首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast growth factor (FGF) receptors (FGFRs) signal to modulate diverse cellular functions, including epithelial cell morphogenesis. In epithelial cells, E-cadherin plays a key role in cell-cell adhesion, and its function can be regulated through endocytic trafficking. In this study, we investigated the location, trafficking, and function of FGFR1 and E-cadherin and report a novel mechanism, based on endocytic trafficking, for the coregulation of E-cadherin and signaling from FGFR1. FGF induces the internalization of surface FGFR1 and surface E-cadherin, followed by nuclear translocation of FGFR1. The internalization of both proteins is regulated by common endocytic machinery, resulting in cointernalization of FGFR1 and E-cadherin into early endosomes. By blocking endocytosis, we show that this is a requisite, initial step for the nuclear translocation of FGFR1. Overexpression of E-cadherin blocks both the coendocytosis of E-cadherin and FGFR1, the nuclear translocation of FGFR1 and FGF-induced signaling to the mitogen-activated protein kinase pathway. Furthermore, stabilization of surface adhesive E-cadherin, by overexpressing p120ctn, also blocks internalization and nuclear translocation of FGFR1. These data reveal that conjoint endocytosis and trafficking is a novel mechanism for the coregulation of E-cadherin and FGFR1 during cell signaling and morphogenesis.  相似文献   

2.
Cadherin trafficking controls tissue morphogenesis and cell polarity. The endocytic adaptor Numb participates in apicobasal polarity by acting on intercellular adhesions in epithelial cells. However, it remains largely unknown how Numb controls cadherin-based adhesion. Here, we found that Numb directly interacted with p120 catenin (p120), which is known to interact with E-cadherin and prevent its internalization. Numb accumulated at intercellular adhesion sites and the apical membrane in epithelial cells. Depletion of Numb impaired E-cadherin internalization, whereas depletion of p120 accelerated internalization. Expression of the Numb-binding fragment of p120 inhibited E-cadherin internalization in a dominant-negative fashion, indicating that Numb interacts with the E-cadherin/p120 complex and promotes E-cadherin endocytosis. Impairment of Numb induced mislocalization of E-cadherin from the lateral membrane to the apical membrane. Atypical protein kinase C (aPKC), a member of the PAR complex, phosphorylated Numb and inhibited its association with p120 and α-adaptin. Depletion or inhibition of aPKC accelerated E-cadherin internalization. Wild-type Numb restored E-cadherin internalization in the Numb-depleted cells, whereas a phosphomimetic mutant or a mutant with defective α-adaptin-binding ability did not restore the internalization. Thus, we propose that aPKC phosphorylates Numb to prevent its binding to p120 and α-adaptin, thereby attenuating E-cadherin endocytosis to maintain apicobasal polarity.  相似文献   

3.
E-Cadherin plays critical roles in many aspects of cell adhesion, epithelial development, and the establishment and maintenance of epithelial polarity. The fate of E-cadherin once it is delivered to the basolateral cell surface, and the mechanisms which govern its participation in adherens junctions, are not well understood. Using surface biotinylation and recycling assays, we observed that some of the cell surface E-cadherin is actively internalized and is then recycled back to the plasma membrane. The pool of E-cadherin undergoing endocytosis and recycling was markedly increased in cells without stable cell-cell contacts, i.e., in preconfluent cells and after cell contacts were disrupted by depletion of extracellular Ca2+, suggesting that endocytic trafficking of E-cadherin is regulated by cell-cell contact. The reformation of cell junctions after replacement of Ca2+ was then found to be inhibited when recycling of endocytosed E-cadherin was disrupted by bafilomycin treatment. The endocytosis and recycling of E-cadherin and of the transferrin receptor were similarly inhibited by potassium depletion and by bafilomycin treatment, and both proteins were accumulated in intracellular compartments by an 18 degrees C temperature block, suggesting that endocytosis may occur via a clathrin-mediated pathway. We conclude that a pool of surface E-cadherin is constantly trafficked through an endocytic, recycling pathway and that this may provide a mechanism for regulating the availability of E-cadherin for junction formation in development, tissue remodeling, and tumorigenesis.  相似文献   

