首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
How closely the vegetation of restored wetlands resembles that of comparable natural wetlands is a function of the probability of propagules of wetland species reaching reflooded wetlands and how similar environmental conditions in the restored wetland are those in the natural wetlands. Three years after reflooding, we examined the vegetation composition, water level fluctuations, soil organic carbon content, and soil bulk density as well as surface water pH, alkalinity, conductivity, and calcium and magnesium concentrations of 10 restored and 10 natural wetlands. In the restored wetlands, more species of submersed aquatics colonized than were found in natural wetlands, and they rapidly spread to form extensive beds that were larger than those found in natural wetlands. Emergent and wet meadow species in restored wetlands, however, were found in only sparse stands as were a variety of annuals. The vegetation of natural wetlands was predominantly large stands of emergent species. Fluctuations in water storage volume and basin surface area were similar for both restored and natural wetlands. The surface water in restored wetlands had higher pH and lower alkalinity, conductivity, and calcium and magnesium concentrations than that in natural wetlands. Soils of restored wetlands have a lower organic carbon content and higher bulk density than do those of natural wetlands. Our results suggest that for submersed aquatics, dispersal of propagules to restored wetlands is rapid and environmental conditions in restored wetlands are very suitable for their establishment. For other guilds of wetland species, e.g., sedges and other wet meadow species, dispersal to restored wetlands is likely much slower and may pose a serious problem for the re-establishment of these species in restored wetlands. Even if dispersal is not limiting, low surface organic carbon and high bulk density may prevent the establishment of these species in restored wetlands.  相似文献   

2.
3.
The U.S. Environmental Protection Agency's (EPA's), Environmental Monitoring and Assessment Program (EMAP) is developing a landscape-level conceptual model to evaluate the condition of depressional (basin-type) wetlands in the prairie pothole region (PPR) of the United States. This effort is underway to determine the current condition of the Nation's wetlands and to track how it is improving or degrading over time, as well as to identify management priorities over major geographic areas. The depressional wetlands in the PPR were selected by EMAP both because of the importance of this region for waterfowl and because of the efforts currently being conducted by federal agencies and academic institutions in this region. The PPR provides nesting habitat for more than 15 species of ducks, and supports as much as half of the total production of dabbling and diving ducks in North America. Wetlands in this area became a vulnerable resource after extensive draineage in the 1800s. We propose a conceptual model that represents a framework for guiding the development of ecological indicators, research activities, and data collection for the evaluation of wetland conditions. In princple, this conceptual model is applicable to wetlands in any part of the world.  相似文献   

4.
中国天然林资源保护工程温室气体排放及净固碳能力   总被引:3,自引:0,他引:3  
基于天然林资源保护工程(简称天保工程)一期(2000—2010年)营造林过程工程边界内碳排放和边界外碳泄漏的计算,分析了天保工程及各区域碳排放和碳泄漏年际变化及影响因素,对比了天保工程及各区域碳排放和碳泄漏的组成特征,研究了天保工程及各区域净固碳量的变化特征。结果表明:天保工程一期西北、中西部地区、南部地区、东北地区和天保工程的碳排放分别为0.89、1.47、0.09、2.45 Tg C;碳泄漏分别为3.17、3.11、6.50、12.78 Tg C。工程措施和碳排放强度的区域性差异导致各区域碳排放组成特征不同。造林及配套森林基础设施建设是西北、中西部地区和南部地区最大的工程措施碳排放;新造林及森林管护是东北地区最大的工程措施碳排放。相应地,各种物资消耗中,建材是西北、中西部地区和南部地区最大的物资碳排放;燃油是东北地区最大的物资碳排放。天保工程在工程边界内外引起的额外温室气体排放量达到15.23 Tg C,抵消了工程固碳效益的9.82%;在西北、中西部地区、南部地区和东北地区的抵消作用分别为10.08%、8.16%和11.24%。天保工程一期净固碳量为139.77 Tg C,年均净固碳量为12.71 Tg C/a。因此,碳排放和碳泄漏对天保工程固碳的抵消较小,工程一期在我国温室气体减排和减缓全球气候变暖上做出了巨大贡献。避免工程基础设施的盲目建设和对工程进行合理规划是减少温室气体排放的可能途径。  相似文献   

