首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
Our efforts in seeking low molecular weight agonists of the antidiuretic peptide hormone arginine vasopressin (AVP) have led to the identification of the clinical candidate WAY-151932 (VNA-932). Further exploration of the structural requirements for agonist activity has provided another class of potent, orally active, non-peptidic vasopressin V2 receptor selective agonists exemplified by the 5,11-dihydro-pyrido[2,3-b][1,5]benzodiazepine as a candidate for further development.  相似文献   

2.
It is fundamentally important to define how agonist-receptor interaction differs from antagonist-receptor interaction. The V1a vasopressin receptor (V1aR) is a member of the neurohypophysial hormone subfamily of G protein-coupled receptors. Using alanine-scanning mutagenesis of the N-terminal juxtamembrane segment of the V1aR, we now establish that Glu54 (1.35) is critical for arginine vasopressin binding. The mutant [E54A]V1aR exhibited decreased arginine vasopressin affinity (1700-fold) and disrupted signaling, but antagonist binding was unaffected. Mutation of Glu54 had an almost identical pharmacological effect as mutation of Arg46, raising the possibility that agonist binding required a mutual interaction between Glu54 and Arg46. The role of these two charged residues was investigated by 1) substituting Glu54; 2) inserting additional Glu/Arg in transmembrane helix (TM) 1; 3) repositioning the Glu/Arg in TM1; and 4) characterizing the reciprocal mutant [R46E/E54R]V1aR. We conclude that 1) the positive/negative charges need to be precisely positioned in this N terminus/TM1 segment; and 2) Glu54 and Arg46 function independently, providing two discrete epitopes required for high-affinity agonist binding and signaling. This study explains why Glu and Arg, part of an -R(X3)L/V(X3)E(X3)L- motif, are conserved at these loci throughout this G protein-coupled receptor subfamily and provides molecular insight into key differences between agonist and antagonist binding requirements.  相似文献   

3.
The vasopressin V2 receptor (V2R) belongs to the Class A G protein-coupled receptors (GPCRs). V2R is expressed in the renal collecting duct (CD), where it mediates the antidiuretic action of the neurohypophyseal hormone arginine vasopressin (CYFQNCPRG-NH2, AVP). Desmopressin ([1-deamino, 8-D]AVP, dDAVP) is strong selective V2R agonist with negligible pressor and uterotonic activity. In this paper, the interactions responsible for binding of dDAVP to vasopressin V2 receptor versus vasopressin V1a and oxytocin receptors has been examined. Three-dimensional activated models of the receptors were constructed using the multiple sequence alignment and the complex of activated rhodopsin with Gt(alpha) C-terminal peptide of transducin MII-Gt(alpha) (338-350) prototype (Slusarz, R.; Ciarkowski, J. Acta Biochim Pol 2004 51, 129-136) as a template. The 1-ns unconstrained molecular dynamics (MD) of receptor-dDAVP complexes immersed in the fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) membrane model was conducted in an Amber 7.0 force field. Highly conserved transmembrane residues have been proposed as being responsible for V2R activation and G protein coupling. Molecular mechanism of the dDAVP binding has been suggested. The internal water molecules involved in an intricate network of the hydrogen bonds inside the receptor cavity have been identified and their role in the stabilization of the agonist-bound state proposed.  相似文献   

