首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycogenin is a self-glucosylating protein involved in the initiation reactions of glycogen synthesis. Initiation occurs in two stages, requiring first the covalent attachment of a glucose residue to Tyr-194 of glycogenin and then elongation to form an oligosaccharide chain. The latter reaction is known to be catalyzed by glycogenin itself. The glycogenin sequence determined from the protein by Campbell and Cohen (Campbell, D. G., and Cohen, P. (1989) Eur. J. Biochem. 185, 119-125) was used to design oligonucleotide probes to screen a rabbit muscle lambda gt11 library. A cDNA was isolated that predicted an amino acid sequence identical to that of Campbell and Cohen, except that Cys residues replaced Ser-88 and Leu-97. Northern analysis indicated a strongly hybridizing message of 1.8 kilobases, present in most tissues including skeletal muscle, but much weaker in kidney and scarcely detectable in liver. A much weaker 3-kilobase message was also detected in muscle. Polymerase chain reaction was used to isolate DNA fragments encoding a portion of glycogenin from rat and cow. The sequence of this segment was > 90% identical at the amino acid level across the three species, indicating that glycogenin is a highly conserved protein. Using the pET-8c vector, the glycogenin protein was expressed in Escherichia coli. Incubation of the recombinant glycogenin with UDP-[14C]glucose and Mn2+ resulted in labeling of the glycogenin protein, indicating that the recombinant glycogenin was enzymatically active and capable of self-glucosylation. Furthermore, after incubation with UDP-glucose, the recombinant glycogenin could serve as a substrate for glycogen synthase, leading to the production of high M(r) polysaccharide. Therefore, production of functional glycogenin did not require the intervention of any other mammalian protein.  相似文献   

2.
Purified preparations of glycogen synthase are a complex of two proteins, the catalytic subunit of glycogen synthase and glycogenin, present in a 1:1 molar ratio [J. Pitcher, C. Smythe, D. G. Campbell & P. Cohen (1987) Eur. J. Biochem. 169, 497-502]. This complex has now been found to contain a further glucosyltransferase activity that catalyses the transfer of glucose residues from UDP-Glc to glucosylated-glycogenin. The glucosyltransferase, which is of critical importance in forming the primer required for de novo glycogen biosynthesis, is distinct from glycogen synthase in several ways. It has an absolute requirement for divalent cations, a 1000-fold lower Km for UDP-Glc and its activity is unaffected by incubation with UDP-pyridoxal or exposure to 2 M LiBr, which inactivate glycogen synthase by 95% and 100%, respectively. The priming glucosyltransferase and glycogen synthase activities coelute on Superose 6, and the rate of glycosylation of glycogenin is independent of enzyme concentration, suggesting that the reaction is catalysed intramolecularly by a subunit of the glycogen synthase complex. This component has been identified as glycogenin, following dissociation of the subunits in 2 M LiBr and their separation on Superose 12. The glycosylation of isolated glycogenin reaches a plateau when five additional glucose residues have been added to the protein, and digestion with alpha-amylase indicates that all the glycogenin molecules contain at least one glucosyl residue prior to autoglucosylation. The priming glucosyltransferase activity of glycogenin is unaffected by either glucose 6-phosphate or by phosphorylation of the catalytic subunit of glycogen synthase. The mechanism of primer formation is discussed in the light of the finding that glycogenin is an enzyme that catalyses its own autoglucosylation.  相似文献   

3.
Rabbit skeletal muscle glycogen previously has been shown to be covalently bound to a 40,000-Da protein ("glycogenin") via a novel glucosyl-tyrosine linkage [I.R. Rodriguez and W.J. Whelan (1985) Biochem. Biophys. Res. Commun. 132, 829-836]. Antibodies raised against rabbit skeletal muscle glycogenin cross-react with a similar protein present in rabbit heart and liver glycogens, as well as with a 42,000-Da "acceptor protein" present in high-speed supernatants of rabbit muscle, heart, retina, and liver. This 42,000-Da protein incorporates [U-14C]Glc when an ammonium sulfate fraction prepared from the tissue supernatants is incubated with UDP-[U-14C]Glc. The [U-14C]Glc incorporated can be removed quantitatively by treatment with amylolytic enzymes, indicating that the [U-14C]Glc incorporation represents elongation of a preexisting glucan attached to the acceptor protein. Furthermore, a commercial preparation of rabbit skeletal muscle glycogen synthase contains this 42,000-Da protein. We propose that the 42,000-Da protein represents the free form of glycogenin in tissues, with its covalently attached glucan chain(s) providing a "primed" elongation site for glycogen synthesis.  相似文献   