5.
In the mid-1980's, thousands of wetlands in the mid-continental Unites States were restored by interrupting drainage lines; revegetation of these systems, often cropped for decades and positioned in a predominantly agricultural landscape, relied solely on natural recolonization. A study of 64 of these wetlands determined that by 1991, three years after initial reflooding, aquatic species had efficiently recolonized whereas sedge meadow and wet prairie species had not. In 2000, 41 of these restorations that had not been significantly altered or returned to cultivation were revisited and their floras characterized by cover within distinct zones. While species richness increased on every site, the rate of accumulation varied widely. Furthermore, species that had colonized since 1991, including a variety of native wet prairie and sedge meadow species, were detected only at very low abundance. In contrast, Phalaris arundinacea L., an invasive perennial, was now present on every site, often at covers approaching 75–100% in the zones in which it occurred. Other invasive perennials, including Cirsium arvense (L.) Scop. and Typha angustifolia L./glauca Godr., had expanded significantly on many sites. The overall dominance of invasive perennials has resulted in basins that are becoming more similar over time. However, present variations in species richness and composition can be attributed to flooding frequency, and, potentially, basin size and isolation from nearby natural wetlands, as shown by TWINSPAN and graphical analysis. Basins that have not been flooded at midsummer for at least seven of 12 years are among the most depauperate in the study. Yet even frequently flooded basins lack diversity if they are small (< 1.5 ha) or isolated from seed sources. Across the study, numerous species common to natural systems were notably absent or infrequently occurring, including Calamagrostis canadensis (Michx.) Beauv., Carex lacustris Willd. and Lysimachia thrysiflora L. Continuous areas of sedge-dominated meadow, a signature of prairie potholes, did not exist at any study site, nor did they appear to be forming. Given the dominance of invasive perennials and absence of many native wetland species, it appears that without significant seeding, planting and aftercare wetland restorations in fragmented landscapes have a low probability of resembling those that existed historically. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
As one of the important ecosystem services of wetlands, carbon sequestration potential of lakes and swamps in China were investigated. Significant differences were found among the carbon sequestration potential of various lakes, determined by natural conditions and human disturbance. In this study, swamps had a carbon sequestration potential of 4.90 TgC, much higher than lakes in China. Mangrove and coastal marsh have the highest carbon sediment rate among swamps. Carbon sequestration potential in returning farms to lakes and swamps was 30.26 and 0.22 GgC. … a?1, respectively. Under the ongoing national wetland conservation action plan in China, the carbon sequestration potential of wetland restoration was 6.57 GgC. … a?1. Protection and restoration measurements can improve carbon sequestration potential of wetlands.  相似文献   

7.
Duan X N  Wang X K  Fei L  Ouyang Z Y 《农业工程》2008,28(2):463-469
As one of the important ecosystem services of wetlands, carbon sequestration potential of lakes and swamps in China were investigated. Significant differences were found among the carbon sequestration potential of various lakes, determined by natural conditions and human disturbance. In this study, swamps had a carbon sequestration potential of 4.90 TgC, much higher than lakes in China. Mangrove and coastal marsh have the highest carbon sediment rate among swamps. Carbon sequestration potential in returning farms to lakes and swamps was 30.26 and 0.22 GgC. … a?1, respectively. Under the ongoing national wetland conservation action plan in China, the carbon sequestration potential of wetland restoration was 6.57 GgC. … a?1. Protection and restoration measurements can improve carbon sequestration potential of wetlands.  相似文献   

8.
森林在减缓全球气候变化和大气CO2浓度升高上具有重要作用.森林经营与管理下的新造林和森林保护具有显著的固碳功能,其中,新造林和森林保护的固碳速率分别为0.04~7.52、0.33~5.20 t C·hm-2·a-1.同时,营造林过程中物资的生产和运输导致边界内产生温室气体排放;营造林导致的活动转移、市场效应和生态环境变化导致边界外产生碳泄漏.本文综述了国内外森林经营与管理活动边界内温室气体排放源的界定、计量方法、温室气体排放量与排放速率;边界外碳泄漏的类型、计量方法与碳泄漏量;净固碳量以及温室气体排放和碳泄漏对固碳的抵消强度.边界内温室气体排放对固碳的抵消强度为0.01%~19.3%,进一步考虑碳泄漏时可增至95%.若仅考虑森林经营与管理在边界内直接产生的温室气体排放与可测量的活动转移碳泄漏,森林经营与管理具有较好的净固碳效益,且相比于农田固碳措施在温室气体净减排方面具有更好的应用前景.随着我国各项重大生态工程新一期的开展和对工程固碳效益的关注,为增加重大生态工程对温室气体的净减排量,有必要在工程开展前进行合理规划、在工程开展过程中加强控制和监测以减少工程实施导致的边界内温室气体排放和边界外碳泄漏.  相似文献   

