated with the endoplasmic reticulum. Although protein synthesis continues at a nearly normal rate for 2 h at 37 degrees C, incorporation of [3H]mannose into glycoprotein is reduced. Immunoreactive polypeptide forms of invertase accumulate within the cell which have mobilities on SDS PAGE consistent with incomplete glycosylation: sec 53 produces little or no glycosylated invertase, and sec 59 accumulates forms containing 0-3 of the 9-10 N-linked oligosaccharide chains that are normally added to the protein. In addition to secreted enzymes, maturation of the vacuolar glycoprotein carboxypeptidase Y, incorporation of the plasma membrane sulfate permease activity, and secretion of the major cell wall proteins are blocked at 37 degrees C.  相似文献   

11.
Glycoproteins exit the endoplasmic reticulum (ER) of the yeast Saccharomyces cerevisiae in coat protein complex II (COPII) coated vesicles. The coat consists of the essential proteins Sec23p, Sec24p, Sec13p, Sec31p, Sar1p and Sec16p. Sec24p and its two nonessential homologues Sfb2p and Sfb3p have been suggested to serve in cargo selection. Using temperature-sensitive sec24-1 mutants, we showed previously that a secretory glycoprotein, Hsp150, does not require functional Sec24p for ER exit. Deletion of SFB2, SFB3 or both from wild type or the deletion of SFB2 from sec24-1 cells did not affect Hsp150 transport. SFB3 deletion has been reported to be lethal in sec24-1. However, here we constructed a sec24-1 Deltasfb3 and a sec24-1 Deltasfb2 Deltasfb3 strain and show that Hsp150 was secreted slowly in both. Turning off the SEC24 gene did not inhibit Hsp150 secretion either, and the lack of SEC24 expression in a Deltasfb2 Deltasfb3 deletant still allowed some secretion. The sec24-1 Deltasfb2 Deltasfb3 mutant grew slower than sec24-1. The cells were irregularly shaped, budded from random sites and contained proliferated ER at permissive temperature. At restrictive temperature, the ER formed carmellae-like proliferations. Our data indicate that ER exit may occur in vesicles lacking a full complement of Sec23p/24p and Sec13p/31p, demonstrating diversity in the composition of the COPII coat.  相似文献   

12.
Ddi1/Vsm1 is an ubiquitin receptor involved in regulation of the cell cycle and late secretory pathway in Saccharomyces cerevisiae. Ddi1 possesses three domains: an NH(2)-terminal ubiquitin-like domain (UBL), a COOH-terminal ubiquitin-associated domain (UBA), and a retroviral aspartyl-protease domain (RVP). Here, we demonstrate the domains involved in homodimerization, checkpoint regulation, localization, and t-SNARE binding. The RVP domain is required for protein homodimerization, whereas the UBL and UBA domains are required for rescue of the pds1-128 checkpoint mutant and enrichment of GFP-Ddi1 in the nucleus. A mutation in aspartate-220, which is necessary for putative aspartyl-protease function, abolished the rescue of pds1-128 cells but not homodimerization. Thus, Ddi1 catalytic activity may be required for checkpoint regulation. The Sso1 t-SNARE-interacting domain maps to residues 344-395 and undergoes phosphorylation on threonines T346 and T348. T348 is necessary for Sso binding, and phosphorylation is important for function, because mutations that lessen phosphorylation (e.g., Ddi1(T346A), Ddi1(T348A)) are unable to facilitate growth of the sec9-4 t-SNARE mutant. In contrast, the overproduction of phosphorylatable forms of Ddi1 (e.g., Ddi1, Ddi1(S341A)) rescue the growth of sec9-4 cells similar to Sso1 overproduction. Thus, Ddi1 participates in multiple cellular processes via its different domains and phosphorylation may regulate exocytic functions.  相似文献   

13.
The protein trafficking machinery of eukaryotic cells is employed for protein secretion and for the localization of resident proteins of the exocytic and endocytic pathways. Protein transit between organelles is mediated by transport vesicles that bear integral membrane proteins (v-SNAREs) which selectively interact with similar proteins on the target membrane (t-SNAREs), resulting in a docked vesicle. A novel Saccharomyces cerevisiae SNARE protein, which has been termed Vti1p, was identified by its sequence similarity to known SNAREs. Vti1p is a predominantly Golgi-localized 25-kDa type II integral membrane protein that is essential for yeast viability. Vti1p can bind Sec17p (yeast SNAP) and enter into a Sec18p (NSF)-sensitive complex with the cis-Golgi t-SNARE Sed5p. This Sed5p/Vti1p complex is distinct from the previously described Sed5p/Sec22p anterograde vesicle docking complex. Depletion of Vti1p in vivo causes a defect in the transport of the vacuolar protein carboxypeptidase Y through the Golgi. Temperature-sensitive mutants of Vti1p show a similar carboxypeptidase Y trafficking defect, but the secretion of invertase and gp400/hsp150 is not significantly affected. The temperature-sensitive vti1 growth defect can be rescued by the overexpression of the v-SNARE, Ykt6p, which physically interacts with Vti1p. We propose that Vti1p, along with Ykt6p and perhaps Sft1p, acts as a retrograde v-SNARE capable of interacting with the cis-Golgi t-SNARE Sed5p.  相似文献   