4.
The discovery of glycogenin and the priming mechanism for glycogen biogenesis   总被引:11,自引:0,他引:11  
The biogenesis of glycogen in skeletal muscle requires a priming mechanism that has recently been elucidated. The first step is catalysed by a protein tyrosine glucosyltransferase and involves the formation of a novel glycosidic linkage, namely the covalent attachment of glucose to a single tyrosine residue (Tyr194) on a priming protein, termed glycogenin. The next stage is the extension of the glucan chain from Tyr194 and involves the sequential addition of up to seven further glucosyl residues. This reaction is brought about autocatalytically by glycogenin itself, which is a Mn2+/Mg(2+)-dependent UDP-Glc-requiring glucosyltransferase. The glucan primer is elongated by glycogen synthase, but only when glycogenin and glycogen synthase are complexed together. Glycogen synthase dissociates from glycogenin during the synthesis of a glycogen molecule, enabling glycogen molecules to reach their maximum theoretical size. Each mature glycogen beta particle in muscle contains one molecule of glycogenin attached covalently, and an average one glycogen synthase catalytic subunit bound non-covalently. As evidence accumulates that a priming protein may be a fundamental property of polysaccharide synthesis in general, the molecular details of mammalian glycogen biogenesis may serve as a useful model for other systems.  相似文献   

5.
The gene coding for the flavodoxin protein from Desulfovibrio desulfuricans [Essex 6] (ATCC 29577) has been cloned and sequenced. The gene was identified on Southern blots of HindIII-digested genomic DNA by hybridization to the coding region for the flavodoxin from Desulfovibrio vulgaris [Hildenborough] (Krey, G.D., Vanin, E.F. and Swenson, R.P. (1988) J. Biol. Chem. 263, 15436-15443). Ultimately, a 1.8 kb TaqI fragment was cloned which contains an open reading frame of 447 nucleotides coding for an acidic protein of 148 amino acids and calculated molecular weight of 15,726. The derived amino acid sequence of this protein is 47% identical to the flavodoxin from D. vulgaris. Regions of the polypeptide which form the flavin mononucleotide binding site are largely homologous; however, some perhaps significant differences are noted. The aromatic amino acid residues that flank the flavin isoalloxazine ring in the D. vulgaris structure, i.e., tryptophan-60 and tyrosine-98, are conserved in this flavodoxin.  相似文献   

6.
The de novo biosynthesis of glycogen is catalyzed by glycogenin, a self-glucosylating protein primer. To date, the role of glycogenin in regulating glycogen metabolism and the attainment of maximal glycogen levels in skeletal muscle are unknown. We measured glycogenin activity after enzymatic removal of glucose by alpha-amylase, an indirect measure of glycogenin amount. Seven male subjects performed an exercise and dietary protocol that resulted in one high-carbohydrate leg (HL) and one low-carbohydrate leg (LL) before testing. Resting muscle biopsies were obtained and analyzed for total glycogen, proglycogen (PG), macroglycogen (MG), and glycogenin activity. Results showed differences (P < 0.05) between HL and LL for total glycogen (438.0 +/- 69.5 vs. 305.7 +/- 57.4 mmol glucosyl units/kg dry wt) and PG (311.4 +/- 38.1 vs. 227.3 +/- 33.1 mmol glucosyl units/kg dry wt). A positive correlation between total muscle glycogen content and glycogenin activity (r = 0.84, P < 0.001) was observed. Similar positive correlations (P < 0.05) were also evident between both PG and MG concentration and glycogenin activity (PG, r = 0.82; MG, r = 0.84). It can be concluded that glycogenin does display activity in human skeletal muscle and is proportional to glycogen concentration. Thus it must be considered as a potential regulator of glycogen synthesis in human skeletal muscle.  相似文献   

