首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Neutrophils treated with 1,2-dioctanoyl-sn-glycerol (DiC8) are known to release large quantities of superoxide (O2-) and to exhibit an intense phosphorylation of two proteins with molecular masses of approximately 47 and 49 kDa. In this paper, we report that O2- release from guinea pig cells stimulated with a near optimal amount of DiC8 (2.0 microM) is markedly inhibited (greater than or equal to 70%) by antagonists of protein kinase C (i.e. 150 nM staurosporine; 200 microM 1-(5-isoquinolinylsulfonyl)-2-methyl-piperazine (H-7], whereas that from cells stimulated with an optimal amount of DiC8 (7.8 microM) is not (approximately 25% inhibition). However, staurosporine (150 nM) effectively reduced the level of phosphorylation of the 47- and the 49-kDa proteins to that observed in unstimulated cells when either amount of DiC8 (i.e. 2.0 or 7.8 microM) was utilized. Thus, neutrophils stimulated with 7.8 microM DiC8 in the presence of staurosporine release large quantities of O2- without an enhanced phosphorylation of the 47- and the 49-kDa proteins. In contrast, these antagonists of protein kinase C effectively blocked O2- release from neutrophils stimulated with an optimal amount of phorbol 12-myristate 13-acetate (PMA), and the percentage of inhibition was not affected by increasing the concentration of PMA 160-fold. These data show that DiC8 and PMA, both activators of protein kinase C, can have distinct effects on O2- release by neutrophils. Moreover, they suggest that DiC8 (or a metabolite) under certain circumstances may function in a stimulatory pathway for O2- release that is independent of protein kinase C. Differences in the morphology of neutrophils stimulated with PMA and DiC8 are presented. Ancillary data on human neutrophils are also provided.  相似文献   

2.
Neutrophils stimulated with 4 beta-phorbol 12-myristate 13-acetate (PMA) release large quantities of superoxide (O2-) and exhibit phosphorylation of two proteins with molecular masses of 47(p47) and 49 kDa (p49). Addition of inhibitors of protein kinases (e.g. 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7)) to these cells after stimulation with PMA results in the loss of 32P from these proteins and a rapid cessation of O2- release (e.g. Heyworth, P. G., and Badwey, J. A. (1990) Biochim. Biophys. Acta 1052, 299-305). In this paper we report that antagonists of type 1 and 2A protein phosphatases (okadaic acid, calyculin A) prevented both the loss of 32P from p47 and the termination of O2- release in stimulated neutrophils treated with H-7. Calyculin A also caused a remarkable hyperphosphorylation of a number of proteins in neutrophils and increased O2- release from these cells in response to a suboptimal amount of PMA. Enzymes present in both the soluble and particulate fractions of neutrophils catalyzed the near complete dephosphorylation of 32P-labeled p47 and p49 bound to Immobilon-P membranes. Dephosphorylation of these blotted phosphoproteins occurred at physiological rates and was inhibited by okadaic acid and calyculin A. These data strongly suggest that p47 undergoes a continual cycle of phosphorylation and dephosphorylation throughout the period of O2- release when PMA is the stimulus. Moreover, we show that antagonists of type 1 and 2A protein phosphatases block dephosphorylation of p47 both in vivo and in vitro, indicating that these enzymes may modulate O2- release under certain circumstances.  相似文献   

3.
Paradoxical effects of retinal in neutrophil stimulation   总被引:2,自引:0,他引:2  
Retinal stimulates the activity of phospholipase C and superoxide (O2-) release in neutrophils. The latter response is comparable in magnitude to that observed when phorbol 12-myristate 13-acetate (PMA) is the stimulating agent. Cells treated with retinal, however, do not undergo degranulation, nor do they exhibit the formation of intracellular vesicles, as is commonly observed with other agents (e.g. Lochner, J. E., Badwey, J. A., Horn, W., and Karnovsky, M. L. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 7673-7677). Retinal promotes redistribution of the activity of protein kinase C from a soluble to a particulate fraction in neutrophils, and this redistribution precedes O2- release. Superoxide release stimulated with retinal, however, is largely insensitive to inhibitors of protein kinase C (1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7); staurosporine). These compounds substantially block both O2- release and the phosphorylation of two proteins with molecular masses of about 47 and 49 kDa when the stimulus is PMA. The data indicate that retinal and PMA elicit the formation of active protein kinase C complexes of different natures, or that the mechanism of stimulation of O2- release by retinal does not involve this kinase. The significance of these observations to the common use of retinoids as inhibitors of protein kinase C is discussed.  相似文献   

