首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reversibility of the binding of human apolipoprotein A-I (apo A-I) to phospholipid has been monitored through the influence of guanidine hydrochloride (Gdn-HCl) on the isothermal denaturation and renaturation of apo A-1/dimyristoylphosphatidylcholine (DMPC) complexes at 24 degree C. Denaturation was studied by incubating discoidal 1:100 and vesicular 1:500 mol/mol apo A-I/DMPC complexes with up to 7 M Gdn-HCl for up to 72 h. Unfolding of apo A-I molecules was observed from circular dichroism spectra while the distribution of protein between free and lipid-associated states was monitored by density gradient ultracentrifugation. The ability of apo A-I to combine with DMPC in the presence of Gdn-HCl at 24 degrees C was also investigated by similar procedures. In both the denaturation and renaturation of 1:100 and 1:500 complexes, the final values of the molar ellipticity and the ratio of free to bound apo A-I at various concentrations of Gdn-HCl are dependent on the initial state of the lipid and protein; apo A-I is more resistant to denaturation when Gdn-HCl is added to existing complexes than to a mixture of apo A-I and DMPC. There is an intermediate state in the denaturation pathway of apo A-I/DMPC complexes which is not present in the renaturation; the intermediate comprises partially unfold apo A-I molecules still associated with the complex by some of their apolar residues. Complete unfolding of the alpha helix and subsequent desorption of the apo A-I molecules from the lipid/water interface involve cooperative exposure of these apolar residues to the aqueous phase. The energy barrier associated with this desorption step makes the binding of apo A-I to DMPC a thermodynamically irreversible process. Consequently, binding constants of apo A-I and PC cannot be calculated simply from equilibrium thermodynamic treatments of the partitioning of protein between free and bound states. Apo A-I molecules do not exchange freely between the lipid-free and lipid-bound states, and extra work is required to drive protein molecules off the surface. The required increased in surface pressure can be achieved by a net mass transfer of protein to the surface; in vivo, increases in the surface pressure of lipoproteins by lipolysis can cause protein desorption.  相似文献   

2.
The interaction of glucagon, human parathyroid hormone-(1-34)-peptide and salmon calcitonin with dimyristoylphosphatidylglycerol (DMPG) and with dimyristoylphosphatidylcholine (DMPC) was studied as a function of pH and temperature. The effect of lipid on the secondary structure of the peptide was assessed by circular dichroism and the effect of the peptide on the phase transition properties of the lipid was studied using differential scanning calorimetry. Some peptides interact more strongly with anionic than with zwitterionic phospholipids. This does not require an overall positive charge on the peptide. Increased thermal stability is observed in complexes formed between cationic peptides and anionic lipids. Particularly marked effects of glucagon and human parathyroid hormone-(1-34)-peptide on the phase transition properties of DMPG at pH 5 have been observed. The transition temperature is raised over 10 degrees C at a lipid/peptide molar ratio of less than 30:1 and the transition enthalpy is increased over 2-fold. These effects do not occur with any basic peptide and were not observed with metorphinamide, molluscan cardioexcitatory neuropeptide or myelin basic protein. The results demonstrate that certain peptides can affect the phase transition properties of lipids in a manner similar to divalent cations. The overall hydrophobicities of these peptides can be evaluated by their partitioning between aqueous and organic solvents. None of the above three peptide hormones partition into the organic phase. However, a closely related peptide, human calcitonin, does exhibit substantial partitioning into the organic phase. Nevertheless, human calcitonin has a weaker interaction with both DMPC and DMPG than does salmon calcitonin. The effects of human calcitonin on the phase transition of DMPC are qualitatively different from those of salmon calcitonin in that the human form more readily eliminates the pretransition but causes less change in the main transition. Like overall charge, overall hydrophobicity is not an overwhelming factor in determining the ability of peptides to interact with phospholipids but rather more specific interactions are required for strong complexes to form.  相似文献   