7.
Glycogenolysis results in the selective catabolism of individual glycogen granules by glycogen phosphorylase. However, once the carbohydrate portion of the granule is metabolized, the fate of glycogenin, the protein primer of granule formation, is not known. To examine this, male subjects (n = 6) exercised to volitional exhaustion (Exh) on a cycle ergometer at 75% maximal O2 uptake. Muscle biopsies were obtained at rest, 30 min, and Exh (99 +/- 10 min). At rest, total glycogen concentration was 497 +/- 41 and declined to 378 +/- 51 mmol glucosyl units/kg dry wt following 30 min of exercise (P < 0.05). There were no significant changes in proglycogen, macroglycogen, glycogenin activity, or mRNA in this period (P > or = 0.05). Exh resulted in decreases in total glycogen, proglycogen, and macroglycogen as well as glycogenin activity (P < 0.05). These decrements were associated with a 1.9 +/- 0.4-fold increase in glycogenin mRNA over resting values (P < 0.05). Glycogenolysis in the initial exercise period (0-30 min) was not adequate to induce changes in glycogenin; however, later in exercise when concentration and granule number decreased further, decrements in glycogenin activity and increases in glycogenin mRNA were demonstrated. Results show that glycogenin becomes inactivated with glycogen catabolism and that this event coincides with an increase in glycogenin gene expression as exercise and glycogenolysis progress.  相似文献   

8.
Katz et al. [Katz, J., Golden, S. & Wals, P.A. (1976) Proc. Natl Acad. Sci. USA 73, 3433-3437] were the first to report that in hepatocytes isolated from fasted rats and incubated with either dihydroxyacetone, glucose or other sugars, glycogen synthesis was greatly accelerated by addition of amino acids. We have looked for possible mediators responsible for this effect and have tested the effect of alanine, proline, asparagine, glutamine or a combination of ammonia with either pyruvate or lactate in activating glycogen synthesis from dihydroxyacetone. The following observations were made. 1. Stimulation of glycogen synthesis by alanine, proline or asparagine does not require production of glutamine since the effect also occurs in periportal hepatocytes which lack glutamine synthetase. 2. Under various conditions, stimulation of glycogen synthesis by added amino acids directly correlated with increases in the intracellular content of amino acids, expressed in osmotic equivalents. 3. 3-Mercaptopicolinic acid, the inhibitor of phosphoenolpyruvate carboxykinase, further enhances stimulation of glycogen synthesis by amino acids because it increases the intracellular accumulation of aspartate and glutamate. 4. The previously reported enhancement by leucine of the stimulation of glycogen synthesis by glutamine [Chen. K. S. & Lardy, H. A. (1985) J. Biol. Chem. 260, 14683-14688] can be ascribed to inhibition of urea synthesis by leucine which results in accumulation of glutamate and of ammonia, the essential activator of glutaminase. It is concluded that activation of glycogen synthesis by added amino acids is due to an increase in intracellular osmolarity following their uptake and the accumulation of intracellular catabolites. This results in an increase in hepatic volume which stimulates glycogen synthesis [Baquet, A., Hue, L., Meijer, A. J., van Woerkom, G. M. & Plomp, P. J. A. M. (1990) J. Biol. Chem. 265, 955-959].  相似文献   

