首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Uterine and ovarian blood flow during the estrous cycle in mares   总被引:3,自引:0,他引:3  
Uterine and ovarian blood flow was investigated in four mares during two consecutive estrous cycles using transrectal color Doppler sonography. The uterine and ovarian arteries of both sides were scanned to obtain waves of blood flow velocity. The pulsatility index (PI) reflected blood flow. There were significant time trends in PI values of all uterine and ovarian blood vessels during the estrous cycle (P < 0.05). PI values did not differ between the uterine arteries ipsi- and contralateral to the corpus luteum or the ovulatory follicle. PI values of the uterine arteries showed a wave shaped profile throughout the estrous cycle. The highest PI values occurred on Days 0 and 1 (Day 0 = ovulation) and around Day 11, and the lowest PI values were measured around Days 5 and -2 of the estrous cycle. During diestrus (Days 0-15) PI values of the ovarian artery ipsilateral to the corpus luteum were significantly lower than PI values of the contralateral ovarian artery (P < 0.0001). No differences (P > 0.05) in resistance to ovarian blood flow occurred between sides during estrus (Days -6 to -1). In this cycle stage PI values decreased in both ovarian vessels (P < 0.05). During diestrus, high PI values of the ovarian artery ipsilateral to the corpus luteum were measured between Days 0 and 2, followed by a decline until Day 6 (P < 0.05). From this time on, the resistance to blood flow increased continuously until Day 15 (P < 0.05). The cyclic blood flow pattern in the contralateral ovarian artery was similar to that in the uterine arteries (r = 0.68; P < 0.0001). No correlations occurred between the diameter of the corpus luteum and the PI values of the ipsilateral ovarian artery (P > 0.05) during diestrus. During estrus, there was a negative relationship between growth of the diameter of the ovulatory follicle and changes in PI values of the dominant ovarian artery (r = -0.41; P < 0.05). PI values of the uterine arteries and of the ovarian artery ipsilateral to the ovulatory follicle were negatively related to estrogen (E) levels in plasma during estrus (uterine arteries: r = -0.21; P < 0.05; dominant ovarian artery: r = -0.35; P < 0.05). In diestrus, PI values of the dominant ovarian artery were negatively related to plasma progesterone levels (r = -0.38; P < 0.0001), but not the PI values of the uterine arteries (P > 0.05). The findings of this study show that there are characteristic changes in blood supply of the uterus and the ovaries throughout the equine estrous cycle. There are negative correlations between resistance to blood flow in the uterine and ovarian arteries and the plasma estrogen levels during estrus. In diestrus, there is a negative relationship between the resistance to ovarian blood flow and the progesterone levels.  相似文献   

2.
Ko JC  Lock TF  Davis JL  Smith RP 《Theriogenology》1989,32(4):643-651
Intrauterine pressure was measured in three cyclic and two postpartum mares. Pressure was recorded using a catheter tip pressure transducer. The transducer was passed transcervically into the uterus.. In cyclic mares recordings were started on Day 1 of estrus and continued daily until ovulation as well as on Days 1 and 8 of diestrus. In postpartum mares recordings were started within 48 h after foaling and continued until the mares ovulated. The intrauterine pressure changes in postpartum mares was also recorded on Days 1 and 8 of diestrus. Spontaneous uterine contractions were recorded in cyclic mares for 30 min and in postpartum mares for 10 min. Induced uterine motilities were recorded for 30 min in both groups after the administration of oxytocin (40 USP, i.v.). Total area under the contraction curve in a 10-min period was used as a uterine motility quantitating unit. All mares demonstrated uterine contractions during estrus and diestrus. All mares demonstrated significant responses to oxytocin during estrus and diestrus. It appears that estrogen priming is not necessary for a significant uterine response to oxytocin.  相似文献   