3.
Two monoclonal antibodies, A17 and A30, were raised against human apolipoprotein A-I (apo A-I). They were studied by competitive inhibition of 125I-labeled HDL3 with HDL subfractions, delipidated apo A-I, and complexes of dimyristoylphosphatidylcholine (DMPC) containing apo A-I and apo A-II. Immunoblotting located the A17 antibody on CNBr fragment 4 of apo A-I and the A30 antibody on CNBr fragment 1. The A17 antigenic determinant was expressed identically in all HDL subclasses, on delipidated apo A-I as well as all on the DMPC-apo A-I and DMPC-apo A-I/apo A-II complexes. In contrast, the apparent affinity constant of the A30 antibody for delipidated apo A-I was about 30-times less than for HDL3 or for apo A-I/apo A-II-phospholipid complexes. These data suggest that the association of apo A-I with phospholipids improves the reactivity of the A30 monoclonal antibody towards apo A-I, and that this antigenic determinant has a different conformation in delipidated apo A-I compared to apo A-I complexed with phospholipids. Turbidimetric and fluorescence experiments monitoring the phospholipid-apo A-I association in the presence and in the absence of the A17 and A30 antibodies were consistent with the competition experiments carried out by solid phase radioimmunoassay (RIA). After reaction of apo A-I with the A30 antibody, we observed an enhancement of the degradation kinetics of large multilamellar vesicles (LMV), while the A17 antibody did not have a significant effect. Calcein leakage experiments carried out below the transition temperature of DPPC showed an enhancement of the degradation kinetics with both monoclonal antibodies, while the phase-transition release was independent of the reaction of apo A-I with the monoclonal antibodies. These data therefore suggest the existence of at least two different types of epitope on apo A-I, which might account for the differences in immunological reactivity of apo A-I that is either delipidated or present on HDL.  相似文献   

4.
The binding of melittin and the C-terminally truncated analogue of melittin (21Q) to a range of phospholipid bilayers was studied using surface plasmon resonance (SPR). The phospholipid model membranes included zwitterionic dimyristylphosphatidylcholine (DMPC) and dimyristylphosphatidylethanolamine (DMPE), together with mixtures DMPC/dimyristylphosphatidylglycerol (DMPG), DMPC/DMPG/cholesterol and DMPE/DMPG. Melittin bound rapidly to all membrane mixtures, whereas 21Q, which has a reduced charge, bound much more slowly on the DMPC and DMPC/DMPG mixtures reflecting the role of the initial electrostatic interaction. The loss of the cationic residues also significantly decreased the binding of 21Q with DMPC/DMPG/Cholesterol, DMPE and DMPE/DMPG. The role of electrostatics was also highlighted with NaCl in the buffer, which affected the way melittin bound to the different membranes, causing a more uniform, concentration dependant increase in response. The biosensor results were correlated with the conformation of the peptides determined by circular dichroism analysis, which indicated that high α-helicity was associated with high binding affinity. Overall, the results demonstrate that the positively charged residues at the C-terminus of melittin play an essential role in membrane binding, that modulation of peptide charge influences selectivity of binding to different phospholipids and that manipulation of the cationic regions of antimicrobial peptides can be used to modulate membrane selectivity.  相似文献   

5.
Complexes formed between apolipoprotein A-I (apo A-I) and dimyristoylphosphatidylcholine (DMPC) or egg phosphatidylcholine have been studied by high-field 1H NMR, nondenaturing gradient gel electrophoresis, electron microscopy, and gel filtration chromatography. Emphasis has been placed on an analysis of the particle size distribution within the micellar complexes produced at lipid/protein molar ratios of 40-700. As determined by electron microscopy and gel filtration of DMPC/apo A-I complexes, the size of the discoidal micelles produced appears to increase uniformly with an increasing lipid/protein ratio. By electron microscopy, the diameters of isolated DMPC/apo A-I discoidal micelles range from approximately 89 A at a 40 molar ratio to 205 A at a 700 molar ratio. Analysis of the micellar complexes by 1H NMR shows that concomitant with the increase in size is the progressive downfield shift of the choline N-methyl proton resonance of the complex which is observed from 3.245 to 3.267 ppm over the above molar ratio range. The relationship between chemical shift and micelle size is most simply interpreted as arising from a weighted averaging of two lipid environments--lipid-lipid and lipid-protein. In contrast to the above interpretation of the gel filtration experiments on DMPC/apo A-I complexes, nondenaturing gradient gel electrophoresis analysis of particle size distribution leads to an unexpected observation: as the DMPC/apo A-I ratio increases, discrete complexes of increasing size are formed in an apparently quantized manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A Muga  H H Mantsch  W K Surewicz 《Biochemistry》1991,30(10):2629-2635
Apocytochrome c, the heme-free precursor of cytochrome c, has been used extensively as a model to study molecular aspects of posttranslational translocation of proteins across membranes. In this report, we have used Fourier-transform infrared spectroscopy to gain further insight into the mechanism of apocytochrome c interaction with membrane phospholipids. Association of apocytochrome c with model membranes containing the acidic lipid dimyristoylphosphatidylglycerol (DMPG) as a single component results in a drastic perturbation of phospholipid structure, at the level of both the acyl chains and the interfacial carbonyl groups. However, in a binary mixture of DMPG with acyl chain perdeuterated dimyristoylphosphatidylcholine (DMPC-d54), the perturbing effect of the protein on the acidic phospholipid is greatly attenuated. In such a membrane with mixed lipids, the physical properties of the DMPG and DMPC components are affected in a similar fashion, indicating that apocytochrome c does not induce any significant segregation or lateral-phase separation of acidic and zwitterionic lipids. Analysis of the apocytochrome c spectrum in the amide I region reveals that binding to phospholipids causes considerable changes in the secondary structure of the protein, the final conformation of which depends on the lipid to protein ratio. In the presence of a large excess of DMPG, apocytochrome c undergoes a transition from an essentially unordered conformation in solution to an alpha-helical structure. However, in complexes of lower lipid to protein ratios (less than or equal to approximately 40:1), infrared spectra are indicative of an extended, intermolecularly hydrogen-bonded beta-sheet structure. The latter is suggestive of an extensive aggregation of the membrane-associated protein.  相似文献   