4.
Neutrophils treated with optimal amounts of tumor promoters that activate protein kinase C (e.g. mezerein) release large quantities of superoxide (O2-) and exhibit an intense phosphorylation of two proteins with molecular masses of approximately 47 and 49 kDa. These cells can also be stimulated synergistically to release a comparable amount of O2-. This involves treatment with a suboptimal amount of a tumor promoter and an agent capable of elevating cellular Ca2+. Neutrophils treated in the former fashion exhibit a redistribution of the activity of protein kinase C from a soluble to a particulate fraction that is stable in the presence of Ca2+ chelators, whereas cells stimulated synergistically do not do so to an appreciable extent (Badwey, J. A., Robinson, J. M., Horn, W., Soberman, R. J., Karnovsky, M. J., and Karnovsky, M. L. (1988) J. Biol. Chem. 263, 2779-2786). In this paper, we report that neutrophils stimulated synergistically do exhibit a significant incorporation of 32P into the 47-kDa protein, but with little labeling of the 49-kDa species. This labeling of the 47-kDa protein was greater than the sum of those observed with each agent added separately but was less than that observed in cells stimulated with optimal amounts of tumor promoters alone. An inhibitor of protein kinase C (1-(5-isoquinolinylsulfonyl)-2-methylpiperazine) blocked O2- release and the phosphorylation of the 47-kDa protein under all conditions of stimulation mentioned, whereas an inhibitor of cyclic nucleotide-dependent kinases had no effect on these phenomena. Thus, labeling of the 47-kDa protein can occur in the absence of a "tight" translocation of protein kinase C to membrane and was always observed during synergy. The data support a role for protein kinase C and the 47-kDa phosphoprotein in the synergistic stimulation of neutrophils.  相似文献   

5.
Protein tyrosine phosphorylation in rabbit peritoneal neutrophils was examined by immunoblotting with antibodies specific for phosphotyrosine. Stimulation of the neutrophils with chemotactic factor fMet-Leu-Phe (10 nM) caused rapid increases of tyrosine phosphorylation of several proteins with apparent molecular masses of (Group A) 54-58 kDa and 100-125 kDa and (Group B) 36-41 kDa. Stimulation of Group A proteins was observed by fMet-Leu-Phe (10 nM, maximum at 20 s) and A23187 (1 microM, 1 min). Stimulation of Group B proteins was observed by fMet-Leu-Phe (ED50 0.15 nM, 1 min), leukotriene B4 (ED50 0.15 nM, 1 min), phorbol 12-myristate 13-acetate (PMA) (ED50 25 ng/ml, 10 min) and partially by ionophore A23187 (1 microM, 1 min). Pretreatment of the cell with the protein kinase inhibitor H-7 (25 microM, 5 min) and PMA (0.1 microgram/ml, 3 min) partially inhibited the fMet-Leu-Phe effect. However, pretreatment of the cells with quin 2/AM (20 microM, 10 min) completely inhibited the fMet-Leu-Phe effect. The results indicate that rapid regulation of tyrosine phosphorylation is an early event occurring in stimulated neutrophils. Furthermore the effect of fMet-Leu-Phe on tyrosine phosphorylation may require Ca2+ mobilization and may partially require the activity of H-7-sensitive protein kinases.  相似文献   