4.
E-cadherin is a central component of the adherens junction in epithelial cells and continuously undergoes endocytosis via clathrin-coated vesicles and/or caveolae depending on the cell type. In this study, we examined the role of SMAP1, a clathrin-interacting GTPase-activating protein (GAP) for the ADP-ribosylation factor 6 (Arf6) GTPase, in E-cadherin endocytosis. Mardin-Darby canine kidney (MDCK) epithelial cells were used as a model, and SMAP1 localized in the cytoplasm and along the adherens junction where E-cadherin was present. Next, activity of SMAP1 was compared with that of other Arf6GAPs (and/or an effector of Arf6-GTP), namely GIT1 and AMAP2/DDEF2. Overexpression of SMAP1 but not GIT1 nor AMAP2/DDEF2 strongly inhibited basal, as well as phorbolester-induced, internalization of E-cadherin. Notably, AMAP2/DDEF2 rather enhanced the caveolae-mediated incorporation of a membrane protein other than E-cadherin. Thus, in MDCK cells, E-cadherin appeared to be endocytosed solely through SMAP1-regulated clathrin-coated vesicles. Furthermore, MDCK cells overexpressing SMAP1 showed a reduced degree of cell migration compared to untransfected cells, as assessed by wound healing and Transwell assays, and this reduction in migration appeared to be due to the accumulation of E-cadherin at the adherens junction in cells overexpressing SMAP1. Collectively, SMAP1 likely represents a key Arf6GAP in clathrin dependent endocytosis of E-cadherin in MDCK cells. This activity of SMAP1 in E-cadherin turnover may be involved in epithelial organization and/or epithelial-mesenchymal transition.  相似文献   

5.
D D Eveleth  R A Bradshaw 《Neuron》1988,1(10):929-936
The effects of agents that inhibit receptor-mediated endocytosis on type I (slow or high-affinity) and type II (fast or low-affinity) NGF binding have been examined in rat PC12 cells. Compounds interfering with endocytosis eliminate type I NGF binding; those interfering with acidification of endosomal vesicles cause increased type I binding at the expense of type II binding. Measurement of NGF binding during and after treatment with inhibitors indicates that NGF receptors rapidly cycle from the cell surface into an undefined endocytotic compartment and back to the surface with little degradation of receptor or NGF, consistent with a model in which NGF receptors are rapidly and reversibly endocytosed or sequestered; those receptors free on the surface represent type II NGF receptors, while those in the process of endocytosis represent type I NGF receptors. The type I and type II NGF receptor species can be interconverted by agents that can manipulate the position of the receptor in the internalization cycle.  相似文献   

6.
Summary This study investigates by electron microscopy the transformational process of the endosomal compartment of the Drosophila nephrocyte, the garland cell, which occurs during endocytotic processing of internalized material. The endosomal compartment of the garland cell consists of a prominent tubular/vacuolar complex in the cortical cytoplasm. When internalization of coated pits is blocked at 29°C using the endocytosis mutant, shibire ts, the tubules gradually disappear after 7 min at 29°C. By 12 min at 29°C, the vauoles also disappear. Thus, the endosomal compartment appears to constantly undergo a transformational process that necessitates continuous replenishment by coated vesicles. The data suggest that the tubular component of the endosomal compartment gradually transforms into vacuoles by the expansion of the tubular membrane. The vacuoles then transform by invaginating into themselves, creating flattened cisternae. The electron-lucent substance in the lumina of the vacuoles appears to be extruded into the cytoplasm through the invaginating membrane. No shuttle vehicles such as vesicles or tubules could be identified that might have been involved in the transporting of endocytosed materials and membrane from the endosomal compartment to lysosomes or back to the plasma membrane.  相似文献   

7.
Birbeck granules are unusual rod-shaped structures specific to epidermal Langerhans cells, whose origin and function remain undetermined. We investigated the intracellular location and fate of Langerin, a protein implicated in Birbeck granule biogenesis, in human epidermal Langerhans cells. In the steady state, Langerin is predominantly found in the endosomal recycling compartment and in Birbeck granules. Langerin internalizes by classical receptor-mediated endocytosis and the first Birbeck granules accessible to endocytosed Langerin are those connected to recycling endosomes in the pericentriolar area, where Langerin accumulates. Drug-induced inhibition of endocytosis results in the appearance of abundant open-ended Birbeck granule-like structures appended to the plasma membrane, whereas inhibition of recycling induces Birbeck granules to merge with a tubular endosomal network. In mature Langerhans cells, Langerin traffic is abolished and the loss of internal Langerin is associated with a concomitant depletion of Birbeck granules. Our results demonstrate an exchange of Langerin between early endosomal compartments and the plasma membrane, with dynamic retention in the endosomal recycling compartment. They show that Birbeck granules are not endocytotic structures, rather they are subdomains of the endosomal recycling compartment that form where Langerin accumulates. Finally, our results implicate ADP-ribosylation factor proteins in Langerin trafficking and the exchange between Birbeck granules and other endosomal membranes.  相似文献   

