首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Wingless (ergatoid) males of the tramp ant Cardiocondyla minutior attack and kill their young ergatoid rivals and thus attempt to monopolize mating with female sexuals reared in the colony. Because of the different strength of local mate competition in colonies with one or several reproductive queens, we expected the production of new ergatoid males to vary with queen number. Sex ratios were mostly female-biased, but in contrast to the sympatric species C. obscurior (Cremer and Heinze, 2002) neither the percentage of ergatoid males nor of female sexuals among the first 20 sexuals produced varied considerably with queen number. As in C. obscurior, experimental colony fragmentation led to the production of winged males, whereas in unfragmented control colonies only ergatoid males eclosed.Received 3 December 2003; revised 20 February 2004; accepted 23 February 2004.  相似文献   

2.
Studies on sex ratios in social insects provide among the most compelling evidence for the importance of kin selection in social evolution. The elegant synthesis of Fisher's sex ratio principle and Hamilton's inclusive fitness theory predicts that colony-level sex ratios vary with the colonies' social and genetic structures. Numerous empirical studies in ants, bees, and wasps have corroborated these predictions. However, the evolutionary optimization of sex ratios requires genetic variation, but one fundamental determinant of sex ratios - the propensity of female larvae to develop into young queens or workers ("queen bias") - is thought to be largely controlled by the environment. Evidence for a genetic influence on sex ratio and queen bias is as yet restricted to a few taxa, in particular hybrids. Because of the very short lifetime of their queens, ants of the genus Cardiocondyla are ideal model systems for the study of complete lifetime reproductive success, queen bias, and sex ratios. We found that lifetime sex ratios of the ant Cardiocondyla kagutsuchi have a heritable component. In experimental single-queen colonies, 22 queens from a genetic lineage with a highly female-biased sex ratio produced significantly more female-biased offspring sex ratios than 16 queens from a lineage with a more male-biased sex ratio (median 91.5% vs. 58.5% female sexuals). Sex ratio variation resulted from different likelihood of female larvae developing into sexuals (median 50% vs. 22.6% female sexuals) even when uniformly nursed by workers from another colony. Consistent differences in lifetime sex ratios and queen bias among queens of C. kagutsuchi suggest that heritable, genetic or maternal effects strongly affect caste determination. Such variation might provide the basis for adaptive evolution of queen and worker strategies, though it momentarily constrains the power of workers and queens to optimize caste ratios.  相似文献   

3.
Summary. We analyzed the impact of ecological parameters, such as nest density and nest site availability, on colony organization and investment patterns in two populations of the ant Temnothorax crassispinus, a parapatric sibling species of the well-studied T. nylanderi (Temnothorax was until recently referred to as Leptothorax (Myrafant); Bolton, 1993). As in T. nylanderi, sex allocation ratios were strongly associated with total sexual reproduction, i. e., nests with large sexual investment produced mainly female sexuals. Furthermore, nest site quality affected sex allocation ratios, with colonies from ephemeral nest sites producing a more male-biased sex allocation ratio than colonies from sturdy nest sites. In contrast to T. nylanderi, workers in colonies of T. crassispinus were mostly fullsisters both in a dense and a sparsely populated area, suggesting that colony fusion and colony usurpation are rare in this species. In addition, the presence of a queen in a local nest unit strongly influenced sex ratio decisions, in that these nests raised a more male biased allocation ratio compared to queenless nests. This also suggests that colony structure is more stable in T. crassispinus than in T. nylanderi. We conclude that sibling species, though often very similar in their morphology and ecological requirements, may nevertheless react very differently to ecological variation.Received 11 December 2003; revised 4 March 2004; accepted 19 April 2004.  相似文献   