9.
The Northern Prairie Pothole Region (NPPR) of Alberta, Canada, contains numerous shallow marshes that serve as important habitat for wildlife and provide essential ecosystem services. Many of these wetlands have been destroyed or degraded by human activity and the majority of remaining wetlands occur in landscapes affected by crop and cattle production. Alberta has implemented a conservation policy which requires the creation of wetland assessment tools. Aquatic macroinvertebrates are frequently used as indicators of environmental condition in rivers, but their effectiveness as indicators in prairie pothole wetlands is not clear. To evaluate the capacity of aquatic macroinvertebrates identified to family-level resolution to serve as regional bioindicators of agricultural disturbance in NPPR wetlands, we sampled macroinvertebrates at 64 fishless wetlands. The wetlands spanned a gradient in the extent of agriculture from 0 to 100% cover within a 500 m buffer around each wetland. We discovered that, contrary to our predictions, macroinvertebrate family richness and community composition could not predict agricultural disturbance (cropping or cattle grazing). We conclude that efforts to develop bioindicators for NPPR wetlands should be redirected to other taxa that are less costly to identify to species and that exhibit sensitivity to agricultural disturbance.  相似文献   

10.
This paper summarizes the importance of climate on tropical wetlands. Regional hydrology and carbon dynamics in many of these wetlands could shift with dramatic changes in these major carbon storages if the inter-tropical convergence zone (ITCZ) were to change in its annual patterns. The importance of seasonal pulsing hydrology on many tropical wetlands, which can be caused by watershed activities, orographic features, or monsoonal pulses from the ITCZ, is illustrated by both annual and 30-year patterns of hydrology in the Okavango Delta in southern Africa. Current studies on carbon biogeochemistry in Central America are attempting to determine the rates of carbon sequestration in tropical wetlands compared to temperate wetlands and the effects of hydrologic conditions on methane generation in these wetlands. Using the same field and lab techniques, we estimated that a humid tropical wetland in Costa Rica accumulated 255 g C m−2 year−1 in the past 42 years, 80% more than a similar temperate wetland in Ohio that accumulated 142 g C m−2 year−1 over the same period. Methane emissions averaged 1,080 mg-C m−2 day−1 in a seasonally pulsed wetland in western Costa Rica, a rate higher than methane emission rates measured over the same period from humid tropic wetlands in eastern Costa Rica (120–278 mg-C m−2 day−1). Tropical wetlands are often tuned to seasonal pulses of water caused by the seasonal movement of the ITCZ and are the most likely to be have higher fire frequency and changed methane emissions and carbon oxidation if the ITCZ were to change even slightly.  相似文献   

11.
This study was part of an effort by the U.S. Environmental Protection Agency to quantitatively assess the environmental quality or health of wetland resources on regional and national scales. During a two-year pilot study, we tested selected indicators of wetland quality in the U.S. portion of the prairie pothole region (PPR). We assumed that the amount of cropland versus non-cropland (mostly grassland) in the plots containing these basins was a proxy for their quality. We then tested indicators by their ability to discriminate between wetlands at the extremes of that proxy. Amounts of standing dead vegetation were greater in zones of greater water permanence. Depth of litter was greater in zones of greater water permanence and in zones of basins in poor-quality watersheds. Amounts of unvegetated bottom were greater in basins in poor-quality watersheds; lesser amounts occurred in all wetlands during a wetter year. Greater amounts of open water occurred during a wetter year and in zones of greater water permanence. When unadjusted for areas (ha) of communities, plant taxon richness was higher in wet-meadow and shallow-marsh zones in good-quality watersheds than in similar zones in poor-quality watersheds. Wet-meadow zones in good-quality watersheds had greater numbers of native perennials than those in poor-quality watersheds. This relation held when we eliminated all communities in good-quality watersheds larger than the largest commnities in poor-quality watersheds from the data set. We conclude that although amounts of unvegetated bottom and plant taxon richness in wet-meadow zones were useful indicators of wetland quality during our study, the search for additional such indicators should continue. The value of these indicators may change with the notoriously unstable hydrological conditions in the PPR. Most valuable would be indicators that could be photographed or otherwise remotely sensed and would remain relatively stable under various hydrological conditions. An ideal set of indicators could detect the absence of stressors, as well as the presence of structures or functions, of known value to major groups of organisms.  相似文献   