8.
The chloride channel, ClC-2 is expressed ubiquitously and participates in multiple physiological processes. In particular, ClC-2 has been implicated in the regulation of neuronal chloride ion homeostasis and mutations in ClC-2 are associated with idiopathic generalized epilepsy. Despite the physiological and pathophysiological significance of this channel, its regulation remains incompletely understood. The functional expression of ClC-2 at the cell surface has been shown to be enhanced by depletion of cellular ATP, implicating its possible role in cellular energy sensing. In the present study, biochemical assays of cell surface expression suggest that this gain of function reflects, in part, an increase in channel number due to the reduction in ClC-2 internalization by endocytosis. Cell surface expression of the disease-causing mutant: G715E, thought to lack wild-type nucleotide binding affinity, is similarly affected, suggesting that ATP-depletion modifies the function of proteins in the endocytic pathway rather than ClC-2 directly. Using a combination of immunofluorescence and biochemical studies, we confirmed that ClC-2 is internalized via dynamin-dependent endocytosis and that the change in surface expression evoked by ATP depletion is partially mimicked by inhibition of dynamin function using a dynamin dominant-negative mutant (DynK44A). Furthermore, trafficking via the early endosomal compartment occurs in part through rab5-associated vesicles and recycling of ClC-2 to the cell surface occurs through a rab11 dependent pathway. In summary, we have determined that the internalization of ClC-2 by endocytosis is inhibited by metabolic stress, highlighting the importance for understanding the molecular mechanisms mediating the endosomal trafficking of this channel.  相似文献   

9.
E-cadherin is a member of the cadherin family of Ca2+-dependent cell-cell adhesion molecules. E-cadherin associates with beta-catenin at the membrane-distal region of its cytosolic domain and with p120 at the membrane-proximal region of its cytoplasmic domain. It has been shown that a pool of cell surface E-cadherin is constitutively internalized and recycled back to the surface. Further, p120 knockdown by small interference RNA resulted in dose-dependent elimination of cell surface E-cadherin. Consistent with these observations, we found that selective uncoupling of p120 from E-cadherin by introduction of amino acid substitutions in the p120-binding site increased the level of E-cadherin endocytosis. The increased endocytosis was clathrin-dependent, because it was blocked by expression of a dominant-negative form of dynamin or by hypertonic shock. A dileucine motif in the juxtamembrane cytoplasmic domain is required for E-cadherin endocytosis, because substitution of these residues to alanine resulted in impaired internalization of the protein. The alanine substitutions in the p120-uncoupled construct reduced endocytosis of the protein, indicating that this motif was dominant to p120 binding in the control of E-cadherin endocytosis. Therefore, these results are consistent with the idea that p120 regulates E-cadherin endocytosis by masking the dileucine motif and preventing interactions with adaptor proteins required for internalization.  相似文献   

10.
We have investigated the intracellular traffic of PrP(c), a glycosylphosphatidylinositol (GPI)-anchored protein implicated in spongiform encephalopathies. A fluorescent functional green fluorescent protein (GFP)-tagged version of PrP(c) is found at the cell surface and in intracellular compartments in SN56 cells. Confocal microscopy and organelle-specific markers suggest that the protein is found in both the Golgi and the recycling endosomal compartment. Perturbation of endocytosis with a dynamin I-K44A dominant-negative mutant altered the steady-state distribution of the GFP-PrP(c), leading to the accumulation of fluorescence in unfissioned endocytic intermediates. These pre-endocytic intermediates did not seem to accumulate GFP-GPI, a minimum GPI-anchored protein, suggesting that PrP(c) trafficking does not depend solely on the GPI anchor. We found that internalized GFP-PrP(c) accumulates in Rab5-positive endosomes and that a Rab5 mutant alters the steady-state distribution of GFP-PrP(c) but not that of GFP-GPI between the plasma membrane and early endosomes. Therefore, we conclude that PrP(c) internalizes via a dynamin-dependent endocytic pathway and that the protein is targeted to the recycling endosomal compartment via Rab5-positive early endosomes. These observations indicate that traffic of GFP-PrP(c) is not determined predominantly by the GPI anchor and that, different from other GPI-anchored proteins, PrP(c) is delivered to classic endosomes after internalization.  相似文献   