4.
Sex‐determining systems are remarkably diverse and may evolve rapidly. Polygenic sex‐determination systems are predicted to be transient and evolutionarily unstable, yet examples have been reported across a range of taxa. Here, we provide the first direct evidence of polygenic sex determination in Tigriopus californicus, a harpacticoid copepod with no heteromorphic sex chromosomes. Using genetically distinct inbred lines selected for male‐ and female‐biased clutches, we generated a genetic map with 39 SNPs across 12 chromosomes. Quantitative trait locus mapping of sex ratio phenotype (the proportion of male offspring produced by an F2 female) in four F2 families revealed six independently segregating quantitative trait loci on five separate chromosomes, explaining 19% of the variation in sex ratios. The sex ratio phenotype varied among loci across chromosomes in both direction and magnitude, with the strongest phenotypic effects on chromosome 10 moderated to some degree by loci on four other chromosomes. For a given locus, sex ratio phenotype varied in magnitude for individuals derived from different dam lines. These data, together with the environmental factors known to contribute to sex determination, characterize the underlying complexity and potential lability of sex determination, and confirm the polygenic architecture of sex determination in T. californicus.  相似文献   

5.
Gynodioecy, a state where female and hermaphrodite plants coexist in populations, has been widely proposed an intermediate stage in the evolutionary pathway from hermaphroditism to dioecy. In the gynodioecy–dioecy pathway, hermaphrodites may gain most of their fitness through male function once females invade populations. To test this prediction, comprehensive studies on sex ratio variation across populations and reproductive characteristics of hermaphrodite and female phenotypes are necessary. This study examined the variation in sex ratio, sex expression, flower and fruit production and sexual dimorphism of morphological traits in a gynodioecious shrub, Daphne jezoensis, over multiple populations and years. Population sex ratio (hermaphrodite:female) was close to 1:1 or slightly hermaphrodite‐biased. Sex type of individual plants was largely fixed, but 15% of plants changed their sex during a 6‐year census. Hermaphrodite plants produced larger flowers and invested 2.5 times more resources in flower production than female plants, but they exhibited remarkably low fruit set (proportion of flowers setting fruits). Female plants produced six times more fruits than hermaphrodite plants. Low fruiting ability of hermaphrodite plants was retained even when hand‐pollination was performed. Fruit production of female plants was restricted by pollen limitation under natural conditions, irrespective of high potential fecundity, and this minimised the difference in resources allocated to reproduction between the sexes. Negative effects of previous flower and fruit production on current reproduction were not apparent in both sexes. This study suggests that gynodioecy in this species is functionally close to a dioecious mating system: smaller flower production with larger fruiting ability in female plants, and larger flower production with little fruiting ability in hermaphrodite plants.  相似文献   

6.
Summary: Monogynous and a high proportion of truly polygynous colonies of Stenamma debile were found in populations of this small and inconspicuous ant in southern Germany. Moreover, dissections revealed that queens of different age may co-occur in one nest. Thus polygyny is not only an outcome of pleometrosis. Probably young queens sometimes join the mother colonies.¶Practically no female sexuals were reared in the 1997 brood of 29 colonies, thus a population-level sex ratio of &gif1; was recorded. It is likely that such an extreme sex ratio is atypical for this species, suggesting substantial year-to-year variation in sex ratios. Variation of sex ratios over several years has been reported for other ant species, too, but rarely to such an extent. The reason for the failure of queen production in 1997 was perhaps an unusual sequence of warm and cold periods in the spring which may have caused a re-determination of the queen-destined hibernated larvae to become workers, while male larvae were reared in ordinary numbers.  相似文献   

7.
The local resource competition (LRC) hypothesis predicts thatwherever philopatric offspring compete for resources with theirmothers, offspring sex ratios should be biased in favor of thedispersing sex. In ants, LRC is typically found in polygynous(multiple queen) species where foundation of new nests occursby budding, which results in a strong population structure anda male-biased population-wide sex ratio. However, under polygyny,the effect of LRC on sex allocation is often blurred by theeffect of lowered relatedness asymmetries among colony members.Moreover, environmental factors, such as the availability ofresources, have also been shown to deeply influence sex ratioin ants. We investigated sex allocation in the monogynous (singlequeen) ant Cataglyphis cursor, a species where colonies reproduceby budding and both male and female sexuals are produced throughparthenogenesis, so that between-colony variations in relatednessasymmetries should be reduced. Our results show that sex allocationin C. cursor is highly male biased both at the colony and populationlevels. Genetic analyses indicate a significant isolation-by-distancein the study population, consistent with limited dispersal offemales. As expected from asexual reproduction, only weak variationsin relatedness asymmetry of workers toward sexual offspringoccur across colonies, and they are not associated with colonysex ratio. Inconsistent with the predictions of the resourceavailability hypothesis, the male bias significantly increaseswith colony size, and investment in males, but not in females,is positively correlated with total investment in sexuals. Overall,our results are consistent with the predictions of the LRC hypothesisto account for sex ratio variation in this species.  相似文献   