12.
Restoration efforts are being implemented globally to mitigate the degradation and loss of wetland habitat; however, the rate and success of wetland vegetation recovery post‐restoration is highly variable across wetland classes and geographies. Here, we measured the recovery of plant diversity along a chronosequence of restored temporary and seasonal prairie wetlands ranging from 0 to 23 years since restoration, including drained and natural wetlands embedded in agricultural and natural reserve landscapes in central Alberta, Canada. We assessed plant diversity using the following structural indicators: percent cover of hydrophytes, native and non‐native species, species richness, and community composition. Our findings indicate that plant diversity recovered to resemble reference wetlands in agricultural landscapes within 3–5 years of restoration; however, restored wetlands maintained significantly lower species richness and a distinct community composition compared to reference wetlands located within natural reserves. Early establishment of non‐native species during recovery, dispersal limitation, and depauperated native seed bank were probable barriers to complete recovery. Determining the success of vegetation recovery provides important knowledge that can be used to improve restoration strategies, especially considering projected future changes in land use and climate.  相似文献   

13.
Reliable ecological indicators of wetland integrity are necessary for assessing recovery of restored wetlands; yet, little consensus currently exists on which indicators are most appropriate. We employed indicators derived from simple, standard measures of ecosystem function selected on the basis of ecological succession theory developed by [Science 164 (1969) 262; Bioscience 35 (1985) 419], which suggests that respiration:biomass ratios should increase in disturbed systems due to the diversion of energy from growth to maintenance. This hypothesis holds potential for the development of a simple ecological indicator and therefore was tested among prairie wetlands restored after drainage disturbance. No difference was observed in respiration:biomass ratios in restored wetlands and reference wetlands designated as controls. Plankton respiration or biomass may be poor indicators of disturbance because plankton responds quickly to re-establishment of a wetland hydrology regime and/or because different plankton species may have redundant function. We suggest employing more revealing assessment techniques that employ simultaneous examination of ecosystem structure and function to better characterize subtle or lingering effects of wetland disturbance after restoration.  相似文献   

14.
Long-term effects of within-basin tillage can constrain condition andfunction of prairie wetlands even after uplands are restored. Runoff wassignificantly greater to replicate wetlands within tilled basins with orwithoutvegetated buffer strips as compared to Conservation Reserve Program restorationcontrols with revegetated uplands (REST). However, mean water levels for nativeprairie reference sites were higher than for REST controls, becauseinfiltrationrates were lower for native prairie basins, which had no prior history oftillage. Nutrient dynamics changed more in response to changes in water leveland vegetation structure than to increased nutrient inputs in watershed runoff.Dissolved oxygen increased between dry and wet years except in basins or zoneswith dense vegetation. As sediment redox dropped, water-column phosphatedeclined as phosphate likely co-precipitated with iron on the sediment surfacewithin open-water or sparsely vegetated zones. In response, N:P ratios shiftedfrom a region indicating N limitation to P limitation. REST sites, with densevegetation and low DO, also maintained high DOC, which maintains phosphate insolution through chelation of iron and catalysis of photoreduction. Referencesites in native prairie and restored uplands diverged over the course of thewet-dry cycle, emphasizing the importance of considering climatic variation inplanning restoration efforts.  相似文献   

15.
Tropical papyrus wetlands have the ability to assimilate and sequester significant amounts of carbon. However, the spatial extent, productivity and carbon sink strength associated with papyrus wetlands remains poorly characterised. The objective of this study was to collate information from peer-reviewed publications and relevant government and NGO reports to better understand carbon dynamics within papyrus dominated wetlands, and to assess the processes that regulate the magnitude of the carbon sink. Papyrus wetlands were shown to exhibit high rates of photosynthetic carbon dioxide (CO2) assimilation of up to 40 μmol CO2 m?2 s?1 where the incident photosynthetic photon flux density was ≥1,000 μmol m?2 s?1, high rates of net primary production ranging between 14 and 52 g DM m?2 d?1 and represent a significant carbon sink where up to 88 t C ha?1 is stored in the aboveground and belowground components of the papyrus vegetation. Under flooded conditions significant detrital and peat deposits accumulate in excess of 1 m in depth, representing an additional carbon store in the order of 640 t C ha?1. This study also highlighted the lack of empirical data on emissions of other radiatively important trace gases such as methane and nitrous oxide and also the vulnerability of these carbon sinks to both future changes in climate, in particular periods of hydrological drawdown, and anthropogenic land use change where the papyrus vegetation is removed in favour of subsistence agricultural cropping systems.  相似文献   