3.
Effects of estrous cycle and season on ultrasonic uterine anatomy in mares   总被引:1,自引:0,他引:1  
The morphological changes in ultrasound images of the uterus at various times of the year were characterized in nonbred mares, using a linear-array scanner. The uterus was recorded as having an ultrasonic morphology characteristic of diestrus (uterine score 1, endometrial folds not visible), estrus (score 3, distinct endometrial folds), or an intermediate stage (score 2). In Experiment I, uterine scores for the first ovulatory period of the year were compared to scores for the second period in 23 pony mares. More mares (P<0.05) showed endometrial folding prior to the second ovulation of the year (14 23 ) than prior to the first (5 23 ). Mean uterine scores were higher (P<0.05) on Day -10 (ovulation = Day 0) and tended to be higher (P<0.1) on Days -14, -13, and -11 of the first ovulatory period than on the corresponding days of the second period. Uterine scores for the first ovulatory period were lower (P<0.05) on Days -5, -4, -3, -2, -1, and 0 and tended to be lower (P<0.01) on Day -6. In addition, the pattern of change in uterine scores paralleled the pattern of change in the intensity of estrous behavior. In Experiment II, in 20 horse mares, the curve for uterine scores during interovulatory intervals in May-June, but not in September-October, was bimodal due to a small rise (P<0.05) and subsequent return to baseline between Days +3 and +6. The mean uterine scores for both May-June and September-October began to increase on Day -7 or -8, reached maximum on Day -3, declined between Days -2 and 0, continued to decline after Day 0, and reached a value characteristic of diestrus by Day +2. Results indicated that the ultrasonic characteristics of the uterus may provide an instant indicator of estrogen exposure and may have practical value in judging the optimal time to breed.  相似文献   

4.
Embryo transfer into ovariectomized steroid-treated mares was used as a model to evaluate various progestin/estradiol treatments and to determine the level of progesterone necessary for the maintenance of pregnancy in mares. Once a donor mare was in estrus and had a >/=35 mm follicle, an ovariectomized recipient was selected and assigned to one of three groups: 1) 1 mg estradiol (E(2)) was injected subcutaneously daily until the donor mare ovulated; on the day of the donor mare's ovulation, daily intramuscular injections of 300 mg progesterone (P4) were commenced and continued until the end of the experiment (Day 35); 2) E(2) and P4 treatments were identical except E(2) was continued daily until Day 20; and 3) The same E(2) treatment as Group 1, 0.044 mg altrenogest per kilogram body weight were administered daily until Day 35. Embryos were recovered 7 d after the donor mare's ovulation and were transferred via surgical flank incision. Twenty additional embryos (controls) were transferred into intact recipients that ovulated 1 d before to 3 d after the donor. Pregnancy rates did not differ (P>0.05) among groups at Days 14 or 35. Pregnancy rates at Day 35 for mares administered injectable P4 (70%) were identical to those given altrenogest. Overall, pregnancy rates for ovariectomized-progestin treated recipients (28 of 40, 70%) were similar (>0.05) to that of intact mares (16 of 20, 80%). Dose of P4 was decreased in Groups 1 and 2 to 200 mg (Days 35 to 39), 100 mg (Days 40 to 44), 50 mg (Days 45 to 49) and 0 mg (>/=Day 50). Blood samples were collected once on Days 34, 35, 39, 40, 44, 45, 49 and 50 and assayed for P4. Dose of altrenogest was decreased to 0.022, 0.011, 0.0055 and 0 mg per kilogram body weight at Days 35 to 39, 40 to 44, 45 to 49 and >/=50. Number of mares in Groups 1 and 2 that lost their pregnancy while given 200, 100, 50 or 0 mg P4 was 0, 2, 8 and 4, respectively. Doses of 0.022, 0.011, 0.0055 and 0 mg altrenogest per kilogram body weight resulted in 0, 6, 4 and 3 mares aborting. Fetal death did not occur until concentrations of P4 decreased below 2.56 ng/ml 24 h after injection.  相似文献   