6.
Neutrophils stimulated with activators of protein kinase C (i.e., 4 beta-phorbol 12-myristate 13-acetate; sn-1,2-dioctanoylglycerol) exhibit a dramatic, dose-dependent incorporation of 32P[Pi] into two proteins with molecular weights of ca. 47 and 49kDa. Proteins of the same molecular weights are also labelled when the cells are stimulated with a chemotactic peptide. However, with the latter stimulus, labelling of the 47kDa species is transient whereas that of the 49kDa entity persists. Labelling of both proteins always accompanied the release of O2-stimulated by these agents. The kinetics of labelling are compatible with the involvement of both phosphoproteins in the stimulation of these cells.  相似文献   

7.
The ability of human tumor necrosis factor-alpha (TNF-alpha) and human granulocyte colony stimulating factor (G-CSF) to induce phosphorylation of protein tyrosyl residues in human peripheral neutrophils (PMN) was investigated by Western blot analysis with antiphosphotyrosine antibody. Both TNF-alpha and G-CSF increased the tyrosyl phosphorylation of various proteins, such as species of 54-, 63-, 72-, 83-, 98-, 108-, and 115-kDa proteins. The ligand-stimulated tyrosyl phosphorylation of the 115-kDa protein was time- and concentration-dependent. When the 115-kDa protein was phosphorylated, it was recovered from membrane fractions. The phosphorylation of the 115-kDa protein was inhibited by genistein and alpha-cyano-3-ethoxy-4-hydroxy-5-phenylthiomethylcinnamamide (ST 638), inhibitors of tyrosine kinase (TK), and was enhanced by 1-(5-isoquinoline-sulfonyl) methyl-piperazine dihydrochloride (H-7) and staurosporine, inhibitors of Ca(2+)- and phospholipid-dependent protein kinase (PKC). Similar inhibition by the TK inhibitors and stimulation by the PKC inhibitors were also observed with formylmethionyl-leucyl-phenylalanine (FMLP)-induced superoxide (O2.-) generation by TNF-alpha- or G-CSF-primed PMN. Phosphorylation of the 115-kDa protein occurred in parallel with the ligand-dependent generation of O2.-. These and other observations suggested that substrate proteins for tyrosine kinase, such as the 115-kDa protein, might play critical roles in the mechanism for priming of neutrophils. This is the first report describing that tyrosyl phosphorylation is involved in the priming of neutrophils by G-CSF and TNF-alpha.  相似文献   

8.
Arachidonate activation of the NADPH-oxidase in intact neutrophils and in a cell-free O2- generation system was compared to synergistic activation in response to arachidonate and agents that effect protein phosphorylation. In intact neutrophils, suboptimal doses of retinal which increase protein phosphorylation, or 4B-phorbol 12-myristate 13-acetate (PMA) an activator of protein kinase C, induced minimal O2- release, but primed neutrophils to release enhanced amounts of O2- in response to 2.5 microM arachidonate. In contrast to retinal or PMA, okadaic acid, a specific inhibitor of serine/threonine protein phosphatases, did not induce any release of O2-, but significantly increased the maximal rate and duration of O2- release in response to arachidonate. In the cell-free system, only arachidonate induced O2- generation. Consistent with previous findings, activation of the cell-free system was dependent of the presence of light membranes, cytosol, NADPH, Mg2+, and 82 microM arachidonate. Pretreatment of neutrophils with suboptimal doses of PMA or retinal had little effect on the arachidonate-stimulated release of O2- in cell-free preparations of these cells. However, cytosol (but not light membranes) from PMA or retinal-primed neutrophils was more effective in completing resting membrane NADPH-oxidase activity when compared to cytosol from resting cells. The addition of protein kinase C inhibitors staurosporine and 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine decreased the effectiveness of PMA-primed cytosol to complete the cell-free system, but had little effect on cytosol obtained from cells primed with retinal. The addition of protein phosphatase inhibitors, p-nitrophenyl phosphate or okadaic acid to neutrophil cavitates increased 3-fold the release of O2- in cell-free preparations of these cells. Okadaic acid and p-nitrophenyl phosphate also increased the effectiveness of both cytosol and light membranes to complete the cell-free system when combined with cytosol or light membranes from resting neutrophils, respectively, indicating that both fractions are affected by the inhibition of protein phosphatase activity. These data indicate that increases in protein phosphorylation alone do not lead to the activation of the NADPH-oxidase, but in addition to the requirement of an anionic amphiphile, the release of O2- from intact neutrophils or in the cell-free system is increased by stimulus activation of protein kinase C or more impressively by inhibition of protein phosphatase activity.  相似文献   