16.
Mayer  Paul M.  Galatowitsch  Susan M. 《Hydrobiologia》2001,466(1-3):177-185
Dense populations of the coccolithophore Pleurochrysis pseudoroscoffensis were found in surface films at several locations around the Salton Sea in February–August, 1999. An unidentified coccolithophorid was also found in low densities in earlier studies of the lake (1955–1956). To our knowledge, this is the first record of this widespread marine species in any lake. Samples taken from surface films typically contained high densities of one or two other phytoplankton species as well as high densities of the coccolithophore. Presence or absence of specific algal pigments was used to validate direct cell counts. In a preliminary screen using a brine shrimp lethality assay, samples showed moderate activity. Extracts were then submitted to a mouse bioassay, and no toxic activity was observed. These results indicate that blooms of P. pseudoroscoffensis are probably not toxic to vertebrates and do not contribute to the various mortality events of birds and fish that occur in the Salton Sea.  相似文献   

17.
Abstract.  1. Aquatic macro-invertebrates have frequently been used as biological indicators in lotic environments but much less commonly so in lentic habitats. Dragonflies and damselflies (Order Odonata) satisfy most selection criteria for lentic bioindicators of grazing impacts.
2. Intensive cattle grazing affects most of the Canadian prairie pothole region but the effects of grazing on wetlands are poorly understood.
3. Here the vegetation structure and invertebrate community composition of 27 prairie potholes in Alberta, Canada were studied and compared. Wetlands were evenly divided into three treatments of different grazing regimes.
4. Removal of emergent vegetation by cattle grazing decreased odonate abundance and reproductive effort. Shorter Scirpus acutus stems resulted in significantly fewer damselflies (Suborder Zygoptera) and lower reproductive efforts.
5. Overall odonate diversity was affected by the height of key plant species, highlighting the importance of the vegetation structure of both emergent vegetation for breeding and adjacent upland vegetation for nocturnal roosts. Wetland vegetation structure was more important than vegetation composition to the life history of odonates.
6. Wetland water quality parameters of nitrogen, phosphorus, total dissolved solids (TDS), and chlorophyll-a concentration did not change due to the presence of grazing cattle at wetlands so water quality influences were rejected as mechanisms of change.
7. Larval odonate diversity and abundance was positively correlated with overall aquatic macro-invertebrate diversity and abundance, hence it was concluded that the larval odonate community can be an accurate bioindicator of intactness and diversity of overall aquatic macro-invertebrate communities in Canadian prairie wetlands.  相似文献   

18.
Nontidal wetlands are estimated to contribute significantly to the soil carbon pool across the globe. However, our understanding of the occurrence and variability of carbon storage between wetland types and across regions represents a major impediment to the ability of nations to include wetlands in greenhouse gas inventories and carbon offset initiatives. We performed a large‐scale survey of nontidal wetland soil carbon stocks and accretion rates from the state of Victoria in south‐eastern Australia—a region spanning 237,000 km2 and containing >35,000 temperate, alpine, and semi‐arid wetlands. From an analysis of >1,600 samples across 103 wetlands, we found that alpine wetlands had the highest carbon stocks (290 ± 180 Mg Corg ha?1), while permanent open freshwater wetlands and saline wetlands had the lowest carbon stocks (110 ± 120 and 60 ± 50 Mg Corg ha?1, respectively). Permanent open freshwater sites sequestered on average three times more carbon per year over the last century than shallow freshwater marshes (2.50 ± 0.44 and 0.79 ± 0.45 Mg Corg ha?1 year?1, respectively). Using this data, we estimate that wetlands in Victoria have a soil carbon stock in the upper 1 m of 68 million tons of Corg, with an annual soil carbon sequestration rate of 3 million tons of CO2 eq. year?1—equivalent to the annual emissions of about 3% of the state's population. Since European settlement (~1834), drainage and loss of 260,530 ha of wetlands may have released between 20 and 75 million tons CO2 equivalents (based on 27%–90% of soil carbon converted to CO2). Overall, we show that despite substantial spatial variability within wetland types, some wetland types differ in their carbon stocks and sequestration rates. The duration of water inundation, plant community composition, and allochthonous carbon inputs likely play an important role in influencing variation in carbon storage.  相似文献   

