首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
ADP-glucose pyrophosphorylase (AGPase) represents a key regulatory step in starch synthesis. A 0.9 kb of 5′ flanking region preceding Brittle2 gene, encoding the small subunit of maize endosperm AGPase, was cloned from maize genome and its expression pattern was studied via the expression of β-glucuronidase (GUS) gene in transgenic tobacco. Analysis of GUS activities showed that the 0.9 kb fragment flanking Brittle2 gene was sufficient for driving the seed-preferred expression of the reporter gene. The activity of the 0.9 kb 5′ flanking fragment was compared with that of the tandem promoter region from a zein gene (zE19, encoding a maize 19 kDa zein protein). The results indicated that both promoters were seed-preferred in a dicotyledonous system as tobacco and the activity of zE19 promoter was three to fourfold higher than that of the 0.9 kb fragment flanking Brittle2 gene in transgenic tobacco seeds. At the same time, zE19-driven GUS gene expressed earlier than Brittle2 promoter during seed development. Histochemical location of GUS activity indicated that both promoters showed high expression in embryos, which is different from similar promoters tested in maize.  相似文献   

5.
Summary To understand the properties of the cauliflower mosaic virus (CaMV) 35S promoter in a monocotyledonous plant, rice (Oryza sativa L.), a transgenic plant and its progeny expressing the CaMV35S-GUS gene were examined by histochemical and fluorometric assays. The histochemical study showed that -glucuronidase (GUS) activity was primarily localized at or around the vascular tissue in leaf, root and flower organs. The activity was also detected in the embryo and endosperm of dormant and germinating seeds. The fluorometric assay of various organs showed that GUS activity in transgenic rice plants was comparable to the reported GUS activity in transgenic tobacco plants expressing the CaMV35S-GUS gene. The results indicate that the level of expression of the CaMV 35S promoter in rice is similar to that in tobacco, a dicotyledonous plant, suggesting that it is useful for expression of a variety of foreign genes in rice plants.  相似文献   

6.
为研究玉米(Zeamays L.)19kD醇溶贮藏蛋白(zein)基因启动子种子特异性表达的控制区段,将全长694bp的启动子进行5’端缺失,共得到6个缺失突变体,长度分别为488bp、378bp、302bp、152bp、124bp和85bp。将6个片段分别与报告基因gus连接构建成表达载体pDGB系列,经土壤农杆菌(Agrobacterium)介导转化,引入烟草。GUS活性检测证明,488bp启动子片段能促使gus基因在种子中特异表达。378bp、302bp、152bp和124bp片段启动子引导的gus基因在烟草根、叶柄、种子中均可表达。  相似文献   

7.
A deletion works of a maize 19 kD zein gene promoter in the 5'end was performed and six promoter fragments of different length were obtained. A series of expression vectors was constructed and then transferred into tobacco ( Nicotiarta tabacum L. ) plants. GUS activity assays indicated that the expression of 488 bp promoter was tissue-specific, for which GUS was active only in transgenic tobacco seeds. The other four fragments containing 378 bp,302 bp,152 bp and 124 bp also have the activity of promoter. They could drive gus gene expressed not only in seeds but also in roots and petioles.  相似文献   

8.
A gene coding for a barley CMd protein was isolated from a genomic library using a cDNA probe encoding the wheat CM3 protein. Promoter sequence analysis reveals motifs found in genes specifically expressed in endosperm and aleurone cells, as well as TATA and other putative functional boxes. 720 bp of the Hv85.1 CMd protein gene promoter, when fused to a gus coding region, were unable to direct GUS activity in the seeds of transgenic tobacco plants. In contrast, the same construction delivered into immature maize kernels by microprojectile bombardment was able to direct expression of GUS in the outermost cell layers of maize endosperm in both a tissue-specific and a developmentally determined manner.  相似文献   

9.
以玉米(Zea mays L.)黄化苗为材料,利用PCR技术扩增了玉米19kDa醇溶贮藏蛋白基因(zein)起始密码子上游启动子片段,序列分析结果表明,克隆的-1~-694片段具有19kDa zein启动子特点,与同一家族中其它基因的对应区段同源性达90%以上。将此启动子插入pPKGT的GUS基因及NOS终止子上游构成表达载体。经农杆菌转化烟草(Nicotiana tabaccum Var.samsum),得到了转化植株。转化的烟草的PCR扩增及Southern杂交证明目的片段已整合到烟草基因组中。转基因植株的GUS活性检测表明,在叶、根中无GUS活性,GUS活性只存在于种子中。转基因植株烟草种子经冷冻切片,GUS底物Xgluc活体组织染色证明GUS活性只存在一层介于种子胚乳与种皮之间的细胞中。  相似文献   