4.
Arginine vasopressin (AVP) mediates a wide variety of biological actions by acting on three distinct G-protein coupled receptors, termed V(1a) (vascular), V(1b) (pituitary) and V(2) (renal). It also binds to the oxytocin (OT) receptor. As part of a program aimed at the design of selective agonists for the human V(1b) receptor, we recently reported the human V(1b), V(1a), V(2) and OT receptor affinities of the following position 4 substituted analogues of [deamino-Cys(1)] arginine vasopressin (dAVP)-(1) d[Leu(4)]AVP, (2) d[Orn(4)]AVP, (3) d[Lys(4)]AVP, (4) d[Har(4)]AVP, (5) d[Arg(4)]AVP, (6) d[Val(4)]AVP, (7) d[Ala(4)]AVP, (8) d[Abu(4)]AVP, (9) d[Nva(4)]AVP, (10) d[Nle(4)]AVP, (11) d[Ile(4)]AVP, (12) d[Phe(4)]AVP, (13) d[Asn(4)]AVP, (14) d[Thr(4)]AVP: (15) d[Dap(4)]AVP. With the exception of Nos. 7 and 12, all peptides exhibit very high affinities for the human V(1b) receptor. Furthermore, peptides 1-4 exhibit high selectivities for the human V(1b) receptor with respect to the V(1a), V(2) and OT receptors and, with d[Cha(4)]AVP, in functional tests, are the first high affinity selective agonists for the human V(1b) receptor (Cheng LL et al., J. Med. Chem. 47: 2375-2388, 2004). We report here the pharmacological properties of peptides 1-4, 5 (from a resynthesis), 7, 9-13, 15 in rat bioassays (antidiuretic, vasopressor and oxytocic) (in vitro: no Mg(++)) with those previously reported for peptides 5, 6, 8, 14. We also report the rat V(1b), V(1a), V(2) and OT receptor affinities of peptides 1-5 and the rat V(2) receptor affinities for peptides: 7-15.The antidiuretic activities in units/mg of peptides 1-15, are: 1=378; 2=260; 3=35; 4=505; 5=748; 6=1150; 7=841; 8=1020; 9=877; 10=1141; 11=819, 12=110; 13=996; 14=758; 15=1053. Peptides 1-4 exhibit respectively the following rat and human (in brackets) V(2) receptor affinities: 1=3.1 nm (245 nm); 2=3.4 nm (1125 nm); 3=24.6 nm (11,170 nm); 4=0.6 nm (1386 nm). Their rat V(1b) receptor affinities are 1=0.02 nm; 2=0.45 nm; 3=9.8 nm; 4=0.32 nm. Their rat V(1a) receptor affinities are 1=1252 nm; 2=900 nm; 3=1478 nm; 4=32 nm. Their rat oxytocin (OT) receptor affinities are 1=481 nm; 2=997 nm; 3=5042 nm; 4=2996 nm. All four peptides have high affinities and selectivities for the rat V(1b) receptor with respect to the rat V(1a) and OT receptors. However, in contrast to their high selectivity for the human V(1b) receptor with respect to the human V(2) receptor, they are not selective for the V(1b) receptor with respect to the V(2) receptor in the rat. These findings confirm previous observations of profound species differences between the rat and human V(2) receptors. Peptides 1-4 are promising leads to the design of the first high affinity selective agonists for the rat V(1b) receptor.  相似文献   

5.
Vasopressin V2 receptor was expressed in Xenopus laevis oocytes which were injected with poly(A) +RNA from porcine kidney cell line LLC-PK1. Pharmacological antagonism of the expressed V2 receptor was observed between arginine vasopressin and two potent and selective vasopressin antagonists: [d(CH2)5, D2-Phe2 Ile4, Ala9-NH2]arginine vasopressin and [d(CH2)5,D-Ile2, Ile4]arginine vasopressin. Activation constant for arginine vasopressin concentration was 1.32 x 10(-10)M. The nucleotide length of the mRNA encoding for vasopressin V2 receptor was deduced to be approximately 2 kilobases.  相似文献   

6.
In mammals, the vasopressin V(1b) receptor (V(1b)-R) is known to regulate ACTH secretion and, more recently, stress and anxiety. The characterization of the molecular determinant responsible for its pharmacological selectivity was made possible by the recent discovery of the first V(1b) antagonist, SSR149415. Based upon the structure of the crystallized bovine rhodopsin, we established a three-dimensional molecular model of interaction between the human V(1b)-R (hV(1b)-R) and SSR149415. Four amino acids located in distinct transmembrane helices (fourth, fifth, and seventh) were found potentially responsible for the hV(1b)-R selectivity. To validate these assumptions, we selectively replaced the leucine 181, methionine 220, alanine 334, and serine 338 residues of hV(1a)-R by their corresponding amino acids present in the hV(1b)-R (phenylalanine 164, threonine 203, methionine 324, and asparagine 328, respectively). Four mutants, which all exhibited nanomolar affinities for vasopressin and good coupling to phospholipase C pathway, were generated. hV(1a) receptors mutated at position 220 and 334 exhibited striking increase in affinity for SSR149415 both in binding and phospholipase C assays at variance with the hV(1a)-R modified at position 181 or 338. In conclusion, this study provides the first structural features concerning the hV(1b)-R and highlights the role of few specific residues in its pharmacological selectivity.  相似文献   