8.
Sex allocation theory predicts parents should adjust their investment in male and female offspring in a way that increases parental fitness. This has been shown in several species and selective contexts. Yet, seasonal sex ratio variation within species and its underlying causes are poorly understood. Here, we study sex allocation variation in the wood ant Formica pratensis. This species displays conflict over colony sex ratio as workers and queens prefer different investment in male and female offspring, owing to haplodiploidy and relatedness asymmetries. It is unique among Formica ants because it produces two separate sexual offspring cohorts per season. We predict sex ratios to be closer to queen optimum in the early cohort but more female‐biased and closer to worker optimum in the later one. This is because the power of workers to manipulate colony sex ratio varies seasonally with the availability of diploid eggs. Consistently, more female‐biased sex ratios in the later offspring cohort over a three‐year sampling period from 93 colonies clearly support our prediction. The resulting seasonal alternation of sex ratios between queen and worker optima is a novel demonstration how understanding constraints of sex ratio adjustment increases our ability to predict sex ratio variation.  相似文献   

9.
Sex ratio evolution relies on genetic variation in either the phenotypic traits that influence sex ratios or sex-determining mechanisms. However, consistent variation among females in offspring sex ratio is rarely investigated. Here, we show that female painted dragons (Ctenophorus pictus) have highly repeatable sex ratios among clutches within years. A consistent effect of female identity could represent stable phenotypic differences among females or genetic variation in sex-determining mechanisms. Sex ratios were not correlated with female size, body condition or coloration. Furthermore, sex ratios were not influenced by incubation temperature. However, the variation among females resulted in female-biased mean population sex ratios at hatching both within and among years.  相似文献   

10.
Thermolabile Sex Determination in honmoroko   总被引:2,自引:0,他引:2  
In six pairings (one female × three males and vice versa) of honmoroko Gnathopogon caerulescens , although in one pairing the sex ratio of the offspring did not deviate significantly from 1:1, in four pairings the proportion of females decreased significantly with an increase in temperature. Heavy mortality due to disease was observed in the remaining pair. There were highly significant differences in sex ratios among the broods produced by different mothers with the same father and vice versa, and the response of sex ratio to temperature treatments differed considerably within pairings. The progeny of five out of 20 males produced at 34°C were almost all females, two were male-biased, and the remaining had balanced (1:1) sex ratios. These results suggest that the sex determination system in honmoroko is close to female homogamety but is influenced by temperature, genetic factors and genotype-temperature interactions.  相似文献   

11.
Summary Formica podzolica serves as host to slave-making ants in North America. We propose thatF. podzolica may respond to slavery by two alternative colony-growth and reproductive strategies depending on the raiding ability of the slavemaker: (1) Rapid colony growth at the expense of producing sexuals to a stage where raiding by unspecialized, facultative slavemakers, capable of exploiting only small colonies, becomes unlikely owing to a strong work force and (2) Early production of sexual offspring at the cost of colony growth to secure some sexual production in an environment with specialized obligate enslavers, capable of raiding large colonies. We tested the strategies by excavating 30 small to moderately large mounds ofF. podzolica and measured reproductive parameters of colonies in relation to mound size, worker number, and worker size. Mound area predicted worker number satisfactorily. Worker number correlated significantly with worker head width and with number of worker and sexual offspring. With a growing work force, the proportion of sexual offspring increased in the total offspring. Two thirds of the colonies producing sexuals emitted single sex, sex being independent of colony size. Some of the large colonies produced both sexes with a strong bias toward either sex. The unweighted population-level sex ratio did not differ from even, being 0.52 (numerical) or 0.54 (biomass). Very large mounds (not excavated) had small workers and highly male-biased sex ratios, probably owing to energy constraints set by central-place foraging. Population-level colony ontogeny data did not fit either one of the suggested strategies, but imply a mixture of the two. We discuss an alternative, still untested raid-independent explanation to the ontogeny pattern.  相似文献   