14.
The SEC14 gene encodes an essential phosphatidylinositol (PtdIns) transfer protein required for formation of Golgi-derived secretory vesicles in yeast. Suppressor mutations that rescue temperature-sensitive sec14 mutants provide an approach for determining the role of Sec14p in secretion. One suppressor, sac1-22, causes accumulation of PtdIns(4)P. SAC1 encodes a phosphatase that can hydrolyze PtdIns(4)P and certain other phosphoinositides. These findings suggest that PtdIns(4)P is limiting in sec14 cells and that elevation of PtdIns(4)P production can suppress the secretory defect. Correspondingly, we found that PtdIns(4)P levels were decreased significantly in sec14-3 mutants shifted to 37 degrees C and that sec14-3 cells could grow at an otherwise nonpermissive temperature (34 degrees C) when carrying a plasmid overexpressing PIK1, encoding one of two essential PtdIns 4-kinases. This effect is specific because overexpression of the other PtdIns 4-kinase gene (STT4) or a PtdIns 3-kinase gene (VPS34) did not rescue sec14-3 cells. To further address Pik1p function in secretion, two different pik1(ts) mutants were examined. Upon shift to restrictive temperature (37 degrees C), the PtdIns(4)P levels dropped by about 60% in both pik1(ts) strains within 1 h. During the same period, cells displayed a reduction (40-50%) in release of a secreted enzyme (invertase). However, similar treatment did not effect maturation of a vacuolar enzyme (carboxypeptidase Y). These findings indicate that, first, PtdIns(4)P limitation is a major contributing factor to the secretory defect in sec14 cells; second, Sec14p function is coupled to the action of Pik1p, and; third, PtdIns(4)P has an important role in the Golgi-to-plasma membrane stage of secretion.  相似文献   

15.
The t-SNARE in a late Golgi compartment (Tlg2p) syntaxin is required for endocytosis and localization of cycling proteins to the late Golgi compartment in yeast. We show here that Tlg2p assembles with two light chains, Tlg1p and Vti1p, to form a functional t-SNARE that mediates fusion, specifically with the v-SNAREs Snc1p and Snc2p. In vitro, this t-SNARE is inert, locked in a nonfunctional state, unless it is activated for fusion. Activation can be mediated by a peptide derived from the v-SNARE, which likely bypasses additional regulatory proteins in the cell. Locking t-SNAREs creates the potential for spatial and temporal regulation of fusion by signaling processes that unleash their fusion capacity.  相似文献   

16.
M Seeger  G S Payne 《The EMBO journal》1992,11(8):2811-2818
We have investigated the role of clathrin in vacuolar protein sorting using yeast strains harboring a temperature-sensitive allele of clathrin heavy chain (chc1-ts). After a 5 min incubation at the non-permissive temperature (37 degrees C), the chc1-ts strains displayed a severe defect in the sorting of lumenal vacuolar proteins. Sorting of a vacuolar membrane protein, alkaline phosphatase, and transport to the surface of a cell wall protein, was not affected at 37 degrees C. In chc1-ts cells incubated at 37 degrees C, secretion of the missorted lumenal vacuolar protein carboxypeptidase Y (CPY) was blocked by the sec1 mutation which prevents fusion of secretory vesicles to the plasma membrane. Unexpectedly, chc1-ts cells incubated for extended periods at 37 degrees C regained the ability to sort CPY. Cells carrying deletions of the CHC1 gene (chc1 delta) also sorted CPY to the vacuole even when subjected to temperature shifts. Vacuolar delivery of CPY in chc1 delta cells was not blocked by sec1 suggesting that transport does not occur by secretion and endocytosis. These results provide in vivo evidence that clathrin plays a role in the Golgi complex in sorting of vacuolar proteins from the secretory pathway. With time, however, yeast cells lacking functional clathrin heavy chains are able to adapt in a way that allows restoration of vacuolar protein sorting in the Golgi complex. These conclusions clarify previous studies of chc1 delta cells which raised the possibility that clathrin is not involved in vacuolar protein sorting.  相似文献   

17.
SEC2 function is required at the post-Golgi apparatus stage of the yeast secretory pathway. The SEC2 sequence encodes a protein product of 759 amino acids containing an amino terminal region that is predicted to be in an alpha-helical, coiled-coil conformation. Two temperature-sensitive alleles, sec2-41 and sec2-59, encode proteins truncated by opal stop codons and are suppressible by an opal tRNA suppressor. Deletion analysis indicates that removal of the carboxyl terminal 251 amino acids has no apparent phenotype, while truncation of 368 amino acids causes temperature sensitivity. The amino terminal half of the protein, containing the putative coiled-coil domain, is essential at all temperatures. Sec2 protein is found predominantly in the soluble fraction and displays a native molecular mass of greater than 500 kD. All phenotypes of the temperature-sensitive sec2 alleles are partially suppressed by duplication of the SEC4 gene, but the lethality of a sec2 disruption is not suppressed. The sec2-41 mutation exhibits synthetic lethality with the same subset of the late acting sec mutants as does sec4-8 and sec15-1. The Sec2 protein may function in conjunction with the Sec4 and Sec15 proteins to control vesicular traffic.  相似文献   