7.
We have studied the effects of the antimicrobial peptide gramicidin S (GS) on the thermotropic phase behavior of large multilamellar vesicles of dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylethanolamine (DMPE) and dimyristoyl phosphatidylglycerol (DMPG) by high-sensitivity differential scanning calorimetry. We find that the effect of GS on the lamellar gel to liquid-crystalline phase transition of these phospholipids varies markedly with the structure and charge of their polar headgroups. Specifically, the presence of even large quantities of GS has essentially no effect on the main phase transition of zwitterionic DMPE vesicles, even after repeating cycling through the phase transition, unless these vesicles are exposed to high temperatures, after which a small reduction in the temperature, enthalpy and cooperativity of the gel to liquid-crystalline phase transitions is observed. Similarly, even large amounts of GS produce similar modest decreases in the temperature, enthalpy and cooperativity of the main phase transition of DMPC vesicles, although the pretransition is abolished at low peptide concentrations. However, exposure to high temperatures is not required for these effects of GS on DMPC bilayers to be manifested. In contrast, GS has a much greater effect on the thermotropic phase behavior of anionic DMPG vesicles, substantially reducing the temperature, enthalpy and cooperativity of the main phase transition at higher peptide concentrations, and abolishing the pretransition at lower peptide concentrations as compared to DMPC. Moreover, the relatively larger effects of GS on the thermotropic phase behavior of DMPG vesicles are also manifest without cycling through the phase transition or exposure to high temperatures. Furthermore, the addition of GS to DMPG vesicles protects the phospholipid molecules from the chemical hydrolysis induced by their repeated exposure to high temperatures. These results indicate that GS interacts more strongly with anionic than with zwitterionic phospholipid bilayers, probably because of the more favorable net attractive electrostatic interactions between the positively charged peptide and the negatively charged polar headgroup in such systems. Moreover, at comparable reduced temperatures, GS appears to interact more strongly with zwitterionic DMPC than with zwitterionic DMPE bilayers, probably because of the more fluid character of the former system. In addition, the general effects of GS on the thermotropic phase behavior of zwitterionic and anionic phospholipids suggest that it is located at the polar/apolar interface of liquid-crystalline bilayers, where it interacts primarily with the polar headgroup and glycerol-backbone regions of the phospholipid molecules and only secondarily with the lipid hydrocarbon chains. Finally, the considerable lipid specificity of GS interactions with phospholipid bilayers may prove useful in the design of peptide analogs with stronger interactions with microbial as opposed to eucaryotic membrane lipids.  相似文献   