12.
Sex reversal has been suggested to have profound implications for the evolution of sex chromosomes and population dynamics in ectotherms. Occasional sex reversal of genetic males has been hypothesized to prevent the evolutionary decay of nonrecombining Y chromosomes caused by the accumulation of deleterious mutations. At the same time, sex reversals can have a negative effect on population growth rate. Here, we studied phenotypic and genotypic sex in the common frog (Rana temporaria) in a subarctic environment, where strongly female‐biased sex ratios have raised the possibility of frequent sex reversals. We developed two novel sex‐linked microsatellite markers for the species and used them with a third, existing marker and a Bayesian modelling approach to study the occurrence of sex reversal and to determine primary sex ratios in egg clutches. Our results show that a significant proportion (0.09, 95% credible interval: 0.04–0.18) of adults that were genetically female expressed the male phenotype, but there was no evidence of sex reversal of genetic males that is required for counteracting the degeneration of Y chromosome. The primary sex ratios were mostly equal, but three clutches consisted only of genetic females and three others had a significant female bias. Reproduction of the sex‐reversed genetic females appears to create all‐female clutches potentially skewing the population level adult sex‐ratio consistent with field observations. However, based on a simulation model, such a bias is expected to be small and transient and thus does not fully explain the observed female‐bias in the field.  相似文献   

13.
Split sex ratios, when some colonies produce only male and others only female reproductives, is a common feature of social insects, especially ants. The most widely accepted explanation for split sex ratios was proposed by Boomsma and Grafen, and is driven by conflicts of interest among colonies that vary in relatedness. The predictions of the Boomsma–Grafen model have been confirmed in many cases, but contradicted in several others. We adapt a model for the evolution of dioecy in plants to make predictions about the evolution of split sex ratios in social insects. Reproductive specialization results from the instability of the evolutionarily stable strategy (ESS) sex ratio, and is independent of variation in relatedness. We test predictions of the model with data from a long-term study of harvester ants, and show that it correctly predicts the intermediate sex ratios we observe in our study species. The dioecy model provides a comprehensive framework for sex allocation that is based on the pay-offs to the colony via production of males and females, and is independent of the genetic variation among colonies. However, in populations where the conditions for the Boomsma–Grafen model hold, kin selection will still lead to an association between sex ratio and relatedness.  相似文献   

14.
Sex allocation in social insects has become a general modelin tests of inclusive fitness theory, sex-ratio theory, andparent-offspring conflict. Several studies have shown that colonysex ratios are often bimodally distributed, with some coloniesproducing mainly females and others mainly males. Sex specializationmay result from workers assessing their relatedness to malebrood versus female brood, relative to the average worker-relatednessasymmetry in other colonies of their population. Workers thenadjust the sex ratio in their own interest This hypothesis assumesthat workers can recognize the sex of the brood in their colonyand selectively eliminate males. We compared the primary sexratio (at the egg stage) and secondary sex ratio (reproductivepupae and adults) of colonies in the ant Pheidole pallidula.There was a strong bimodal distribution of secondary sex ratios,with most colonies producing mainly reproductives of one sex.In contrast, there was no evidence of a bimodal distributionof primary sex ratios. The proportion of haploid eggs producedby queens was 0.35 in early spring and decreased to about 0.1in summer. Male eggs also were present in virtually all fieldcolonies sampled in July, although eggs laid at this time ofyear never give rise to males. All male brood is, therefore,selectively eliminated beginning in July and continue to beeliminated through the rest of the year. Finally, the populationsex-ratio investment was female-biased. Together, these resultsare consistent with the hypothesis that workers control thesecondary sex ratio by selectively eliminating male brood inabout half the colonies, perhaps those with high relatednessasymmetry.[Behav Ecol 7: 292–298 (1996)]  相似文献   