18.
Two new temperature-sensitive alleles of SEC3, 1 of 10 late-acting SEC genes required for targeting or fusion of post-Golgi secretory vesicles to the plasma membrane in Saccharomyces cerevisiae, were isolated in a screen for temperature-sensitive secretory mutants that are synthetically lethal with sec4-8. The new sec3 alleles affect early as well as late stages of secretion. Cloning and sequencing of the SEC3 gene revealed that it is identical to profilin synthetic lethal 1 (PSL1). The SEC3 gene is not essential because cells depleted of Sec3p are viable although slow growing and temperature sensitive. All of the sec3 alleles genetically interact with a profilin mutation, pfy1-111. The SEC3 gene in high copy suppresses pfy1-111 and sec5-24 and causes synthetic growth defects with ypt1, sec8-9, sec10-2, and sec15-1. Actin structure is only perturbed in conditions of chronic loss of Sec3p function, implying that Sec3p does not directly regulate actin. All alleles of sec3 cause bud site selection defects in homozygous diploids, as do sec4-8 and sec9-4. This suggests that SEC gene products are involved in determining the bud site and is consistent with a role for Sec3p in determining the correct site of exocytosis.  相似文献   

19.
We have identified and characterized mutants of the yeast Yarrowia lipolytica that are deficient in protein secretion, in the ability to undergo dimorphic transition from the yeast to the mycelial form, and in peroxisome biogenesis. Mutations in the SEC238, SRP54, PEX1, PEX2, PEX6, and PEX9 genes affect protein secretion, prevent the exit of the precursor form of alkaline extracellular protease from the endoplasmic reticulum, and compromise peroxisome biogenesis. The mutants sec238A, srp54KO, pex2KO, pex6KO, and pex9KO are also deficient in the dimorphic transition from the yeast to the mycelial form and are affected in the export of only plasma membrane and cell wall-associated proteins specific for the mycelial form. Mutations in the SEC238, SRP54, PEX1, and PEX6 genes prevent or significantly delay the exit of two peroxisomal membrane proteins, Pex2p and Pex16p, from the endoplasmic reticulum en route to the peroxisomal membrane. Mutations in the PEX5, PEX16, and PEX17 genes, which have previously been shown to be essential for peroxisome biogenesis, affect the export of plasma membrane and cell wall-associated proteins specific for the mycelial form but do not impair exit from the endoplasmic reticulum of either Pex2p and Pex16p or of proteins destined for secretion. Biochemical analyses of these mutants provide evidence for the existence of four distinct secretory pathways that serve to deliver proteins for secretion, plasma membrane and cell wall synthesis during yeast and mycelial modes of growth, and peroxisome biogenesis. At least two of these secretory pathways, which are involved in the export of proteins to the external medium and in the delivery of proteins for assembly of the peroxisomal membrane, diverge at the level of the endoplasmic reticulum.  相似文献   

20.
A screen for mutants of Saccharomyces cerevisiae secretory pathway components previously yielded sec34, a mutant that accumulates numerous vesicles and fails to transport proteins from the ER to the Golgi complex at the restrictive temperature (Wuestehube, L.J., R. Duden, A. Eun, S. Hamamoto, P. Korn, R. Ram, and R. Schekman. 1996. Genetics. 142:393-406). We find that SEC34 encodes a novel protein of 93-kD, peripherally associated with membranes. The temperature-sensitive phenotype of sec34-2 is suppressed by the rab GTPase Ypt1p that functions early in the secretory pathway, or by the dominant form of the ER to Golgi complex target-SNARE (soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor)-associated protein Sly1p, Sly1-20p. Weaker suppression is evident upon overexpression of genes encoding the vesicle tethering factor Uso1p or the vesicle-SNAREs Sec22p, Bet1p, or Ykt6p. This genetic suppression profile is similar to that of sec35-1, a mutant allele of a gene encoding an ER to Golgi vesicle tethering factor and, like Sec35p, Sec34p is required in vitro for vesicle tethering. sec34-2 and sec35-1 display a synthetic lethal interaction, a genetic result explained by the finding that Sec34p and Sec35p can interact by two-hybrid analysis. Fractionation of yeast cytosol indicates that Sec34p and Sec35p exist in an approximately 750-kD protein complex. Finally, we describe RUD3, a novel gene identified through a genetic screen for multicopy suppressors of a mutation in USO1, which suppresses the sec34-2 mutation as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号