8.
Discoidal complexes have been prepared from 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and the apoproteins of HDL3 (apo HDL3) or purified apo A-I. Gel electrophoresis established that apo HDL3 contained 74% apo A-I. Deconvolution and curve-fitting of the infra-red amide I band of the apoprotein in the lipid-protein complex revealed a secondary structure containing approximately 40% alpha-helix and 50% beta-structure. This contrasted with the results from circular dichroism studies (Surewicz et al. (1986) J. Biol. Chem., 261, 16191) of apo A-I/DMPC complexes which predicted 68% alpha-helix and 7% beta-structure. The discrepancy between the two methods and limitations of the two techniques for lipoproteins is discussed.  相似文献   

9.
Previous computer analyses suggested two possible lipid binding sites, residues 49-71 and 131-155, of the primary amino acid sequence on ABP-280 (filamin), which could facilitate membrane attachment/insertion. We expressed these regions as fusion proteins with schistosomal GST and investigated their interaction with mixtures of zwitterionic (dimyristoyl-l-alpha-phosphatidylcholine, DMPC) and anionic (dimyristoyl-l-alpha-phosphatidylglycerol, DMPG) phospholipids in reconstituted lipid bilayers by differential scanning calorimetry (DSC). Using vesicles of mixed DMPC/DMPG with increasing fusion protein concentrations, we established in calorimetric assays a decrease of the main chain transition enthalpy, DeltaH, and a shift in chain melting temperature. This is indicative of the insertion of these fragments into the hydrophobic region of lipid membranes. We confirmed these findings by the film balance technique using lipid monolayers (DMPG). The binding judged from both methods was of moderate affinity.  相似文献   

10.
Core peptide (CP; GLRILLLKV) is a 9-amino acid peptide derived from the transmembrane sequence of the T-cell antigen receptor (TCR) alpha-subunit. CP inhibits T-cell activation both in vitro and in vivo by disruption of the TCR at the membrane level. To elucidate CP interactions with lipids, surface plasmon resonance (SPR) and circular dichroism (CD) were used to examine CP binding and secondary structure in the presence of either the anionic dimyristoyl-L-alpha-phosphatidyl-DL-glycerol (DMPG), or the zwitterionic dimyristoyl-L-alpha-phoshatidyl choline (DMPC).Using lipid monolayers and bilayers, SPR experiments demonstrated that irreversible peptide-lipid binding required the hydrophobic interior provided by a membrane bilayer. The importance of electrostatic interactions between CP and phospholipids was highlighted on lipid monolayers as CP bound reversibly to anionic DMPG monolayers, with no detectable binding observed on neutral DMPC monolayers.CD revealed a dose-dependent conformational change of CP from a dominantly random coil structure to that of beta-structure as the concentration of lipid increased relative to CP. This occurred only in the presence of the anionic DMPG at a lipid : peptide molar ratio of 1.6:1 as no conformational change was observed when the zwitterionic DMPC was tested up to a lipid : peptide ratio of 8.4 : 1.  相似文献   