9.
Many important human genes have been cloned during the last ten years. In some cases, using reverse genetic techniques [Orkin, S. H. (1986) Cell 47, 845-850], disease-causing genes have been isolated whose product was previously unknown. Important examples include the dystrophin protein which, when mutated, gives rise to either Duchenne or Becker muscular dystrophy [Koenig, M., Hoffman, E. P., Bertelson, C. J., Monaco, A. P., Feener, C. and Kunkel, L. M. (1987) Cell 50, 509-517; Monaco, A. P., Bertelson, C. J., Liechti-Gallati, S. & Kunkel, L. M. (1988) Genomics 2, 90-95; Koenig, M., Monaco, A. P. & Kunkel, L. M. (1988) Cell 53, 219-228] and the cystic fibrosis transmembrane conductance regulator (CFTR) [Riordan, J. R., Rommens, J. M., Kerem, B.-S., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavsic, N., Chou, J.-L., Drumm, M. L., Ianuzzi, M. C., Collins, F. S. & Tsui, L.-C. (1989) Science 245, 1066-1073]. Recently the technology for systematically detecting single base-pair changes by chemical methods, enzymatic methods or direct DNA sequencing has greatly expanded and simplified. In addition to providing structural information about these clinically important genes and information on disease-causing mutations, these studies have led to an increased understanding of mechanisms of mutation, to the discovery of novel genetic mechanisms and to important clinical applications of carrier detection and pre-natal diagnosis. The recent rapid progress has been made possible by the development of DNA amplification using the polymerase chain reaction (pcr) invented by Saiki and colleagues [Saiki, R. K., Chang, C-A., Levenson, C. H., Warren, T. C., Boehm, C. D., Kazazian, H. H. & Ehrlich, H. A. (1988) N. Engl. J. Med. 319, 537-541].  相似文献   

10.
Structural and functional studies on rabbit liver glycogenin   总被引:4,自引:0,他引:4  
Glycogenin, the protein primer required for the biogenesis of muscle glycogen, has been isolated from rabbit liver glycogen. The protein comprised 0.0025% of liver glycogen by mass, 200-fold lower than the glycogenin content of muscle glycogen. Structural analyses, including determination of the amino acid sequence surrounding the glucosylated-tyrosine residue, showed identity with muscle glycogenin. Catalytically active liver glycogenin was partially purified and, like the skeletal muscle protein, catalysed an intramolecular, Mn2+- and UDP-Glc-dependent autoglucosylation reaction, forming a primer on which glycogen synthase could act. The results demonstrate that hepatic and muscle glycogenins are almost certainly identical proteins and that liver and skeletal muscle share a common mechanism for the biogenesis of glycogen molecules. The results also indicate that there is about one glycogenin molecule/liver glycogen alpha particle.  相似文献   

11.
A form of protein phosphatase-1 (PP1M), which possesses 25-fold higher activity towards the P light chain of myosin (in heavy meromyosin) than other forms of protein phosphatase-1, was purified over 200,000-fold from the myofibrillar fraction of rabbit skeletal muscle. PP1M, which eluted from Superose 12 with an apparent molecular mass of 60 kDa, was dissociated by LiBr into two subunits. One of these displayed enzymic properties identical to those of the catalytic subunit of protein phosphatase-1 (PP1C) and was identified as the beta isoform of PP1C by amino acid sequencing. The second subunit had no intrinsic protein phosphatase activity, but greatly increased the rate at which PP1C dephosphorylated skeletal-muscle heavy meromyosin and decreased the rate at which it dephosphorylated glycogen phosphorylase. The properties of PP1M, together with those of smooth muscle PP1M [Alessi, D., MacDougall, L. K., Sola, M. M., Ikebe, M. & Cohen, P. (1992) Eur. J. Biochem. 210, 1023-1035] and the previously characterised glycogen-associated form of protein phosphatase-1 (PP1G), indicate that the subcellular localisation and substrate specificity of PP1 is determined by its interaction with specific targetting subunits.  相似文献   

12.
Glycogen synthase plays a key role in regulating glycogen metabolism. In a search for regulators of glycogen synthase, a yeast two-hybrid study was performed. Two glycogen synthase-interacting proteins were identified in human skeletal muscle, glycogenin-1, and nebulin. The interaction with glycogenin was found to be mediated by the region of glycogenin which contains the 33 COOH-terminal amino acid residues. The regions in glycogen synthase containing both NH2- and COOH-terminal phosphorylation sites are not involved in the interaction. The core segment of glycogen synthase from Glu21 to Gly503 does not bind COOH-terminal fragment of glycogenin. However, this region of glycogen synthase binds full-length glycogenin indicating that glycogenin contains at least one additional interacting site for glycogen synthase besides the COOH-terminus. We demonstrate that the COOH-terminal fragment of glycogenin can be used as an effective high affinity reagent for the purification of glycogen synthase from skeletal muscle and liver.  相似文献   