19.
Global rice agriculture will be increasingly challenged by water scarcity, while at the same time changes in demand (e.g. changes in diets or increasing demand for biofuels) will feed back on agricultural practices. These factors are changing traditional cropping patterns from double‐rice cropping to the introduction of upland crops in the dry season. For a comprehensive assessment of greenhouse gas (GHG) balances, we measured methane (CH4)/nitrous oxide (N2O) emissions and agronomic parameters over 2.5 years in double‐rice cropping (R‐R) and paddy rice rotations diversified with either maize (R‐M) or aerobic rice (R‐A) in upland cultivation. Introduction of upland crops in the dry season reduced irrigation water use and CH4 emissions by 66–81% and 95–99%, respectively. Moreover, for practices including upland crops, CH4 emissions in the subsequent wet season with paddy rice were reduced by 54–60%. Although annual N2O emissions increased two‐ to threefold in the diversified systems, the strong reduction in CH4 led to a significantly lower (P < 0.05) annual GWP (CH4 + N2O) as compared to the traditional double‐rice cropping system. Measurements of soil organic carbon (SOC) contents before and 3 years after the introduction of upland crop rotations indicated a SOC loss for the R‐M system, while for the other systems SOC stocks were unaffected. This trend for R‐M systems needs to be followed as it has significant consequences not only for the GWP balance but also with regard to soil fertility. Economic assessment showed a similar gross profit span for R‐M and R‐R, while gross profits for R‐A were reduced as a consequence of lower productivity. Nevertheless, regarding a future increase in water scarcity, it can be expected that mixed lowland–upland systems will expand in SE Asia as water requirements were cut by more than half in both rotation systems with upland crops.  相似文献   

20.
Greenhouse gas emissions from forestry in East Norway   总被引:1,自引:0,他引:1  

Purpose

So far no calculations have been made for greenhouse gas (GHG) emissions from forestry in East Norway. This region stands for 80 % of the Norwegian timber production. The aim of this study was to assess the annual GHG emissions of Norwegian forestry in the eastern parts of the country from seed production to final felling and transport of timber to sawmill and wood processing industry (cradle-to-gate inventory), based on specific Norwegian data.

Methods

The life cycle inventory was conducted with SimaPro applying primary and secondary data from Norwegian forestry. GHG emissions of fossil-related inputs from the technosphere were calculated for the functional unit of 1 m3 timber extracted and delivered to industry gate in East Norway in 2010. The analysis includes seed and seedling production, silvicultural operations, forest road construction and upgrading, thinning, final felling, timber forwarding and timber transport on road and rail from the forest to the industry. Norwegian time studies of forestry machines and operations were used to calculate efficiency, fuel consumption and transport distances. Due to the lack of specific Norwegian data in Ecoinvent, we designed and constructed unit processes based on primary and secondary data from forestry in East Norway.

Results and discussion

GHG emissions from forestry in East Norway amounted to 17.893 kg CO2-equivalents per m3 of timber delivered to industry gate in 2010. Road transport of timber accounted for almost half of the total GHG emissions, final felling and forwarding for nearly one third of the GHG emissions. Due to longer road transport distances, pulpwood had higher impact on the climate change category than saw timber. The construction of forest roads had the highest impact on the natural land transformation category. The net CO2 emissions of fossil CO2 corresponded to 2.3 % of the CO2 sequestered by 1 m3 of growing forest trees and were compared to a calculation of biogenic CO2 release from the forest floor as a direct consequence of harvesting.

Conclusions

Shorter forwarding and road transport distances, increased logging truck size and higher proportion of railway transport may result in lower emissions per volume of transported timber. A life cycle assessment of forestry may also consider impacts on environmental categories other than climate change. Biogenic CO2 emissions from the soil may be up to 10 times higher than the fossil-related emissions, at least in a short-term perspective, and are highly dependent on stand rotation length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号