11.
The influence of cholesterol on the assembly and structure of model high-density lipoproteins (HDL) has been investigated. Model HDL composed of apolipoprotein A-I (apoA-I) and 1,2-dimyristoylphosphatidylcholine (DMPC) formed spontaneously at the transition temperature (Tc) of the lipid. Those composed of apoA-I and 1-palmitoyl-2-oleoylphosphatidylcholine were formed by a cholate dialysis method. At low cholesterol/phospholipid ratios both lipids and assembly methods yielded a model HDL whose composition was identical with that of the initial mixture; as the cholesterol/phospholipid ratio of the initial mixture was increased, the fraction of cholesterol appearing in the model HDL decreased, and a negative correlation between the cholesterol and protein contents of the model HDL was observed. At high cholesterol/phospholipid ratios the association of apoA-I and phospholipids appeared to be thermodynamically unfavorable. The effects of cholesterol content on the thermal properties of a model HDL composed of DMPC and apoA-I were further investigated by differential scanning calorimetry, fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene, fluorescence energy transfer, and excimer fluorescence of pyrenyl derivatives of phosphatidylcholine (PC) and cholesterol. The addition of cholesterol decreased the transition enthalpy of DMPC, raised the midpoint of the transition, and modulated motional freedom in the phospholipid matrix. The amount of cholesterol required to produce these effects was lower in the model HDL than in multilamellar liposomes. In a model HDL composed of DMPC and apoA-I, the lateral diffusion of a pyrene-labeled cholesterol was dramatically changed at the Tc whereas little change was observed in that of a pyrene-labeled PC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
PDC-109, the major protein of bovine seminal plasma, binds to sperm plasma membranes upon ejaculation and plays a crucial role in the subsequent events leading to fertilization. The binding process is mediated primarily by the specific interaction of PDC-109 with choline-containing phospholipids. In the present study the kinetics and mechanism of the interaction of PDC-109 with phospholipid membranes were investigated by the surface plasmon resonance technique. Binding of PDC-109 to different phospholipid membranes containing 20% cholesterol (wt/wt) indicated that binding occurs by a single-step mechanism. The association rate constant (k(1)) for the binding of PDC-109 to dimyristoylphosphatidylcholine (DMPC) membranes containing cholesterol was estimated to be 5.7 x 10(5) M(-1) s(-1) at 20 degrees C, while the values of k(1) estimated at the same temperature for the binding to membranes of negatively charged phospholipids such as dimyristoylphosphatidylglycerol (DMPG) and dimyristoylphosphatidic acid (DMPA) containing 20% cholesterol (wt/wt) were at least three orders of magnitude lower. The dissociation rate constant (k(-1)) for the DMPC/PDC-109 system was found to be 2.7 x 10(-2) s(-1) whereas the k(-1) values obtained with DMPG and DMPA was about three to four times higher. From the kinetic data, the association constant for the binding of PDC-109 to DMPC was estimated as 2.1 x 10(7) M(-1). The association constants for different phospholipids investigated decrease in the order: DMPC > DMPG > DMPA > DMPE. Thus the higher affinity of PDC-109 for choline phospholipids is reflected in a faster association rate constant and a slower dissociation rate constant for DMPC as compared to the other phospholipids. Binding of PDC-109 to dimyristoylphosphatidylethanolamine and dipalmitoylphosphatidylethanolamine, which are also zwitterionic, was found to be very weak, clearly indicating that the charge on the lipid headgroup is not the determining factor for the binding. Analysis of the activation parameters indicates that the interaction of PDC-109 with DMPC membranes is favored by a strong entropic contribution, whereas negative entropic contribution is primarily responsible for the rather weak interaction of this protein with DMPA and DMPG.  相似文献   

13.
F Sixl  A Watts 《Biochemistry》1985,24(27):7906-7910
Deuterium and phosphorus NMR methods have been used to study the binding of polymyxin B to the surface of bilayers containing lipids that were deuterated at specific positions in the polar head-group region. The binding of polymyxin B to acidic dimyristoylphosphatidylglycerol (DMPG) membranes induces only small structural distortions of the glycerol head group. The deuterium spin-lattice relaxation times for the different carbon-deuterium bonds in the head group of the same phospholipid are greatly reduced on binding of polymyxin B, indicating a restriction of the motional rate of the glycerol head group. Only very weak interactions were detected between polymyxin B and bilayers of zwitterionic dimyristoylphosphatidylcholine (DMPC). In mixed bilayers of the two phospholipid types, in which either of the two phospholipids was deuterated, the presence of polymyxin B caused a lateral phase separation into DMPG-enriched phospholipid-peptide clusters and a DMPG-depleted phase. Complete phase separation did not occur: peptide-containing complexes with charged phosphatidylglycerol contained substantial amounts of zwitterionic phosphatidylcholine. Exchange of both phospholipid types between complexes and the bulk lipid matrix was shown to be fast on the NMR time scale, with a lifetime for phospholipid-peptide association of less than 1 ms.  相似文献   

14.
The partition coefficients (K(p)) between lipid bilayers of dimyristoyl-L-alpha-phosphatidylglycerol (DMPG) unilamellar liposomes and water were determined using derivative spectrophotometry for chlordiazepoxide (benzodiazepine), isoniazid and rifampicin (tuberculostatic drugs) and dibucaine (local anaesthetic). A comparison of the K(p) values in water/DMPG with those in water/DMPC (dimyristoyl-L-alpha-phosphatidylcholine) revealed that for chlordiazepoxide and isoniazid, neutral drugs at physiological pH, the partition coefficients are similar in anionic (DMPG) and zwitterionic (DMPC) liposomes. However, for ionised drugs at physiological pH, the electrostatic interactions are different with DMPG and DMPC, with the cationic dibucaine having a stronger interaction with DMPG, and the anionic rifampicin having a much larger K(p) in zwitterionic DMPC. These results show that liposomes are a better model membrane than an isotropic two-phase solvent system, such as water-octanol, to predict drug-membrane partition coefficients, as they mimic better the hydrophobic part and the outer polar charged surface of the phospholipids of natural membranes.  相似文献   