10.
11.
Zeins, the seed storage proteins of maize, are a group of alcohol-soluble polypeptides of different molecular masses that share a similar amino acid composition but vary in their sulfur amino acid composition. They are synthesized on the rough endoplasmic reticulum (ER) in the endosperm and are stored in ER-derived protein bodies. Our goal is to balance the amino acid composition of the methionine-deficient forage legumes by expressing the sulfur amino acid-rich 15-kD zeins in their leaves. However, it is crucial to know whether this protein would be stable in nonseed tissues of transgenic plants. The major focus of this paper is to compare the accumulation pattern of the 15-kD zein protein with a vacuolar targeted seed protein, [beta]-phaseolin, in nonseed tissues and to determine the basis for its stability/instability. We have introduced the 15-kD zein and bean [beta]-phaseolin-coding sequences behind the 35S cauliflower mosaic virus promoter into tobacco (Nicotiana tabacum) and analyzed the protein's accumulation pattern in different tissues. Our results demonstrate that the 15-kD seed protein is stable not only in seeds but in all nonseed tissues tested, whereas the [beta]-phaseolin protein accumulated only in mid- and postmaturation seeds. Interestingly, zein accumulates in novel protein bodies both in the seeds and in nonseed tissues. We attribute the instability of the [beta]-phaseolin protein in nonseed tissues to the fact that it is targeted to protease-rich vacuoles. The stability of the 15-kD zein could be attributed to its retention in the ER or to the protease-resistant nature of the protein.  相似文献   

12.
Two putative promoters from Australian banana streak badnavirus (BSV) isolates were analysed for activity in different plant species. In transient expression systems the My (2105 bp) and Cv (1322 bp) fragments were both shown to have promoter activity in a wide range of plant species including monocots (maize, barley, banana, millet, wheat, sorghum), dicots (tobacco, canola, sunflower, Nicotiana benthamiana, tipu tree), gymnosperm (Pinus radiata) and fern (Nephrolepis cordifolia). Evaluation of the My and Cv promoters in transgenic sugarcane, banana and tobacco plants demonstrated that these promoters could drive high-level expression of either the green fluorescent protein (GFP) or the -glucuronidase (GUS) reporter gene (uidA) in vegetative plant cells. In transgenic sugarcane plants harbouring the Cv promoter, GFP expression levels were comparable or higher (up to 1.06% of total soluble leaf protein as GFP) than those of plants containing the maize ubiquitin promoter (up to 0.34% of total soluble leaf protein). GUS activities in transgenic in vitro-grown banana plants containing the My promoter were up to seven-fold stronger in leaf tissue and up to four-fold stronger in root and corm tissue than in plants harbouring the maize ubiquitin promoter. The Cv promoter showed activities that were similar to the maize ubiquitin promoter in in vitro-grown banana plants, but was significantly reduced in larger glasshouse-grown plants. In transgenic in vitro-grown tobacco plants, the My promoter reached activities close to those of the 35S promoter of cauliflower mosaic virus (CaMV), while the Cv promoter was about half as active as the CaMV 35S promoter. The BSV promoters for pregenomic RNA represent useful tools for the high-level expression of foreign genes in transgenic monocots.  相似文献   

13.
Zeins are seed storage proteins that form accretions called protein bodies in the rough endoplasmic reticulum of maize endosperm cells. Four types of zeins, alpha, beta, gamma, and delta, aggregate in a distinctive spatial pattern within the protein body. We created transgenic tobacco plants expressing alpha-zein, gamma-zein, or both to examine the interactions between these proteins leading to the formation of protein bodies in the endosperm. Whereas gamma-zein accumulated in seeds of these plants, stable accumulation of alpha-zein required simultaneous synthesis of gamma-zein. The zein proteins formed accretions in the endoplasmic reticulum similar to those in maize endosperm. Protein bodies were also found in protein storage vacuoles. The accumulation of both types of zeins peaked early in development and declined during maturation. Even in the presence of gamma-zein, there was a turnover of alpha-zein, suggesting that the interaction between the two proteins might be transitory. We suggest that gamma-zein plays an important role in protein body formation and demonstrate the utility of tobacco for studying interactions between different zeins.  相似文献   