7.
To find potent and selective antagonists of the arginine vasopressin (AVP) V1A receptor, optimization studies of compounds structurally related to (Z)-N-{4'-[(4,4-difluoro-5-carbamoylmethylidene-2,3,4,5-tetrahydro-1H-1-benzazepin-1-yl)carbonyl]phenyl}carboxamide were performed. The synthesis and pharmacological properties of these compounds are described. We first investigated the effect of the carboxamide moiety, and found that a 2-methylfuran-3-carbonyl group at this position increased V1A binding affinity and selectivity for the V1A receptor versus the V2 receptor. The amino group of the 5-carbamoylmethylidene moiety was also examined, and a 4-piperidinopiperidino group was found to be optimal at this position. The hemifumarate of compound 12l (YM218) was shown to exhibit potent binding affinity, V1A receptor selectivity, and in vivo antagonist activity.  相似文献   

8.
Vasopressin antisense peptide interactions with the V1 receptor   总被引:1,自引:0,他引:1  
The molecular recognition hypothesis, that peptide ligands and their receptor binding sites are encoded by complementary nucleotide sequences, was tested for arginine vasopressin (AVP) and its V1 receptor. Binding of [125I] [d(CH2)5,Sar7]AVP (a selective V1 vasopressin antagonist radioligand) or [3H]AVP to rat liver plasma membranes was inhibited by peptides known to bind to V1 receptors but not by the AVP complementary peptide (Ser-Ser-Trp-Ala-Val-Leu-Glu-Val-Ala) (PVA). Rabbit anti-PVA antibodies were nonimmunoreactive with any protein in rat liver membranes or in a partially purified preparation from rat liver containing reconstitutable vasopressin binding activity. Furthermore, there was no suppression of the AVP pressor effect by PVA in vivo using a rat blood pressure bioassay. These findings do not support the hypothesis that the V1 receptor binding site is encoded by the antisense DNA strand to AVP.  相似文献   

9.
The present work describes the discovery of novel series of (4,4-difluoro-1,2,3,4-tetrahydro-5H-1-benzazepine-5-ylidene)acetamide derivatives as arginine vasopressin (AVP) V(2) receptor agonists. By replacing the amide juncture in YM-35278 with a direct ring connection gave compound 10a, which acts as a V(2) receptor agonist. These studies provided the potent, orally active non-peptidic V(2) receptor agonists 10a and 10j.  相似文献   

10.
11.
In this study, we identified the multifunctional protein GC1q-R as a novel vasopressin V(2) receptor (V(2)R) interacting protein. For this purpose, we have developed a proteomic approach combining pull-down assays using a cyclic peptide mimicking the third intracellular loop of V(2)R as a bait and mass spectrometry analyses of proteins isolated from either rat or human kidney tissues or the HEK 293 cell line. Co-immunoprecipitation of GC1q-R with the c-Myc-tagged h-V(2)R expressed in a HEK cell line confirmed the existence of a specific interaction between GC1q-R and the V(2) receptor. Then, construction of a mutant receptor in i3 loop allowed us to identify the i3 loop arginine cluster of the vasopressin V(2) receptor as the interacting determinant for GC1q-R interaction. Using purified receptor as a bait and recombinant (74-282) GC1q-R, we demonstrated a direct and specific interaction between these two proteins via the arginine cluster.  相似文献   

12.
To identify the binding site of the human V1a vasopressin receptor for the selective nonpeptide antagonist SR49059, we have developed a site-directed irreversible labeling strategy that combines mutagenesis of the receptor and use of sulfydryl-reactive ligands. Based on a three-dimensional model of the antagonist docked into the receptor, hypothetical ligand-receptor interactions were investigated by replacing the residues potentially involved in the binding of the antagonist into cysteines and designing analogues of SR49059 derivatized with isothiocyanate or alpha-chloroacetamide moieties. The F225C, F308C, and K128C mutants of the V1a receptor were expressed in COS-7 or Chinese hamster ovary cells, and their pharmacological properties toward SR49059 and its sulfydryl-reactive analogues were analyzed. We demonstrated that treatment of the F225C mutant with the isothiocyanate-derivative compound led to dose-dependent inhibition of the residual binding of the radio-labeled antagonist [125I]HO-LVA. This inhibition is probably the consequence of a covalent irreversible chemical modification, which is only possible when close contacts and optimal orientations exist between reactive groups created both on the ligand and the receptor. This result validated the three-dimensional model hypothesis. Thus, we propose that residue Phe225, located in transmembrane domain V, directly participates in the binding of the V1a-selective nonpeptide antagonist SR49059. This conclusion is in complete agreement with all our previous data on the definition of the agonist/antagonist binding to members of the oxytocin/vasopressin receptor family.  相似文献   