11.
We demonstrate the presence of a glycosylphosphatidylinositol (GPI) anchor-specific endosomal pathway in the protozoan pathogen Trypanosoma brucei. In higher eukaryotes evidence indicates that GPI-anchored proteins are transported in both the endocytic and exocytic systems by mechanisms involving sequestration into specific membrane microdomains and consequently sorting into distinct compartments. This is potentially extremely important in trypanosomatids as the GPI anchor is the predominant mechanism for membrane attachment of surface macromolecules, including the variant surface glycoprotein (VSG). A highly complex developmentally regulated endocytic network, vital for nutrient uptake and evasion of the immune response, exists in T. brucei. In common with mammalian cells an early endosomal compartment is defined by Rab5 small GTPases, which control transport processes through the endosomal system. We investigate the function of two trypanosome Rab5 homologues. TbRAB5A and TbRAB5B, which colocalize in the procyclic stage, are distinct in the bloodstream form of the parasite. TbRAB5A endosomes contain VSG and transferrin, endocytosed by the T. brucei GPI-anchored transferrin receptor, whereas TbRAB5B endosomes contain the transmembrane protein ISG(100) but neither VSG nor transferrin. These findings indicate the presence of trypanosome endosomal pathways trafficking proteins through specific routes depending on the mode of membrane attachment. Ectopic expression of mutant TbRAB5A or -5B indicates that TbRAB5A plays a role in LDL endocytosis, whereas TbRAB5B does not, but both have a role in fluid phase endocytosis. Hence TbRAB5A and TbRAB5B have distinct functions in the endosomal system of T. brucei. A developmentally regulated GPI-specific endosomal pathway in the bloodstream form suggests that specialized transport of GPI-anchored proteins is required for survival in the mammalian host.  相似文献   

12.
Listeria monocytogenes surface proteins internalin (Inl)A and InlB interact with the junctional protein E-cadherin and the hepatocyte growth factor (HGF) receptor Met, respectively, on the surface of epithelial cells to mediate bacterial entry. Here we show that InlA triggers two successive E-cadherin post-translational modifications, i.e. the Src-mediated tyrosine phosphorylation of E-cadherin followed by its ubiquitination by the ubiquitin-ligase Hakai. E-cadherin ubiquitination induces the recruitment of clathrin that is required for optimal bacterial internalization. We also show that the initial clustering of E-cadherin at the bacterial entry site requires caveolin, a protein normally involved in clathrin-independent endocytosis. Strikingly clathrin and caveolin are also recruited at the site of entry of E-cadherin-coated sepharose beads and functional experiments demonstrate that these two proteins are required for bead entry. Together these results not only document how the endocytosis machinery is recruited and involved in the internalization of a zippering bacterium, but also strongly suggest a functional link between E-cadherin endocytosis and the formation of adherens junctions in epithelial cells.  相似文献   

13.
Receptor internalization is recognized as an important mechanism for rapidly regulating cell surface numbers of receptors. However, there are conflicting results on the existence of rapid endocytosis of gamma-aminobutyric acid, type B (GABAB) receptors. Therefore, we analyzed internalization of GABAB receptors expressed in HEK 293 cells qualitatively and quantitatively using immunocytochemical, cell surface enzyme-linked immunosorbent assay, and biotinylation methods. The data indicate the existence of rapid constitutive receptor internalization, with the first endocytosed receptors being observed in proximity of the plasma membrane after 10 min. After 120 min, a loss of about 40-50% of cell surface receptors was detected. Stimulation of GABAB receptors with GABA or baclofen did not enhance endocytosis of receptors, indicating the lack of agonist-induced internalization. The data suggest that GABAB receptors were endocytosed via the classical dynamin- and clathrin-dependent pathway and accumulated in an endosomal sorting compartment before being targeted to lysosomes for degradation. No evidence for recycling of receptors back to the cell surface was found. In conclusion, the results indicate the presence of constitutive internalization of GABAB receptors via clathrin-coated pits, which resulted in lysosomal degradation of the receptors.  相似文献   