5.
Two experiments were conducted to test the efficacy of altrenogest treatment in mares. The response to 15-d altrenogest treatment (Experiment 1) was characterized in 20 mares that were given 22 mg daily of altrenogest in oil (n = 10) or in gel (n = 10) from Day 10 to 25 after ovulation. In 17 mares, luteolysis occurred during altrenogest treatment (Day 17.7 +/- 0.5), while 2 mares retained their corpus luteum (CL), and 1 mare had a diestrous ovulation on Day 16, resulting in a prolonged luteal phase. Ten of the 17 mares in which the CL had spontaneously regressed returned to estrus after the end of treatment, and ovulated 5.7 +/- 0.8 d after the end of altrenogest treatment. Two of these 17 mares ovulated 2 and 3 d after the end of altrenogest treatment but ovulation was not accompanied by estrous behavior, and 5 mares ovulated during altrenogest treatment resulting in an interovulatory interval of 22.4 +/- 1.1 d (range: 20 to 25d). Five mares which ovulated during altrenogest treatment and 2 mares which ovulated during silent estrus after the end of altrenogest treatment failed to regress the CL around 14 d post ovulation, and had a prolonged luteal phase. In Experiment 2, the effect of altrenogest administered from luteolysis to ovulation on duration of the subsequent luteal period was analyzed. In 6 mares altrenogest was begun on Day 14 post ovulation and continued until the hCG-induced ovulation. The interval from ovulation during altrenogest treatment to spontaneous luteolysis was 45.6 +/- 2.4 d (range: 40 to 54d) in altrenogest-treated mares and was significantly longer than in 10 untreated control mares (14.5 +/- 0.3 d, range: 13 to 16d). The results suggest that the oil and gel altrenogest preparations are equally effective in modulating estrous behavior and time to estrus and ovulation. Altrenogest treatment started late in diestrus appears to result in a high incidence of ovulation during treatment and when luteolysis and ovulation occur during treatment; the subsequent luteal phase is frequently prolonged due to failure of regression of the CL.  相似文献   

6.
Oestrogen secretion was determined by oestrogen conjugate (EC) analysis of urine in three groups of pregnant mares: Group I (N = 6), animals ovariectomized on Day 18-19 of gestation with pregnancy maintained by daily administration of an oral progestagen, altrenogest; Group II (N = 9), untreated, pregnant mares; Group III (N = 5) intact, pregnant mares treated daily with altrenogest. The mean EC concentrations in the ovariectomized mares in Group I increased in a constant linear manner from 17 ng/mg Cr on Day 20 to 291 ng/mg Cr on Day 70, with no apparent surge in oestrogen secretion around Day 39. Mean EC concentrations on Days 33, 39 and 44 were respectively 41, 48, and 73 ng/mg Cr. In the intact mares in Groups II and III (shown in parentheses), the mean urinary EC concentrations were 201 (171) ng/mg Cr between Days 20 and 33 of gestation, increased rapidly from 172 (77) ng/mg Cr on Day 33 to a peak of 1066 (895) ng/mg Cr on Day 39, followed by a decline to 637 (719) ng/mg Cr on Day 44. After Day 44, EC concentrations continued to increase in a linear manner to 1191 (842) ng/mg Cr on Day 70. The mean EC concentrations between Days 20 and 70 in Group I were significantly (P less than 0.05) lower than in mares in Groups II and III. EC concentrations in Group III mares were significantly lower (P less than 0.05) than in Group II mares between Days 28 and 34.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In previous studies, transrectal color Doppler sonography was used to demonstrate an increase in genital blood flow resistance in subfertile mares. The objectives of the present study were to determine the effects of an anticoagulant (acetylsalicylic acid) and a vasodilator (captopril) on uterine and ovarian perfusion and plasma progesterone concentrations in cycling mares. From Day 1 to 11 of an estrous cycle (Day 0=day of ovulation following prostaglandin-induced luteolysis), five Trotter mares were given 2500 mg lactose, 2500 mg ASA, or 50 mg captopril twice daily in their feed (one compound per cycle, in random order). Transrectal color Doppler sonography was used to examine both uterine arteries and the ovarian artery ipsilateral to the corpus luteum once daily, immediately prior to administration of the drug. Blood flow resistance was determined semiquantitatively using the pulsatility index (PI) and plasma progesterone concentrations were determined with an enzyme immunoassay. Compared to the placebo, both ASA and captopril decreased mean PI values of both uterine arteries of all mares. On average, ASA decreased the PI of the uterine arteries by 25%; this was more (P<0.05) than the average decrease (13%) caused by captopril. Both drugs decreased (P<0.05) blood flow resistance in the ovarian arteries, although there was no difference (P<0.05) in their efficacy. In addition, both ASA and captopril increased (P<0.0001) plasma progesterone concentrations (18 and 17%, respectively). In conclusion, either ASA or captopril improved uterine and ovarian perfusion; however the effects on fertility were not determined.  相似文献   