14.
15.
16.
Wheat germin is a homopentameric 125 kD glycoprotein mainly localized in the cell wall of monocots, and is a specific marker of the onset of growth in germinating seeds. The major objective of this study was to examine the expression and oxalate oxidase activity of two wheat germin isoforms: gf-2.8 and gf-3.8 in transgenic tobacco plants. The transgenic tobacco plants were created with different constructs: 1) one entire excision of gf-2.8 germin promoter and two partially deleted promoter sequences were used to generate 3 independent GUS constructs; 2) the whole gf-2.8 gene construct and the fusion with CaMV 35S promoter; 3) one entire excision of gf-3.8 germin gene and one partially deleted gf-3.8 promoter sequences were used to generate 2 independent GUS constructs; 4) the whole gf-3.8 gene and the fusion with CaMV 35S promoter. Hormonal treatment (auxin and gibberellin), salt treatment, heavy metals (Mn, Fe, Co, Ni, Cu, Zn, Cd, Hg, As) and Al induced high GUS activity in tobacco transformed with entire and one partially deleted of the gf-2.8 gene. The immunoblotting confirmed induction of gf-2.8 gene and its product expressed oxalate oxidase activity in tobacco transformed with the entire gf-2.8 construct. Neither nicotinic acid, salicylic acid, heat shock, cold nor UV-C have enhanced significant GUS activity and germin gf-2.8 synhesis and activity. The germin gf-3.8 constructs with GUS gene and with the entire gf-3.8 sequences gave non-positive response with factors mentioned above. It has been demonstrated that gf-3.8 germin isoform is present as a monomer (Mr 25 kD). The non-active gf-3.8 protein is synthetised in transgenic tobacco plants only under control of the CaMV 35S promoter. Consequently, among two germin isoforms, only the gf-2.8 protein seems to be regulated by hormonal, salt and heavy metal factors. The gf-2.8 oxalate oxidase activity could be then involved in general stress-induced signalling in plant.  相似文献   

17.
18.
19.
Summary Four transgenic soybean [Glycine max (L.) Merrill] lines were generated containing the maize 15 kDa zein protein gene using somatic embryogenic protocols. The zein gene was inserted behind the β-phaseolin promoter for seed-specific expression. All four lines represent separate transformation events as they were generated in different experiments at different locations. Two of the transformation events produced multiple plants, and these produced identical Southern hybridization patterns (UKY/Z1, UKY/Z2 and UKY/Z3 from the first; and OSU/Z4, OSU/Z8 and OSU/Z10 from the second). Molecular characterization revealed that multiple copies of the zein gene were present in all of the transgenic lines. Immunoblot analysis confirmed the accumulation of the zein protein product in the seeds of the UKY/Z1, UKY/Z2, UKY/Z3, OSU/Z4, OSU/Z8 and OSU/Z10 transgenic lines. However, there was no accumulation of zein protein in the UGA/Z1 line and Northern analysis confirmed that the zein transgene was silenced in this line. It was not possible to analyze the zein expression in the seeds of the UKY/Z4 line, as it was sterile. Amino acid analysis of the UKY and OSU lines confirmed that there was a 12–20% increase in methionine, and 15–35% increase in cysteine content in these lines compared to the control. There were no consistent changes in the content of the other amino acids in the transgenic lines. These results suggest that while the increase in methionine content in these lines is modest, it is possible to increase the methionine content without adversely affecting the protein composition of soybean.  相似文献   

20.
Promoters of carnation etched ring virus (CERV) and dahlia mosaic virus (DMV) were cloned into binary vectors pCambia 1304, pCambia 1281Z, and pCambia 1291Z with reporter GFP and GUS genes. Activities of these promoters in tobacco protoplasts and transgenic plants were determined using these constructs. Histochemical GUS analysis demonstrated the absence of tissue-specificity in transgenic plants transformed with these promoters. The quantitative analysis of these promoter activities in transgenic tobacco plants, using 4-methylumbelliferone as a substrate, showed that 35S CaMV, CERV, and DMV promoters displayed approximately similar activities in transgenic tobacco plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号