15.
The literature on sex ratio evolution in ant colonies is dominated by inclusive fitness arguments. In general, genetic theory makes good predictions about sexual investment in ant populations, but understanding colony-level variance in sex investment ratios has proven more difficult. Recently, however, more studies have addressed ecological factors that influence colony-level sex investment ratios. Food availability, in particular, has been manipulated because larval nutrition influences female caste determination, thus implying that resource availability should be of critical importance for colony sex investment ratios. However, results from food supplementation experiments are equivocal, and it is clear that ant colony response to food supplementation is dependent on the ecological background of the population. We presented field colonies of the ant Myrmica brevispinosa with two food types (proteins and carbohydrates), and assessed their relative impact on colony-level sex investment ratios. We show that colonies receiving carbohydrate enhancement invested in more female sexuals and produced more female-biased sex allocation ratios than protein-fed or control colonies. Thus, our study is the first, to our knowledge, to demonstrate that sex ratios in social insect colonies might be sensitive to resource quality. Male investment was not influenced by food treatment, but was positively correlated with colony size. Therefore, the shift in sex ratios in our study must have been mediated through nutritional influences on female caste determination rather than male brood elimination. We also used our data to evaluate evidence for sex ratio compensation by queenright colonies in response to male production by workers from orphaned colonies.  相似文献   

16.
The genetic variation at two marker loci in three populations of the monogynous ant Lasius niger was used to analyze the importance of relatedness structure to sex-investment ratios in sexuals produced by colonies living in different resource conditions. From a resource-rich monoculture to a population in a resource-limited environment, dry weight investment in queens decreased from female-biased (0.76) to equality with male investment (Boomsma et al., 1982). The investment ratios in sexuals expected from the estimated relatedness ratios, resulting from kin-selection theory (Trivers and Hare, 1976), were in good agreement with the observed ratios in all populations. This indicated that the workers can capitalize on the asymmetry in relatedness, opposing the queen's interest, despite the contrast in environmental conditions in the different populations. This asymmetry, however, almost disappeared in the marginal population, due to a high frequency of double mating and worker production of males, resulting in a much reduced queen-worker conflict. We suggest that different levels of polyandry might be favored at different points of the resource gradient, with the sex ratio secondarily depending on these polyandry levels. As there was no population subdivision or spatial structure within the populations, group-selection and local-mate-competition models cannot account for the observed female-biased ratios, whereas they were rather accurately predicted by kin-selection theory.  相似文献   

17.
The parapatric sibling ant species Temnothorax nylanderi and T. crassispinus hybridize in the contact zone in the Franconian Jura, Southern Germany. Aim of our study was to investigate the impact of hybridization on colony composition and fitness. We classified colonies as either ‘pure’ or containing hybrids by determining their allozyme pattern at GPI, an enzyme that is fixed for different alleles in the two parental species, and quantified their reproductive output. Most colonies with hybrid workers had a T. crassispinus queen. Colonies with heterozygous, hybrid workers produced more young workers than colonies of the parental species but similar numbers of male and female sexuals. Female sexuals from colonies with heterozygous workers had a significantly lower weight than female sexuals from pure colonies. Only a single reproductive queen was found to be heterozygous, suggesting reduced fitness of hybrid queens. As in the parental species, hybrid colonies appear to be frequently taken over by alien queens, which obscures the genetic colony structure. Received 6 April 2006; revised 10 June 2006; accepted 15 June 2006.  相似文献   