14.
Protein kinase C regulates endocytosis and recycling of E-cadherin   总被引:5,自引:0,他引:5  
E-cadherin is a major component ofadherens junctions in epithelial cells. We showed previously that apool of cell surface E-cadherin is constitutively internalized andrecycled back to the surface. In the present study, we investigated thepotential role of protein kinase C (PKC) in regulating the traffickingof surface E-cadherin in Madin-Darby canine kidney cells. Using surface biotinylation and immunofluorescence, we found that treatment of cellswith phorbol esters increased the rate of endocytosis of E-cadherin,resulting in accumulation of E-cadherin in apically localized early orrecycling endosomes. The recycling of E-cadherin back to the surfacewas also decreased in the presence of phorbol esters. Phorbolester-induced endocytosis of E-cadherin was blocked by specificinhibitors, implicating novel PKC isozymes, such as PKC- in thispathway. PKC activation led to changes in the actin cytoskeletonfacilitating E-cadherin endocytosis. Depolymerization of actinincreased endocytosis of E-cadherin, whereas the PKC-induced uptake ofE-cadherin was blocked by the actin stabilizer jasplakinolide. Ourfindings show that PKC regulates vital steps of E-cadherin trafficking,its endocytosis, and its recycling.

  相似文献   

15.
Activation of the cell surface CD95 receptor triggers a cascade of signaling events, including assembly of the death-inducing signaling complex (DISC), that culminate in cellular apoptosis. In this study, we demonstrate a general requirement of receptor internalization for CD95 ligand-mediated DISC amplification, caspase activation and apoptosis in type I cells. Recruitment of DISC components to the activated receptor predominantly occurs after the receptor has moved into an endosomal compartment and blockade of CD95 internalization impairs DISC formation and apoptosis. In contrast, CD95 ligand stimulation of cells unable to internalize CD95 results in activation of proliferative Erk and NF-kappaB signaling pathways. Hence, the subcellular localization and internalization pathways of CD95 play important roles in controlling activation of distinct signaling cascades to determine divergent cellular fates.  相似文献   

16.
Exogenous antigenic peptides captured and presented in the context of major histocompatibility (MHC) class II molecules on APC, have been employed as potent vaccine reagents capable of activating cellular immune responses. Binding and presentation of select peptide via surface class II molecules has been reported. Here, a role for endocytosis and early endosomes in the presentation of exogenous peptides via MHC class II molecules is described. T cell recognition of a 14 amino acid human serum albumin-derived peptide in the context of HLA-DR4 was observed only with metabolically active APC. The delayed kinetics and temperature dependence of functional peptide presentation via APC, were consistent with a requirement for peptide internalization to early endosomal compartments prior to T cell recognition. Ablating endocytosis by exposing cells to inhibitors of ATP production completely blocked the display of functional peptide:class II complexes on the surface of the APC. Presentation of the peptide was also found to be sensitive to primaquine, a drug that perturbs the recycling of transport vesicles containing endocytic receptors and mature class II complexes. Functional presentation of the endocytosed peptide was dependent upon these mature class II complexes, as inhibitor studies ruled out a requirement for newly synthesized class II molecules. N-terminal processing of the endocytosed peptide was observed upon trafficking through endosomal compartments and linked to the formation of functional peptide:class II complexes. These findings establish a novel mechanism for regulating class II-restricted peptide presentation via the endocytic pathway.  相似文献   