15.
Recombinant lipoproteins, prepared with apo A-I isolated from human high density lipoprotein (HDL) and various phospholipids (PLs), were compared with respect to their ability to remove cholesterol (Chol) from labelled erythrocyte ghost membranes. It was found that uptake of Chol was essentially complete following an 8 h incubation at 37 degrees C. Quantitation of the amount of cholesterol taken up showed that recombinants prepared from bovine brain sphingomyelin (BBSM) or dipalmitoyl phosphatidylcholine (DPPC) acquired the highest proportion of Chol (80-140 mol/mol protein), whereas shorter chain phospholipids like dimyristoyl phosphatidylcholine (DMPC) acquired little or no membrane Chol. Chemical analysis of the incubation products indicated that this latter result was due to loss of PL, presumably to the membrane, with consequent disruption of the recombinant particle. Results with DPPC:A-I recombinants of differing PL/protein ratios and sizes showed that Chol uptake was fairly constant at 0.70 mol Chol/mol PL. It is concluded that discoidal, phospholipid-rich recombinant lipoproteins can effectively take up substantial amounts of Chol from physiological membranes, provided that the PLs utilized form micellar complexes which are capable of retaining their structural integrity during the incubation with the membranes.  相似文献   

16.
Fluorescence lifetime and intensity quenching studies of human plasma apolipoprotein A-I (apo A-I) in aqueous solution and in recombinant lipoprotein complexes with dimyristoylphosphatidylcholine (DMPC) indicate differences in conformational dynamics. In aqueous solution, the bimolecular quenching constants (k*) for lipid-free apo A-I fluorescence quenching by oxygen and acrylamide are 2.4 X 10(9) and 0.38 X 10(9) M-1 s-1, respectively. These values are independent of the oligomeric form of the protein. There is no correlation between the relatively small k* for apo A-I, which reflects rapid, low-amplitude protein fluctuations, and the labile conformational changes of apo A-I folding reactions, like denaturation, which occur on a slower time scale. In recombinant DMPC/apo A-I complexes (100:1 molar ratio) the protein increases in amphiphilic alpha-helical structure as it blankets the lipid matrix. The apparent k* for oxygen quenching of apo A-I fluorescence in the complex is large and increases in a temperature-dependent manner. We have introduced a two-compartment model, which discriminates the source of quencher molecules as aqueous or lipid, to describe oxygen quenching of DMPC/apo A-I fluorescence. The magnitude and temperature dependence of the apparent k* predominantly reflect the partitioning of oxygen between the two phases rather than being a probe of the lipid physical state. Calculations of the helical hydrophobic moment in apo A-I indicate that tryptophan residues 8 and 72 occur at the lipid-protein interface of amphiphilic alpha-helices, whereas the other two tryptophan residues (50, 108) lie on the nonpolar faces of amphiphilic helices.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Bacteriophage M13 major coat protein has been incorporated at different lipid/protein ratios in lipid bilayers consisting of various ratios of dimyristoylphosphatidylcholine (DMPC) to dimyristoylphosphatidylglycerol (DMPG). Spin-label ESR experiments were performed with phospholipids labeled at the C-14 position of the sn-2 chain. For M13 coat protein recombinants with DMPC alone, the relative association constants were determined for the phosphatidylcholine, phosphatidylglycerol, and phosphatidic acid spin-labels and found to be 1.0, 1.0, and 2.1 relative to the background DMPC, respectively. The number of association sites for each phospholipid on the protein was found to be 4 per protein monomer. The intrinsic off-rates for lipid exchange at the intramembranous surface of the protein in DMPC alone at 30 degrees C were found to be 5 X 10(6), 6 X 10(6), and 2 X 10(6) s-1 for the phosphatidylcholine, phosphatidylglycerol, and phosphatidic acid spin-labels, respectively. Adding DMPG to the DMPC lipid system increased the exchange rates of the lipids on and off the protein. By gel filtration chromatography, it is found that protein aggregation is reduced after addition of DMPG to the lipid system. This is in agreement with measurements of tryptophan fluorescence, which show a decrease in quenching efficiency after introduction of DMPG in the lipid system. The results are interpreted in terms of a model relating the ESR data to the size of the protein-lipid aggregates.  相似文献   