18.
To understand genetic and phenotypic constraints on the sex ratio in a parasitic wasp that attacks fly pupae, I carried out a laboratory study of sex ratio variability in five strains of Muscidifurax raptor (Hymenoptera: Pteromalidae). I manipulated the environment through combinations of temperature and day length, and the numbers of females that attack a group of hosts. The change of phenotype in each strain over the range of environmental conditions describes the norm of each reaction for that strain, and measures how a strain responds to environmental variation to create phenotypic variability. Sex ratio in parasitic wasps is a complex trait that has several components—the numbers of eggs laid by an ovipositing wasp and the fraction of eggs that are fertilized (female). Further, sex ratio may be influenced by a female's reaction to other females exploiting the same hosts (superparasitism). I found no strain-environment interactions in either sex ratio or fecundity when I varied environmental conditions. Although strains differed in sex ratio and fecundity, all strains produced a more female-biased sex ratio and had higher fecundity when temperature and day length increased. Sex ratio and fecundity were phenotypically correlated, and strains with greater fecundity also produced a more female-biased sex ratio. All strains facultatively shifted sex ratio toward a higher fraction of males with increasing female density, despite apparent differences in superparasitism among strains. Males and females survived equally during development, so that mortality differences among strains and across environments could not account for sex ratio variability. This study indicates that sex ratio variability among strains is constrained by the correlation between sex ratio and fecundity, and that strains display similar facultative shifts in sex ratio as female density increases because sex ratio shifts are insensitive to differing levels of superparasitism.  相似文献   

19.
Recent phylogenetic studies based on DNA sequence data indicate that the tropical African bee genus Macrogalea is the sister group to the remaining extant allodapine fauna, whereas previously it was thought to be a distal group. This leads to some fundamental changes in our understanding of social evolution in the allodapines. Earlier studies suggested that Macrogalea showed only weak forms of social behaviour and these were not well characterized. However, large samples of Macrogalea zanzibarica presented here show that this species exhibits marked social behaviour. Nearly half of nests collected contained two or more adult females, with up to 10 females per nest. Brood are reared progressively and brood ages within colonies are staggered, giving rise to colonies with very mixed age structures and therefore frequent opportunities for alloparental care. Ovarian dissections indicate non‐simple forms of reproductive partitioning within colonies and most multi‐female colonies show evidence that more than one female has contributed to egg production, though reproductive episodes among colony members are frequently asynchronous. Some females show signs of much higher wing wear than their nestmates, but always show signs of previous reproduction. Reproductive division of labour appears to be temporally marked, ovarian differentiation among nestmates is linked to relative body size, but permanent worker‐like or queen‐like castes appear to be absent. This is similar to the communal, continuously brooded and multivoltine behaviour of some tropical halictine species and may be due to the aseasonal nature of brood development in tropical regions. Patterns of per capita brood production indicate large benefits to multi‐female nest occupancy, and sex allocation is strongly female biased. These findings strongly suggest that the capacity for complex social interactions and alloparental care is an ancestral trait for all of the extant allodapine lineages. Therefore comparisons among extant allodapines are unlikely to throw light on the initial origin of social behaviour, though they may uncover origins of true caste behaviour and reversals to solitary nesting. Sex ratios in Macrogalea and most other allodapine genera, spanning a broad phylogenetic and ecological range, suggest that one or more allodapine traits have provided persistent selection for female‐biased sex allocation.  相似文献   

20.
1. Myrmecina nipponica has two types of colonies: a queen colony type, in which the reproductive females are queens and new colonies are made by independent founding, and an intermorphic female colony type, in which reproductive females belong to a wingless intermediate morphology between queen and worker, and where colonies multiply through colonial budding. 2. The mating frequencies of reproductive females in both types indicate monoandry. The relatedness among nestmates in both types was almost 0.75, however relatedness between mother and daughter in intermorphic female colonies was slightly higher than that of queen colonies. 3. The sex ratio (corrected investment female ratio) was 0.70 at the population level, suggesting that the sex ratio is controlled by workers in this species, however the ratio differed greatly between the two types of colonies. Queen colonies (n = 37) had a female‐biased sex ratio of 0.77 while intermorphic female colonies (n = 33) had a ratio of 0.56. 4. Each reproductive intermorphic female was accompanied by an average of 2.9 workers (including virgin intermorphic females) in the colonial budding, and when the investment to those workers was added to the female investment, the sex ratio reached 0.81. 5. The frequency distribution of sex ratio was bimodal, with many colonies producing exclusively males or females, however mean estimated relatedness within colonies was almost 0.75. These data are inconsistent with the genetic variation hypothesis, which is one of the predominant hypotheses accounting for the between‐colony variation in sex ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号