17.
The role of endosomal/lysosomal redox-active iron in H2O2-induced nuclear DNA damage as well as in cell proliferation was examined using the iron chelator desferrioxamine (DFO). Transient transfections of HeLa cells with vectors encoding dominant proteins involved in the regulation of various routes of endocytosis (dynamin and Rab5) were used to show that DFO (a potent and rather specific iron chelator) enters cells by fluid-phase endocytosis and exerts its effects by chelating redox-active iron present in the endosomal/lysosomal compartment. Endocytosed DFO effectively protected cells against H2O2-induced DNA damage, indicating the importance of endosomal/lysosomal redox-active iron in these processes. Moreover, exposure of cells to DFO in a range of concentrations (0.1 to 100 microM) inhibited cell proliferation in a fluid-phase endocytosis-dependent manner. Flow cytometric analysis of cells exposed to 100 microM DFO for 24 h showed that the cell cycle was transiently interrupted at the G2/M phase, while treatment for 48 h led to permanent cell arrest. Collectively, the above results clearly indicate that DFO has to be endocytosed by the fluid-phase pathway to protect cells against H2O2-induced DNA damage. Moreover, chelation of iron in the endosomal/lysosomal cell compartment leads to cell cycle interruption, indicating that all cellular labile iron is propagated through this compartment before its anabolic use is possible.  相似文献   

18.
Endocytosis of cell-surface proteins via specific pathways is critical for their function. We show that multiple glycosylphosphatidylinositol-anchored proteins (GPI-APs) are endocytosed to the recycling endosomal compartment but not to the Golgi via a nonclathrin, noncaveolae mediated pathway. GPI anchoring is a positive signal for internalization into rab5-independent tubular-vesicular endosomes also responsible for a major fraction of fluid-phase uptake; molecules merely lacking cytoplasmic extensions are not included. Unlike the internalization of detergent-resistant membrane (DRM)-associated interleukin 2 receptor, endocytosis of DRM-associated GPI-APs is unaffected by inhibition of RhoA or dynamin 2 activity. Inhibition of Rho family GTPase cdc42, but not Rac1, reduces fluid-phase uptake and redistributes GPI-APs to the clathrin-mediated pathway. These results describe a distinct constitutive pinocytic pathway, specifically regulated by cdc42.  相似文献   

19.
E-cadherin is highly phosphorylated within its β-catenin–binding region, and this phosphorylation increases its affinity for β-catenin in vitro. However, the identification of key serines responsible for most cadherin phosphorylation and the adhesive consequences of modification at such serines have remained unknown. In this study, we show that as few as three serines in the β-catenin–binding domain of E-cadherin are responsible for most radioactive phosphate incorporation. These serines are required for binding to β-catenin and the mutual stability of both E-cadherin and β-catenin. Cells expressing a phosphodeficient (3S>A) E-cadherin exhibit minimal cell–cell adhesion due to enhanced endocytosis and degradation through a lysosomal compartment. Conversely, negative charge substitution at these serines (3S>D) antagonizes cadherin endocytosis and restores wild-type levels of adhesion. The cadherin kinase is membrane proximal and modifies the cadherin before it reaches the cell surface. Together these data suggest that E-cadherin phosphorylation is largely constitutive and integral to cadherin–catenin complex formation, surface stability, and function.  相似文献   

20.
Classically, the polymeric immunoglobulin receptor and its ligand, IgA, are thought to be sorted from basolateral early endosomes into transcytotic vesicles that directly fuse with the apical plasma membrane. In contrast, we have found that in MDCK cells IgA is delivered from basolateral endosomes to apical endosomes and only then to the apical cell surface. When internalized from the basolateral surface of MDCK cells IgA is found to accumulate under the apical plasma membrane in a compartment that is accessible to two apically added membrane markers: anti-secretory component Fab fragments, and avidin internalized from the biotinylated apical pole of the cell. This accumulation occurs in the presence of apical trypsin, which prevents internalization of the ligand from the apical cell surface. Using a modification of the diaminobenzidine density-shift assay, we estimate that approximately 80% of basolaterally internalized IgA resides in the apical endosomal compartment. In addition, approximately 50% of basolaterally internalized transferrin, a basolateral recycling protein, has access to this apical endosomal compartment and is efficiently recycled back to the basolateral surface. Microtubules are required for the organization of the apical endosomal compartment and it is dispersed in nocodazole-treated cells. Moreover, this compartment is largely inaccessible to fluid-phase markers added to either pole of the cell, and therefore seems analogous to the recycling endosome described in nonpolarized cells. We propose a model in which transcytosis is not a specialized pathway that uses unique transcytotic vesicles, but rather combines portions of pathways used by non- transcytosing molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号