13.
A novel photoactivatable linear peptide antagonist selective for the V(1a) vasopressin receptor, [(125)I][Lys(3N(3) Phpa)(8)]HO-LVA, was synthesized, characterized, and used to photolabel the human receptor expressed in Chinese hamster ovary cells. Two specific glycosylated protein species at 85-90 and 46 kDa were covalently labeled, a result identical to that obtained with a previous photosensitive ligand, [(125)I]3N(3)Phpa-LVA (Phalipou, S., Cotte, N. , Carnazzi, E., Seyer, R., Mahe, E., Jard, S., Barberis, C., and Mouillac, B. (1997) J. Biol. Chem. 272, 26536-26544). To identify contact sites between the new photoreactive analogue and the V(1a) receptor, the labeled receptors were digested with Lys-C or Asp-N endoproteinases and chemically cleaved with CNBr. Fragmentation with CNBr, Lyc-C, and Asp-N used alone or in combination, led to the identification of a restricted receptor region spanning the first extracellular loop. The results established that sequence Asp(112)-Pro(120) could be considered as the smallest covalently labeled fragment with [(125)I][Lys(3N(3)Phpa)(8)]HO-LVA. Based on the present experimental result and on previous photoaffinity labeling data obtained with [(125)I]3N(3)Phpa-LVA (covalent attachment to transmembrane domain VII), three-dimensional models of the antagonist-bound receptors were constructed and then verified by site-directed mutagenesis studies. Strikingly, these two linear peptide antagonists, when bound to the V(1a) receptor, could adopt a pseudocyclic conformation similar to that of the cyclic agonists. Despite divergent functional properties, these peptide antagonists could interact with a transmembrane-binding site significantly overlapping that of the natural hormone vasopressin.  相似文献   

14.
A fundamental issue in molecular endocrinology is to define how agonist:receptor interaction differs from antagonist:receptor interaction. The vasopressin V1a receptor (V1aR) is a member of a subfamily of related G protein-coupled receptors that are activated by the hormone AVP or related peptides. The N-terminus of the V1aR has recently been shown to be critical for binding agonists but not antagonists. Using a combination of N-terminally truncated constructs and alanine-scanning mutagenesis, individual residues that provide these agonist-specific binding epitopes have now been identified in this study. Our data establish that a single residue, Arg46, is critical for AVP binding to the V1aR. Systematic substitution revealed that Arg was required at this locus and could not be substituted by Lys, Glu, Leu, or Ala. In contrast, antagonist binding (cyclic or linear, peptide or nonpeptide) was unaffected. Disruption of Arg46 also resulted in defective intracellular signaling. Arginine is conserved at this locus in all members of the neurohypophysial peptide hormone receptor family cloned to date, indicative of a fundamental role in receptor function. In addition to Arg46, the residues Leu42, Gly43, Asp45 form a patch contributing to AVP binding. This study provides molecular insight into the role of the V1aR N-terminus and key differences between agonist and antagonist binding requirements.  相似文献   