8.
Practical estrus synchronization schemes are needed for mares. The Ovsynch synchronization protocol for cattle involves the administration of gonadotropin-releasing hormone (GnRH) to induce ovulation or luteinization of dominant follicles during the luteal phase and prostaglandin 7 days later to cause regression of any luteal tissue and development of a preovulatory follicle. An Ovsynch-type synchronization program potentially could be developed for horses if luteinization or ovulation of diestrous follicles occurred in response to GnRH treatment. The objective of this study was to determine if administration of the GnRH agonist, deslorelin acetate, on Day 8 or 12 postovulation would induce luteinization or ovulation of diestrous follicles in the mare. The model used was cycling mares maintained in an artificial luteal phase by administration of a synthetic progestin following prostaglandin-induced luteal regression. On the day of ovulation, 21 light horse mares were randomly assigned to one of three groups: (1) no GnRH, altrenogest from Days 5 to 15 postovulation with prostaglandin on Day 15; (2) GnRH on Day 8, altrenogest from Days 5 to 15 with prostaglandin given on Day 6 to induce luteolysis of the primary corpus luteum, an implant containing 2.1mg of deslorelin acetate inserted on Day 8 and removed on Day 10, with a second prostaglandin treatment on Day 15; (3) GnRH on Day 12, altrenogest from Days 9 to 19, prostaglandin on Day 10, a deslorelin acetate implant injected on Day 12 (subsequently removed on Day 14), and a second dose of prostaglandin administered on Day 19. Follicular development was monitored every other day from Day 5 until a 30-mm sized follicle was observed, and then daily to detection of ovulation. Serum progesterone concentrations were determined daily for 12 consecutive days. Progesterone concentrations in Group 1 remained elevated until approximately Day 12 postovulation. Prostaglandin administration on Day 15 resulted in complete luteolysis in all seven mares. In Group 2, progesterone concentrations in six of seven mares declined to baseline after prostaglandin treatment. No increase in serum progesterone was noted in any of the six mares that were given GnRH on Day 8, including three mares that had diestrous follicles > or =30mm in diameter at the time of treatment. Similarly, progesterone concentrations in six of seven mares in Group 3 declined to baseline after prostaglandin and there was no increase in progesterone after administration of GnRH on Day 12. No ultrasound evidence of luteinization or ovulation of diestrous follicles were noted after GnRH administration in any mares of Group 2 or 3. In conclusion, administration of the GnRH agonist deslorelin acetate to mares failed to induce luteinization or ovulation of diestrous follicles. Consequently, the Ovsynch program (as used in cattle) has little efficacy for synchronization of estrus in mares.  相似文献   

9.
Quarterhorse mares were used to investigate effects of estradiol-17beta on uterine involution, duration of estrus, interval to ovulation, and fertility achieved by breeding on the first postpartum estrus. On the day of foaling, mares were injected with biodegradable poly (DL-lactide) microspheres containing either 100 mg estradiol-17beta (25 mares) or no drug (27 mares). The treatment period was considered to last for 12 to 15 d. Estrus was determined by teasing mares (n=16) with a stallion. Ovulation was detected by transrectal ultrasonographic examination of ovaries (n=48). On Days 6, 11 and 16 post partum, transrectal ultrasonography was used to measure cross-sectional diameters of the uterine body, uterine horns, and fluid within the uterine lumen (n=28). Uteri were swabbed for bacteriologic culture, and uterine biopsies were obtained from the previously gravid uterine horn on Days 11 and 16 post partum, for assessment of endometritis and morphometric analysis of endometrial histioarchitecture (n=19). Twenty-two mares were bred on foal-heat, and pregnancy was determined by transrectal ultrasonography on 14 to 16 and 30 to 35 d after breeding. With only one exception (diameter of previously gravid uterine horn on Day 11), mean values for all measures of uterine involution did not differ between treatment groups (P > 0.05). No differences were detected between treatment group means for length of estrus or interval to ovulation (P > 0.05). No differences were detected between treatment group liklihoods for recovery of potential bacterial pathogens, presence of endometritis, or presence of intrauterine fluid at 11 or 16 d post partum (P > 0.05). Pregnancy rate of mares treated with estradiol (5 11 ; 45%) was not different from that of control mares (9 11 ; 82%; P > 0.05). Estradiol treatment did not hasten uterine involution, increase duration of estrus, delay ovulation, or increase fertility in these postpartum mares.  相似文献   