13.
The sequences of two Drosophila and one rabbit protein phosphatase (PP) 1 catalytic subunits were determined from their cDNA. The sequence of Drosophila PP1 alpha 1 was deduced from a 2.2-kb cDNA purified from an embryonic cDNA library, while that for Drosophila PP1 beta was obtained from overlapping clones isolated from both a head cDNA library and an eye imaginal disc cDNA library. The gene for Drosophila PP1 alpha 1 is at 96A2-5 on chromosome 3 and encodes a protein of 327 amino acids with a calculated molecular mass of 37.3 kDa. The gene for Drosophila PP1 beta is localized at 9C1-2 on the X chromosome and encodes a protein of 330 amino acids with a predicted molecular mass of 37.8 kDa. PP1 alpha 1 shows 96% amino acid sequence identity to PP1 alpha 2 (302 amino acids), an isoform whose gene is located in the 87B6-12 region of chromosome 3 [Dombrádi, V., Axton, J. M., Glover, D.M. Cohen, P.T.W. (1989) Eur. J. Biochem. 183, 603-610]. PP1 beta shows 85% identity to PP1 alpha 1 and PP1 alpha 2 over the 302 homologous amino acids. These results demonstrate that at least three genes are present in Drosophila that encode different isoforms of PP1. Drosophila PP1 alpha 1 and PP1 beta show 89% amino acid sequence identity to rabbit PP1 alpha (330 amino acids) [Cohen, P.T.W. (1988) FEBS Lett. 232, 17-23] and PP1 beta (327 amino acids), respectively, demonstrating that the structures of both isoforms are among the most conserved proteins known throughout the evolution of the animal kingdom. The presence of characteristic structural differences between PP1 alpha and PP1 beta, which have been preserved from insects to mammals, implies that the alpha and beta isoforms may have distinct biological functions.  相似文献   

14.
G H Noren  B A Barry 《Biochemistry》1992,31(13):3335-3342
The currently accepted model for the location of the redox-active tyrosines, D and Z, in photosystem II suggests that they are symmetrically located on the D1 and D2 polypeptides, which are believed to form the heterodimer core of the reaction center. Z, the electron conduit from the manganese catalytic site to the primary chlorophyll donor, has been identified with tyrosine-161 of D1. The YF161D1 mutant of Synechocystis 6803 [Debus, R. J., Barry, B. A., Sithole, I., Babcock, G. T., & McIntosh, L. (1988b) Biochemistry 27, 9071-9074; Metz, J. G., Nixon, P. J., Rogner, M., Brudvig, G. W., & Diner, B. A. (1989) Biochemistry 28, 6960-6969], in which this tyrosine has been changed to a phenylalanine, should have no light-induced EPR (electron paramagnetic resonance) signal from a tyrosine radical. This negative result has indeed been obtained in analysis of one of two independently constructed mutants through the use of a non-oxygen-evolving core preparation (Metz et al., 1989). Here, we present an analysis of a YF161D1 mutant through the use of a photosystem II purification procedure that gives oxygen-evolving particles from wild-type Synechocystis cultures. In our mutant preparation, a light-induced EPR signal from a photosystem II radical is observed under conditions in which, in a wild-type preparation, we can accumulate an EPR signal from Z+. This EPR signal has a different lineshape from that of the Z+ tyrosine radical, and spin quantitation shows that this radical can be produced in up to 60% of the mutant reaction centers. The EPR lineshape of this radical suggests that photosystem II reaction centers of the YF161D1 mutant contain a redox-active amino acid.  相似文献   