15.
To assess whether receptor binding is sufficient to initiate vasopressin receptor endocytosis in cells expressing the vasopressin V1 or V2 receptors, we synthesized a novel fluorescent-labeled vasopressin analog, [1-(beta-mercapto-beta, beta-cyclopentamethylene propionic acid), 2-(O-ethyl)-D-tyrosine, 4-valine, 8-lysine-N6-carboxytetramethylrhodamine] vasopressin (R-CLVP), that binds to vasopressin receptors but does not activate intracellular events such as the mobilization of intracellular calcium or the activation of adenylate cyclase. We compared the manner in which this analog was endocytosed in cells expressing V1 (A-10, rat smooth muscle cells) or V2 (LLC-PK1, porcine kidney cells) receptors with that of a full agonist, [1-(beta-mercaptopropionic acid), 8-lysine-N6-carboxytetramethylrhodamine] vasopressin (R-MLVP) [Lutz et al. (1990) J. Biol. Chem. 265, 4657-4663; Lutz et al. (1990) Proc. Natl. Acad. Sci. U.S.A. 87,6507-6511]. We showed that R-CLVP bound to both types of receptors with good affinity. It failed to increase cyclic AMP concentrations in LLC-PK1 cells and did not increase the mobilization of intracellular calcium in A-10 cells. It bound to the surface of both these cell types in a diffuse manner and it did not undergo receptor endocytosis in either cell type. In contrast, R-MLVP, an agonist that bound to both receptor subtypes and elicited changes in intracellular cyclic AMP and calcium, bound to the surface of these cells in a diffuse manner at early times after exposure, and rapidly underwent endocytosis. We conclude that binding of vasopressin to its receptors alone is insufficient to cause receptor endocytosis, and other events distal to the receptor are required to initiate endocytosis. R-CLVP should be a useful analog in determining the factors responsible for initiating receptor endocytosis.  相似文献   

16.
[(3)H]SSR-149415 is the first tritiated nonpeptide vasopressin V(1b) receptor (V(1b)R) antagonist ligand. It was used for studying rodent (mouse, rat, hamster) and human V(1b)R from native or recombinant origin. Moreover, a close comparison between the human and the mouse V(1b)R was performed using SSR-149415/[(3)H]SSR-149415 in binding and functional studies in vitro. [(3)H]SSR-149415 binding was time-dependent, reversible, and saturable. Scatchard plot analysis gave a single class of high-affinity binding sites with apparent equilibrium dissociation constant (K(d)) approximately 1 nM and maximum binding density (B(max)) values from 7,000 to 300,000 sites/cell according to the cell line. In competition experiments, [(3)H]SSR-149415 binding was stereospecific and dose-dependently displaced by reference peptide and nonpeptide arginine vasopressin (AVP)/OT ligands following a V(1b) rank order of affinity: SSR-149415 = AVP > dCha > dPen > dPal > dDavp > SSR-126768A > SR-49059 > SSR-149424 > OT > SR-121463B. Species differences between human, rat, mouse, and hamster V(1b)R were observed. Autoradiography studies with [(3)H]SSR-149415 on rat and human pituitary showed intense specific labeling confined to corticotroph cells and absence of labeling in the other tissues examined. SSR-149415 potently and stereospecifically antagonized the AVP-induced inositol phosphate production and intracellular Ca(2+) increase (EC(50) from 1.83 to 3.05 nM) in recombinant cell lines expressing either the mouse or the human V(1b)R. AVP (10(-7) M) exposure of AtT20 cells expressing mouse or human EGFP-tagged V(1b)R induced their rapid internalization. Preincubation with 10(-6) M SSR-149415 counteracted the internalization process. Moreover, recycling of internalized receptors was observed upon 10(-6) M SSR-149415 treatment. Thus SSR-149415/[(3)H]SSR-149415 are unique tools for studying animal and human V(1b)R.  相似文献   

17.
Despite their opposite effects on signal transduction, the nonapeptide hormone arginine-vasopressin (AVP) and its V1a receptor-selective cyclic peptide antagonist d(CH2)5[Tyr(Me)2]AVP display homologous primary structures, differing only at residues 1 and 2. These structural similarities led us to hypothesize that both ligands could interact with the same binding pocket in the V1a receptor. To determine receptor residues responsible for discriminating binding of agonist and antagonist ligands, we performed site-directed mutagenesis of conserved aromatic and hydrophilic residues as well as nonconserved residues, all located in the transmembrane binding pocket of the V1a receptor. Mutation of aromatic residues of transmembrane region VI (W304, F307, F308) reduced affinity for the d(CH2)5[Tyr(Me)2]AVP and markedly decreased affinity for the unrelated strongly hydrophobic V1a-selective nonpeptide antagonist SR 49059. Replacement of these aromatic residues had no effect on AVP binding, but increased AVP-induced coupling efficacy of the receptor for its G protein. Mutating hydrophilic residues Q108, K128 and Q185 in transmembrane regions II, III and IV, respectively, led to a decrease in affinity for both agonists and antagonists. Finally, the nonconserved residues T333 and A334 in transmembrane region VII, controlled the V1a/V2 binding selectivity for both nonpeptide and cyclic peptide antagonists. Thus, because conserved aromatic residues of the V1a receptor binding pocket seem essential for antagonists and do not contribute at all to the binding of agonists, we propose that these residues differentiate agonist vs. antagonist ligand binding.  相似文献   