10.
《Theriogenology》2016,86(9):1562-1567
Poor uterine perfusion has been proposed as a cause of infertility in mares. The objective of this study was to investigate the effect of isosorbide dinitrate (ISDN), a nitric oxide donor, on uterine and ovarian blood flow resistance during diestrus and early pregnancy in mares. Six Trotter mares, aged 7 to 14 years, were examined daily during the first 11 days of three diestrous periods, and five of those mares were also examined during the first 11 days of two pregnancies. Six mares randomly received a placebo, a low dose (30 mg, ISDN30), or a high dose of ISDN (60 mg, ISDN60) through three nonconsecutive cycles. The treatments were administered orally, every 12 hours from Day 1 to 11 of the cycle (Day 0 = ovulation). Five of the 6 mares received a placebo or 60 mg of ISDN orally every 12 hours from Day 1 to 11 of pregnancy. The mares were short cycled on Day 12 of each trial. Transrectal color Doppler was used to determine blood flow resistance semiquantitatively and expressed as pulsatility index. Mean pulsatility index of both uterine arteries combined and of the dominant (ipsilateral to the CL) ovarian artery was lower (treatment effects: P ≤ 0.01; time effects: P ≤ 0.002) in mares receiving 30 mg or 60 mg of ISDN compared with placebo-treated mares. Blood flow resistance in the dominant ovarian artery was lower in ISDN-treated pregnant mares than in placebo-treated pregnant and cycling mares (treatment effect: P = 0.04; time effect: P = 0.003). Isosorbide dinitrate increases uterine and ovarian perfusion in cycling mares and ovarian perfusion in early pregnant mares. Further studies are needed to investigate these effects in relation to fertility of the mare.  相似文献   

11.
Two trials were conducted to evaluate the efficacy of short-term progestin administration to resynchronize the second estrus after artificial insemination in yearling beef heifers. In Trial 1 crossbred yearling heifers (n = 208) were synchronized with Syncro-Mate-B (SMB) and artificially inseminated (AI) between 48 and 54 h following implant removal. Implant removal is defined as Day 1. Following AI, the heifers were randomly assigned to 1 of 2 experimental groups. Group 1 heifers were fed melengestrol acetate (MGA) daily from Day 17 to 21 at a rate of 0.5 mg/head, while Group 2 control received no exogenous progestin during this period. Synchrony of estrus was defined as the 3-d period in which the highest number of heifers expressed behavioral estrus in each group. There was no difference (P < 0.05) in the pregnancy rate during the second estrus due to MGA supplementation. More MGA-treated heifers (P < 0.01) expressed estrus in a 3-d period than the controls. In Trial 2, yearling heifers (n = 108) were synchronized with 2 injections of PGF(2alpha) (second PGF(2alpha) injection is designated as Day 1) administered 14 d apart with AI 12 h after the onset of behavioral estrus. The heifers were then randomly assigned to 1 of the following 3 treatment groups after initial AI: 1) MGA fed at 0.5 mg/head daily from Days 17 to 21; 2) norgestomet administered in 6.0-mg implants from Days 17 to 21; 3) untreated control heifers. Blood samples were collected on Day 21 and analyzed for progesterone (P(4)). Elevated P(4) (> 1 ng/ml) on Day 21 indicated pregnancy to the first insemination. Synchrony among the 3 groups of heifers was similar (P > 0.10); however, the second estrus was less (P < 0.05) variable in the MGA and norgestomet treated heifers. During the resynchronized second estrus, conception rates were not affected by progestin treatment (MGA 40%, norgestomet 64%, and control 62%; P > 0.10). However, a proportion of heifers treated MGA 10% 4 36 and norgestomet 3% 1 36 expressed behavioral estrus during second estrus even though they were diagnosed as pregnant from first service by elevated P(4) levels on Day 21. We conclude that short-term use of progestin from Days 17 to 21 following AI causes closer synchrony of estrus; however, inseminating pregnant heifers that exhibit behavioral estrus may cause abortion.  相似文献   