18.
Apolipoprotein A-I (apoA-I) spontaneously associates with dimyristoylphosphatidylcholine (DMPC) liposomes to form discoidal high-density lipoprotein (HDL) recombinants. The uptake of cholesterol by this model HDL was studied by incubation with Celite-dispersed cholesterol. Separation of the resulting complexes by gradient centrifugation and gel filtration showed a heterogeneous distribution of particle size and composition as a consequence of the disruption and rearrangement of the recombinants. Quantitation of the amount of cholesterol taken up gave values between about 28 and 40 mol% cholesterol for the fractions within the protein peaks; the fractions with the lowest DMPC/apoA-I ratios had the lowest cholesterol contents. In another set of experiments, the association of apoA-I with DMPC-cholesterol liposomes was shown to result in complexes with characteristics similar to those obtained by the cholesterol-uptake experiments. Low concentrations of cholesterol in the liposomes enhanced the rate of lipid-protein association, but larger amounts decreased the yield of complexes by making the process thermodynamically and kinetically unfavorable. The enthalpy of recombinant formation increased with decreasing lipid/protein ratio and increasing cholesterol content, and became endothermic at about 23 mol% cholesterol. The effect of cholesterol on the thermal properties of HDL recombinants suggests that cholesterol is partially excluded from the boundary region adjacent to apoA-I. It is concluded that discoidal HDL recombinants, as a model for 'nascent' HDL, can acquire substantial amounts of cholesterol, which may be of great physiological importance for the reverse cholesterol transport and prevention of atherosclerosis.  相似文献   

19.
Proteinase 3 (PR3), the major target autoantigen in Wegener's granulomatosis is a serine proteinase that is normally stored intracellularly in the primary granules of quiescent neutrophils and monocytes. Upon cell activation, a significant portion of this antigen is detected on the cell surface membrane. The nature of the association of PR3 with the membrane and its functional significance are unknown. We investigated the interaction of purified human PR3 with mixtures of zwitterionic (dimyristoyl-L-alpha-phosphatidylcholine, DMPC) and anionic (dimyristoyl-L-alpha-phosphatidylglycerol, DMPG) phospholipids in reconstituted lipid bilayers using differential scanning calorimetry and lipid photolabeling, and measured the affinity of this interaction using spectrophotometry. Two other primary granule constituents, human neutrophil elastase (HNE) and myeloperoxidase (MPO) were investigated for comparison. In calorimetric assays, using lipid vesicles of mixed DMPC/DMPG, increasing PR3 concentrations (protein/lipid molar ratio from 0 to 1 : 110) induced a significant decrease of the main chain transition enthalpy and a shift in chain melting temperatures which is indicative of partial insertion of PR3 into the hydrophobic region of the lipid membranes. This was confirmed by hydrophobic photolabeling using liposomes containing trace amounts of the photoactivable [125I]-labeled phosphatidylcholine analog TID-PC/16. The molar affinity of PR3, HNE, and MPO to lipid vesicles of different DMPC/DMPG ratios was then determined by spectrophotometry. At a DMPC/DMPG ratio of 1 : 1, molar affinities of PR3, Kd = 4.5 +/- 0.3 microm; HNE, 14.5 +/- 1.2 microm; and MPO, 50 +/- 5 microm (n = 3) were estimated. The lipid-associated PR3 exhibited two-fold lower Vmax and Km values, and its enzyme activity was slightly more inhibited (Ki) by the natural alpha1-proteinase inhibitor (alpha1-PI) or an autoantibody to PR3.  相似文献   

20.
The interaction of the polypeptide hormone calcitonin with two acidic phospholipids, dimyristoylphosphatidylglycerol (DMPG) and dimyristoylphosphatidic acid (DMPA), was investigated by Fourier-transform infrared spectroscopy. The association of calcitonin with DMPG results in a broadening of the lipid phase transition, accompanied by a marked decrease in the conformational order of the acyl chains at temperatures below the phase transition region. Infrared bands due to carbonyl ester and phosphate group vibrations of DMPG molecules are not significantly affected by the presence of calcitonin. The effect of calcitonin on the conformation of acyl chains in DMPA is much smaller compared with DMPG. The different susceptibility of DMPG and DMPA to perturbation by calcitonin is suggested to be related to different degrees of intermolecular interactions between the headgroups of these two phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号