18.
The vasopressin V1a receptor undergoes homologous and heterologous desensitizations which can be mimicked by activation of protein kinase C. This suggests that phosphorylation of the V1a receptor may be involved in the desensitization mechanisms. Such a phosphorylation was presently investigated in HEK 293 cells stably transfected with rat vasopressin V1a receptor. Metabolic labelling and immunoprecipitation of epitope-tagged V1a receptor evidenced a 52-kDa band and a 92-kDa band. Glycosidase treatments and immunoblotting experiments suggest that the 52-kDa band corresponds to an immature unprocessed receptor protein, whereas the 92-kDa band would correspond to a highly glycosylated form of the mature V1a receptor. Exposure of the cells to vasopressin induced a selective 32P phosphate incorporation in the 92-kDa form of the receptor. This homologous ligand-induced phosphorylation was dose dependent with maximal phosphate incorporation corresponding to four times the basal level. Stimulation of the endogenous phospholipase C-coupled m3 muscarinic receptor by carbachol-induced heterologous phosphorylation of the V1a receptor whose amplitude was half that of the homologous phosphorylation. This heterologous phosphorylation was associated with a reduced vasopressin-dependent increase in intracellular calcium.  相似文献   

19.
Vasopressin (CYFQNCPRG-NH(2), AVP) is a semicyclic endogenous peptide, which exerts a variety of biological effects in mammals. The main physiological roles of AVP are the regulation of water balance and the control of blood pressure and adrenocorticotropin hormone (ACTH) secretion, mediated via three different subtypes of vasopressin receptors: V1a, V1b and V2 receptors (V1aR, V1bR and V2R, respectively). They are the members of the class A, G-protein-coupled receptors (GPCRs). AVP also modulates several behavioral and social functions. In this study, the interactions responsible for AVP binding to vasopressin V1a and V2 receptors versus the closely related oxytocin ([I3,L8]AVP, OT) receptor (OTR) have been investigated. Three-dimensional models of the activated receptors were constructed using multiple sequence alignment, followed by homology modeling using the complex of activated rhodopsin with Gt(alpha) C-terminal peptide of transducin MII-Gt(338-350) prototype as a template. AVP was docked into the receptor-G(alpha) systems. The three lowest-energy pairs of receptor-AVP-G(alpha) (two complexes per each receptor) were selected. The 1-ns unconstrained molecular dynamics (MD) of complexes embedded into the fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) lipid bilayer was conducted in the AMBER 7.0 force field. Six relaxed receptor-AVP-G(alpha) models were obtained. The residues responsible for AVP binding to vasopressin receptors have been identified and a different mechanism of AVP binding to V2R than to V1aR has been proposed.  相似文献   

20.
We predict some essential interactions between the V2 vasopressin renal receptor (V2R) and its agonists [Arg8]vasopressin (AVP) and [D-Arg8]vasopressin (DAVP), and the non-peptide antagonist OPC-31260. V2R controls antidiuresis and belongs to the superfamily of heptahelical transmembrane (7TM) G-protein-coupled receptors (GPCRs). The receptor was built, the ligands were docked and the structures relaxed using advanced molecular modeling techniques. Docked agonists and antagonists appear to prefer similar V2R compartments. A number of receptor amino acid residues are indicated, mainly in the TM3–TM7 helices, as potentially important in ligand binding. Many of these residues are invariant for either the GPCR superfamily or the subfamily of related (vasopressin V2R, V1aR and V1bR and oxytocin OR) receptors. Moreover, some of the equivalent residues in V1aR have already been found critical for ligand affinity [Mouillac et al., J. Biol. Chem., 270 (1995) 25771].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号