12.
Color Doppler ultrasound was used transrectally in 6 mares to locate both the left and right Aa. uterinae and to obtain flow velocity waveforms at defined times (Days 0, 5, 10, 15 and 20) during 4 estrous cycles. Blood flow reflected by the resistance index (RI) was determined for both arteries on 120 occasions. As there was no significant difference and a high correlation in the RI values between the left and right arteries (paired Student's t-test, correlation coefficient r > 0.94; P < 0.05), the average RI value was used for subsequent analyses. There were correlations between RI values, mares and day of estrous cycle (P < 0.0001). The mean RI was higher (P < 0.05) in the 2 multiparous mares (age, 12 to 13 yr) than in the 4 younger maiden mares (age, 6 to 10 yr). During the estrous cycle mean RI values on Day 0 (day of ovulation) and Day 10 were higher (P < 0.05) than on Days 5, 15 and 20, whereas between estrous cycles within mares no differences (P > 0.05) could be measured. The results suggest that transrectal Color Doppler sonography is a noninvasive method for examining differences in impedance to uterine blood flow between different mares and cycle periods.  相似文献   

13.
The equine embryonic vesicle is mobile on Days 12-14 (Day 0 = ovulation), when it is approximately 9-15 mm in diameter. Movement from one uterine horn to another occurs, on average, approximately 0.5 times per hour. Mobility ceases (fixation) on Days 15-17. Transrectal color Doppler ultrasonography was used to study the relationship of embryo mobility (experiment 1) and fixation (experiment 2) to endometrial vascular perfusion. In experiment 1, mares were bred and examined daily from Day 1 to Day 16 and were assigned, retrospectively, to a group in which an embryo was detected (pregnant mares; n = 16) or not detected (n = 8) by Day 12. Endometrial vascularity (scored 1-4, for none to maximal, respectively) did not differ on Days 1-8 between groups or between the sides with and without the corpus luteum. Endometrial vascularity scores were higher (P < 0.05) on Days 12-16 in both horns of pregnant mares compared to mares with no embryo. In pregnant mares, the scores increased (P < 0.05) between Day 10 and Day 12 in the horn with the embryo and were higher (P < 0.05) than scores in the opposite horn on Days 12-15. In experiment 2, 14 pregnant mares were examined from Day 13 to 6 days after fixation. Endometrial vascularity scores and number of colored pixels per cross-section of endometrium were greater (P < 0.05) in the endometrium surrounding the fixed vesicle than in the middle portion of the horn of fixation. Results supported the hypothesis that transient changes in endometrial vascular perfusion accompany the embryonic vesicle as the vesicle changes location during embryo mobility.  相似文献   

14.
In two experiments (30 mares/experiment), the uterus was recorded as having flaccid tone characteristic of estrus or seasonal anestrus (tone score 1), intermediate tone characteristic of diestrus (tone score 2), or increased or maximal tone characteristic of early pregnancy (tone score 3 or 4). In Experiment I (five mares/group), uterine tone in seasonally anovulatory mares was not altered significantly from the flaccid state by daily administration of 100 mg progesterone plus 1 mg estradiol 17beta or 1 mg estradiol 17beta alone. Uterine tone in seasonally anovulatory mares receiving 100 mg progesterone alone increased to intermediate level (score 2; P<0.05) and remained there throughout the treatment period. Tone scores in the group receiving a 14-d progesterone priming period followed by progesterone plus estradiol were higher (P<0.02) on Days 16 to 28 than scores in the group receiving progesterone alone throughout the treatment period. In Experiment II, (five mares/group), steroid treatments were begun on Day 10 postovulation. The combination of 1 mg exogenous estradiol plus progesterone produced greater uterine tone than exogenous progesterone alone. There were no significant differences between the pregnant control group and the group receiving progesterone plus 1 mg estradiol. There were no significant differences between the group receiving progesterone alone and the group receiving progesterone plus 5 mg estradiol. Results supported the hypothesis that the maximum uterine tone of early pregnancy is caused by progesterone priming followed by exposure to low levels of estradiol plus continued exposure to progesterone.  相似文献   