15.
B H Oh  J L Markley 《Biochemistry》1990,29(16):3993-4004
Complete sequence-specific assignments were determined for the diamagnetic 1H resonances from Anabaena 7120 ferredoxin (Mr = 11,000). A novel assignment procedure was followed whose first step was the identification of the 13C spin systems of the amino acids by a 13C(13C) double quantum correlation experiment [Oh, B.-H., Westler, M. W., Darba, P., & Markley, J. L. (1988) Science 240, 908-911]. Then, the 1H spin systems of the amino acids were identified from the 13C spin systems by means of direct and relayed 1H(13C) single-bond correlations [Oh, B.-H., Westler, W. M., & Markley, J. L. (1989) J. Am. Chem. Soc. 111, 3083-3085]. The sequential resonance assignments were based mainly on conventional interresidue 1H alpha i-1HNi + 1 NOE connectivities. Resonances from 18 residues were not resolved in two-dimensional 1H NMR spectra. When these residues were mapped onto the X-ray crystal structure of the homologous ferredoxin from Spirulina platensis [Fukuyama, K., Hase, T., Matsumoto, S., Tsukihara, T., Katsube, Y., Tanaka, N., Kakudo, M., Wada, K., & Matsubara, H. (1980) Nature 286, 522-524], it was found that they correspond to amino acids close to the paramagnetic 2Fe.2S* cluster. Cross peaks in two-dimensional homonuclear 1H NMR spectra were not observed for any protons closer than about 7.8 A to both iron atoms. Secondary structural features identified in solution include two antiparallel beta-sheets, one parallel beta-sheet, and one alpha-helix.  相似文献   

16.
Glycogenin is a dimeric self-glucosylating protein involved in the initiation phase of glycogen biosynthesis. As an enzyme, glycogenin has the unusual property of transferring glucose residues from UDP-glucose to itself, forming an alpha-1,4-glycan of around 10 residues attached to Tyr194. Whether this self-glucosylation reaction is inter- or intramolecular has been debated. We used site-directed mutagenesis of recombinant rabbit muscle glycogenin-1 to address this question. Mutation of highly conserved Lys85 to Gln generated a glycogenin mutant (K85Q) that had only 1-2% of the self-glucosylating activity of wild-type enzyme. Consistent with previous work, mutation of Tyr194 to Phe in a GST-fusion protein yielded a mutant, Y194F, that was catalytically active but incapable of self-glucosylation. The Y194F mutant was able to glucosylate the K85Q mutant. However, there was an initial lag in the self-glucosylation reaction that was abolished by preincubation of the two mutant proteins. The interaction between glycogenin subunits was relatively weak, with a dissociation constant inferred from kinetic experiments of around 2 microM. We propose a model for the glucosylation of K85Q by Y194F in which mixing of the proteins is followed by rate-limiting formation of a species containing both subunit types. The results provide the most direct evidence to date that the self-glucosylation of glycogenin involves an inter-subunit reaction.  相似文献   

17.
Bovine cardiac troponin isolated in a highly phosphorylated form shows four 31P-NMR signals [Beier, N., Jaquet, K., Schnackerz, K. & Heilmeyer, L.M.G. Jr (1988) Eur. J. Biochem. 176, 327-334]. Troponin I, which contains phosphate covalently linked to serine-23 and/or -24 [Swiderek, K., Jaquet, K., Meyer, H. E. & Heilmeyer, L. M. G. Jr (1988) Eur. J. Biochem. 176, 335-342], shows three resonances. Mg2(+)-saturation of holotroponin shifts these troponin I resonances to higher fields. Direct binding of Mg2+ to the phosphate groups can be excluded. Both these serine residues of troponin I, 23 and 24, are substrates for cAMP- and cGMP-dependent protein kinases as well as for protein kinase C. Isolated bovine cardiac troponin T contains 1.5 mol phosphoserine/mol protein, indicating that minimally two serine residues are phosphorylated. One phosphoserine residue is located at the N-terminus. An additional phosphoserine is located in the C-terminal cyanogen bromide fragment, CN4, which contains covalently bound phosphate. Protein kinase C phosphorylates serine-194, thus demonstrating exposure of this residue on the surface of holotoponin.  相似文献   

