首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The trans-activator protein (Tat) of human immunodeficiency virus type 1 (HIV-1>) binds to an uridine-rich bulge of an RNA target (TAR; trans-activation responsive element) predominantly via its basic sequence domain. The structure of the Tat(46–58)-TAR complex has been determined by a novel modeling approach relying on structural information about one crucial arginine residue and crosslink data. The strategy described here solely uses this experimental data without additional “modeling” assumptions about the structure of the complex in order to avoid human bias. Model building was performed in a fashion similar to structure calculations from nuclear magnetic resonance (NMR)-spectroscopic data using restrained molecular dynamics.

The resulting set of structures of Tat(46–58) in its complex with TAR reveals that all models have converged to a common fold, showing a backbone root mean square deviation (RMSD) of 1.36Å. Analysis of the calculated structures suggests that HIV-1 Tat forms a hairpin loop in its complex with TAR that shares striking similarity to the hairpin formed by the structure of the bovine immunodeficiency virus Tat protein after TAR binding as determined by NMR studies. The outlined approach is not limited to the Tat-TAR complex modeling, but is also applicable to all molecular complexes with sufficient biochemical and biophysical data available.  相似文献   

2.
3.
B Berkhout  R H Silverman  K T Jeang 《Cell》1989,59(2):273-282
  相似文献   

4.
5.
Binding of human immunodeficiency virus type 1 (HIV-1) transactivator (Tat) protein to Tat-responsive RNA (TAR) is essential for viral replication and is considered a promising starting point for the design of anti-HIV drugs. NMR spectroscopy indicated that the aminoglycosides neomycin B and ribostamycin bind to TAR and that neomycin is able to inhibit Tat binding to TAR. The solution structure of the neomycin-bound TAR has been determined by NMR spectroscopy. Chemical shift mapping and intermolecular nuclear Overhauser effects define the binding region of the aminoglycosides on TAR and give strong evidence for minor groove binding. Based on 15 nuclear Overhauser effect-derived intermolecular distance restraints, a model structure of the TAR-neomycin complex was calculated. Neomycin is bound in a binding pocket formed by the minor groove of the lower stem and the uridine-rich bulge of TAR, which adopts a conformation different from those known. The neamine core of the aminoglycoside (rings I and II) is covered with the bulge, explaining the inhibition of Tat by an allosteric mechanism. Neomycin reduces the volume of the major groove in which Tat is bound and thus impedes essential protein-RNA contacts.  相似文献   

6.
7.
We have performed molecular dynamics (MD) simulations, with particle-mesh Ewald, explicit waters, and counterions, and binding specificity analyses using combined molecular mechanics and continuum solvent (MM-PBSA) on the bovine immunodeficiency virus (BIV) Tat peptide-TAR RNA complex. The solution structure for the complex was solved independently by Patel and co-workers and Puglisi and co-workers. We investigated the differences in both structures and trajectories, particularly in the formation of the U-A-U base triple, the dynamic flexibility of the Tat peptide, and the interactions at the binding interface. We observed a decrease in RMSD in comparing the final average RNA structures and initial RNA structures of both trajectories, which suggests the convergence of the RNA structures to a MD equilibrated RNA structure. We also calculated the relative binding of different Tat peptide mutants to TAR RNA and found qualitative agreement with experimental studies.  相似文献   

8.
9.
10.
11.
Ground-state dynamics in RNA is a critical precursor for structural adaptation observed ubiquitously in protein-RNA recognition. A tertiary conformational analysis of the stem-loop structural element in the transactivation response element (TAR) from human immunodeficiency virus type 1 (HIV-I) RNA is presented using recently introduced NMR methods that rely on the measurement of residual dipolar couplings (RDC) in partially oriented systems. Order matrix analysis of RDC data provides evidence for inter-helical motions that are of amplitude 46(+/-4) degrees, of random directional character, and that are executed about an average conformation with an inter-helical angle between 44 degrees and 54 degrees. The generated ensemble of TAR conformations have different organizations of functional groups responsible for interaction with the trans-activator protein Tat, including conformations similar to the previously characterized bound-state conformation. These results demonstrate the utility of RDC-NMR for simultaneously characterizing RNA tertiary dynamics and average conformation, and indicate an avenue for TAR complex formation involving tertiary structure capture.  相似文献   

12.
13.
The trans-activation response element (TAR) of human immunodeficiency virus type 1 is a structured RNA consisting of the first 60 nucleotides of all human immunodeficiency virus type 1 RNAs. Computer analyses and limited structural analyses indicated that TAR consists of a stem-bulge-loop structure. Mutational analyses showed that sequences in the bulge are required for Tat binding, whereas sequences in both the bulge and the loop are required for trans activation. In this study, we probed the structures of TAR and various mutants of TAR with chemical probes and RNases and used these methods to footprint a Tat peptide on TAR. Our data show that the structure of wild-type TAR is different from previously published models. The bulge, a Tat-binding site, consists of four nucleotides. The loop is structured, rather than simply single stranded, in a fashion reminiscent of the structures of the tetraloop 5'-UUCG-3' and the GNRA loop (C. Cheong, G. Varani, and I. Tinoco, Jr., Nature [London] 346:680-682, 1990; H.A. Heus and A. Pardi, Science 253:191-193, 1991). RNA footprint data indicate that three bases in the bulge are protected and suggest that a conformational change occurs upon Tat binding.  相似文献   

14.
15.
16.
17.
18.
19.
20.
A comparative analysis of TAR RNA structures in human and simian immunodeficiency viruses reveals the conservation of certain structural features despite the divergence in sequence. Both the TAR elements of HIV-1 and SIV-chimpanzee can be folded into relatively simple one-stem hairpin structures. Chemical and RNAase probes were used to analyze the more complex structure of HIV-2 TAR RNA, which folds into a branched hairpin structure. A surprisingly similar RNA conformation can be proposed for SIV-mandrill, despite considerable divergence in nucleotide sequence. A third structural presentation of TAR sequences is seen for SIV-african green monkey. These results are generally consistent with the classification of HIV-SIV viruses in four subgroups based on sequence analyses (both nucleotide- and amino acid-sequences). However, some conserved TAR structures were detected for members of different virus subgroups. It is therefore proposed that RNA structure analysis might provide an additional tool for determining phylogenetic relationships among the HIV-SIV viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号