15.
《Theriogenology》1996,45(8):1443-1448
Equine embryos spend 5 to 6 d in the oviduct before entering the uterus as expanded blastocysts, and cannot be consistently collected nonsurgically until Day 7. Technologies such as cryopreservation and embryo splitting, which are most successful with embryos at the morula or early blastocyst stage, have not been used in mares because equine morulae and early blastocysts are located in the oviduct and cannot be recovered nonsurgically. These experiments test the hypothesis that transport of equine embryos through the oviduct can be hastened by cervical dilation or by acute, sterile endometritis induced by intrauterine oyster glycogen treatment. Cervical dilation with or without intrauterine infusion of 0.5 ml PBS on Day 4 did not appear to hasten the transport of embryos into the uterus since Day 5 uterine embryo recovery rates were not higher (P > 0.1) for mares with cervical dilation or cervical dilation plus PBS infusion vs mares receiving no treatments (0 of 5 and 0 of 5 vs 0 of 10, respectively). Intrauterine infusions of 40 ml of 1% oyster glycogen or 40 ml of PBS on Day 3 did not appear to hasten the transport of embryos into the uterus since Day 5 uterine embryo recovery rates were not higher (P > 0.1) for oyster glycogen- or PBS-treated vs untreated mares (2 of 12 and 3 of 11 vs 0 of 10, respectively). Cervical and uterine treatments on Day 3 or Day 4 and uterine lavages on Day 5 decreased (P < 0.05) Days 11 to Day 15 pregnancy rates compared with that of untreated mares. Day 11 to Day 15 pregnancy rates were 1 of 5 for mares with Day 4 cervical dilation and Day 5 uterine lavage, 1 of 5 for mares with Day 4 PBS infusion and Day 5 uterine lavage, 2 of 12 for mares with Day 3 oyster glycogen infusion and Day 5 uterine lavage, and 3 of 11 for mares with Day 3 PBS infusion and Day 5 uterine lavage vs 7 of 10 for mares that received no treatment or lavage. Cervical and uterine manipulations on Day 3 or 4 and uterine lavage on Day 5 appeared to decrease pregnancy rates by Days 11 to 15. The results of these experiments do not support the hypothesis that cervical dilation or uterine infusion hasten oviductal transport, since neither cervical manipulation nor transcervical infusion of oyster glycogen or PBS into the uterus significantly hastened the rate of embryo transport into the uterus.  相似文献   

16.
Luteal progesterone was removed by an injection of prostaglandin F(2alpha) or bilateral ovariectomy on Day 12 of pregnancy in pony mares. The embryonic vesicle remained mobile in the uterus until loss occurred on Days 13, 13, 15, or 19 in four prostaglandin-treated mares and Days 15, 17, 19, or 26 in four ovariectomized mares. Exogenous progesterone given daily, starting on Day 12, maintained pregnancy until Day 40 in five of five prostaglandin-treated and three of four ovariectomized mares. During two-hour mobility trials on Day 14, embryonic vesicles in mares without luteal or exogenous progesterone (n = 9) moved to a different uterine segment less frequently (mean number of location changes per two-hour trial: 7.2 +/-1.0 vs 10.4 +/-1.1, P < 0.05) and were observed more often in the uterine body (14.9 +/-2.9 vs 8.9 +/-1.3, P < 0.10) compared to vesicles in mares with a progesterone influence (n = 15). Of mares that still had a vesicle present on Day 18, fixation occurred by Day 17 in all (12 12 ) mares under the influence of luteal or exogenous progesterone but failed to occur in the three mares that were not under progesterone influence. Progesterone replacement was started on Day 16 in three mares that received prostaglandin F(2alpha) on Day 12 and still had a vesicle on Day 16. The vesicle was maintained and continued to develop in all three mares, indicating that the vesicles were viable four days after PGF(2alpha) treatment. However, fixation tended to be delayed (P < 0.15) and orientation of the embryo proper was altered (P < 0.005) compared to mares that were continuously under the influence of progesterone. The results demonstrated the importance of luteal progesterone to mobility, fixation, orientation, and survival of the embryonic vesicle.  相似文献   