18.
Ordered synthesis and mobilization of glycogen in the perfused heart   总被引:1,自引:0,他引:1  
The molecular order of synthesis and mobilization of glycogen in the perfused heart was studied by 13C NMR. By varying the glucose isotopomer ([1-13C]glucose or [2-13C]glucose) supplied to the heart, glycogen synthesized at different times during the perfusion was labeled at different carbon sites. Subsequently, the in situ mobilization of glycogen during ischemia was observed by detection of labeled lactate derived from glycolysis of the glucosyl monomers. When [1-13C]glucose was given initially in the perfusion and [2-13C]glucose was given second, [2-13C]lactate was detected first during ischemia and [3-13C]lactate second. This result, and the equivalent result when the glucose labels were given in the reverse order, demonstrates that glycogen synthesis and mobilization are ordered in the heart, where glycogen is found morphologically only as beta particles. Previous studies of glycogen synthesis and mobilization in liver and adipocytes [Devos, P., & Hers, H.-G. (1979) Eur. J. Biochem. 99, 161-167; Devos, P., & Hers, H.-G. (1980) Biochem. Biophys. Res. Commun. 95, 1031-1036] have suggested that the organization of beta particles into alpha particles was partially responsible for ordered synthesis and mobilization. The observations reported here for cardiac glycogen suggest that another mechanism is responsible. In addition to examining the ordered synthesis and mobilization of cardiac glycogen, we have selectively monitored the NMR properties of 13C-labeled glycogen synthesized early in the perfusion during further glycogen synthesis from a second, differently labeled substrate. During synthesis from the second labeled glucose monomer, the glycogen resonance from the first label decreased in integrated intensity and increased in line width.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Computer graphics were used to build a molecular model of the complex of Lac repressor and lac operator. The model is based (a) on the NMR data of the Kaptein group [Boelens, R., Lamerichs, R. M. J. N., Rullmann, J. A. C., van Boom, J. H. & Kaptein, R. (1988) Protein Sequence Data Anal. 1, 487-498] and (b) on our genetic and biochemical data including specificity changes [Lehming, N., Sartorius, J., Kisters-Woike, B., von Wilcken-Bergmann, B. & Müller-Hill, B. (1990) EMBO J. 9, 615-621]. Effects of amino acid exchanges in the recognition helix could be predicted by the model and were subsequently tested and confirmed by genetic experiments. Comparison of the modelled lac complex with the known crystallographic structures of several helix-turn-helix DNA complexes reveals striking similarities and suggests rules which govern the recognition between particular amino acid side chains and particular base pairs in these systems.  相似文献   

20.
Twomey C  McCarthy JV 《FEBS letters》2006,580(17):4015-4020
Previously we described presenilin-1 (PS1) as a GSK-3beta substrate [Kirschenbaum, F., Hsu, S.C., Cordell, B. and McCarthy, J.V. (2001) Substitution of a glycogen synthase kinase-3beta phosphorylation site in presenilin 1 separates presenilin function from beta-catenin signalling. J. Biol. Chem. 276, 7366-7375; Kirschenbaum, F., Hsu, S.C., Cordell, B. and McCarthy, J.V. (2001) Glycogen synthase kinase-3beta regulates presenilin 1 C-terminal fragment levels. J. Biol. Chem. 276, 30701-30707], though it has not been determined whether PS1 is a primed or unprimed GSK-3beta substrate. A means of separating GSK-3beta activity toward primed and unprimed substrates was identified in the GSK-3beta-R96A phosphate binding pocket mutant [Frame, S., Cohen, P. and Biondi, R.M. (2001) A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol. Cell 7, 1321-1327], which is unable to phosphorylate primed but retains the ability to phosphorylate unprimed GSK-3beta substrates. By using wild type GSK-3beta, GSK-3beta-R96A, and a pharmacological modulator of GSK-3beta activity, we demonstrate that PS1 is an unprimed GSK-3beta substrate. These findings have important implications for regulation of PS1 function and the pathogenesis of Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号