17.
18.
Administration of estrogen to gilts on Days 9 and 10 of pregnancy results in total embryonic loss by Day 18. The present study examined changes in the uterine endometrial surface and secretion during conceptus attachment in control and estrogen-treated (Days 9 and 10) pregnant gilts. Gilts were unilaterally hysterectomized on either Days 12 and 14 or Days 16 and 18 of gestation. Uterine horns were flushed with saline and conceptuses were evaluated. Intact conceptuses were recovered from all control gilts, whereas estrogen-treated gilts contained normal intact conceptuses only on Day 12 of gestation. Antiviral activity, which reflects conceptus viability, was reduced (p less than 0.01) in uterine flushings after Day 14 in estrogen-treated gilts. Culture of endometrial explants with [3H]glucosamine revealed several glycoproteins that are synthesized during the period of conceptus attachment; however, no difference in glycoprotein synthesis between treatment groups was detected by analysis with two-dimensional PAGE and fluorography. Analyses of the uterine epithelium by scanning and transmission electron microscopy demonstrated that estrogen administration caused an alteration in the uterine surface, a thinning of the uterine epithelial glycocalyx, and a reduction of cationic ferritin binding to the microvilli of the uterine epithelium. Results indicate that conceptus mortality after early administration of estrogen is associated with alterations in the uterine endometrial surface during the period of conceptus attachment in the pig.  相似文献   

19.
Transrectal color Doppler sonography was used to investigate the effects of a gonadotropin treatment to induce superovulation on uterine blood flow and its relationship with steroid hormone levels, ovarian response and embryo yield in dairy cows. The estrous cycle of 42 cows was synchronized by using PGF(2alpha) during diestrus and GnRH 48 h later (Day 0). Cows were examined on the day of eCG (2750 IU)-administration (Day 10), 3 days after eCG (Day 13) and 7 days after artificial insemination (Day 22), including the determination of total estrogens (E) and progesterone (P(4)) in peripheral plasma. Eight days after insemination (Day 23) the uterus was flushed and the number of total ova and embryos as well as transferable embryos was determined. The ovarian response was defined by the number of follicles>5.0mm in diameter on Day 13 and the number of corpora lutea on Day 22. Uterine blood flow was reflected by the blood flow volume (BFV) and the pulsatility index (PI) in the uterine arteries. Both variables showed distinct changes throughout the superovulatory cycle: BFV increased by 94% and PI decreased by 30% between Days 10 and 22 (P<0.0001). On Day 13, BFV but not PI correlated with follicle numbers (r=0.35; P<0.05); no correlation was found with E and P(4) (P>0.05). On Day 22, BFV correlated positively and PI correlated negatively with the number of corpora lutea (r=0.45 and r=-0.37; P<0.05) and P(4) (r=0.39 and r=-0.30; P<0.05). The number of transferable embryos was solely related to BFV measured on Day 13 (r=0.32; P<0.05). Our results show for the first time that in cows a superovulatory treatment is associated with a marked increase in BFV and a marked decrease in PI in the uterine arteries, concurrent with the development of multiple follicles and corpora lutea. However, transrectal color Doppler sonography of the uterine arteries does not facilitate the prediction of embryo yields following superovulatory treatment.  相似文献   

20.
Transrectal color Doppler sonography was used for the noninvasive investigation of uterine blood flow in five mares. Both the left and right uterine arteries were scanned to obtain blood flow velocity waveforms during two consecutive estrous cycles and two early pregnancies in each mare. Blood flow was expressed as the time-averaged maximum velocity (TAMV) and the resistance index (RI). In all pregnancies the embryonic vesicle could be detected for the first time on Day 11 (day of ovulation: Day 0). No differences in mean TAMV and RI values of both uterine arteries were observed in comparison to the corresponding days of the estrous cycle until Day 11 of pregnancy (P>0.05). From Day 11 onwards, mean TAMV values were higher and mean RI values lower in pregnant mares than in cyclic mares (P<0.05). During the estrous cycle TAMV and RI values did not differ between the right and left uterine arteries (P>0.05). From Days 15 to 29 of pregnancy, TAMV values were consistently higher and RI values lower in the uterine artery ipsilateral to the conceptus and they had a more distinct rise and decline, respectively, compared to the contralateral uterine artery (P<0.05). The variance component estimates for the effect of mare on TAMV and RI values during pregnancy were 60 and 53%, respectively, and for the effect of day of pregnancy, they were 29 and 34%, respectively (P<0.0001). Within mares there were no significant differences between the two pregnancies with regard to blood flow (P>0.05). The results show that uterine blood supply increases in mares during the second week of pregnancy compared to cyclic mares. Furthermore there are individual variations in blood flow between mares.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号