9.
The ability of phorbol derivatives to function as stimulating agents for superoxide (O2-) release by guinea pig neutrophils has been evaluated and compared to the known ability of each compound to activate protein kinase C. Those that activate the kinase also stimulate O2- release, while those that are inactive with respect to the kinase have no effect on O2- release. The same correlation was observed with respect to the ability of phorbol esters to induce morphological changes in neutrophils, i.e., vesiculation and reduction in granule content. Certain phenothiazines and naphthalene sulfonamides that are known antagonists of calcium-binding proteins blocked both phorbol ester-induced O2- release and morphological changes in these cells.  相似文献   

10.
In rabbit peritoneal neutrophils prelabeled with [3H] lyso platelet-activating factor, a protein kinase C inhibitor, staurosporine (> 1 microM), increased [3H]phosphatidylethanol ([3H]PEt) level in the presence of ethanol in a concentration- and time-dependent manner, providing evidence for staurosporine activation of phospholipase D (PLD). The staurosporine activation of the enzyme absolutely required both extracellular calcium and cytochalasin B, and was almost completely inhibited by pretreatment of the cells with pertussis toxin (IAP). In a reconstituted system where the purified Gi1 had been incorporated into phospholipid vesicles, staurosporine activated GTPase activity of Gi1 in a concentration-dependent fashion, with a maximal 4-5-fold effect. ADP-ribosylation by IAP of Gi1 in vesicles significantly suppressed the staurosporine activation. As with the GTPase activity of Gi1, GTPase activities of other purified IAP-sensitive G proteins, such as Gi2 and G(o), were significantly stimulated by staurosporine, but the cholera toxin substrate Gs was appreciably less sensitive to the staurosporine stimulation. The staurosporine activation of GTPase was also observed in rabbit neutrophil membranes from control cells, but not in membranes from IAP-treated neutrophils. From these results, we conclude that the staurosporine activation of PLD in rabbit neutrophils is attributed to the direct activation of an IAP-sensitive G protein in a similar manner to receptors occupied by agonists. By contrast, staurosporine failed to activate phosphoinositide-specific phospholipase C (PI-PLC) under the conditions in which it activated PLD, indicating that there exists a PLD activation pathway independent of PI-PLC. Furthermore, it was found that N-acetyl-beta-glucosaminidase release from the granules of intact neutrophils was evoked by staurosporine to almost the same extent as by fMLP (100 nM), but O2- generation was not affected. These results suggest a possibility that PLD pathway plays an important role in enzyme release, but is not sufficient for O2- generation, in rabbit peritoneal neutrophils.  相似文献   

11.
Human peripheral blood polymorphonuclear leukocytes (HPPMN) from healthy individuals are not primed and, hence, weak stimulation-dependent responses are induced by certain stimuli which bind to membrane receptors. When HPPMN were exposed to recombinant human tumor necrosis factor alpha (rHuTNF-alpha) or recombinant human granulocyte colony stimulating factor (rG-CSF), they underwent priming and the rate of superoxide anion (O.-2) generation was increased by subsequent exposure to formyl-methionyl-leucyl-phenylalanine (FMLP) or opsonized zymosan (OZ). However, the degree of enhancement was very small upon exposure to phorbol myristate acetate (PMA) or dioctanoyl glycerol (DOG). The oxygen burst induced by FMLP or OZ was inhibited by genistein and alpha-cyano-3-ethoxy-4-hydroxy-5-phenylthiomethylcinnamamid (ST638), which are inhibitors of tyrosine kinase (TK), and was enhanced by 1-(5-isoquinoline-sulfonyl)-3-methyl-piperazine (H-7) and staurosporine, which are inhibitors of protein kinase C (PKC). Without priming, however, O.-2 generation from HPPMN by high concentrations of FMLP was not inhibited strongly by genistein or ST638. On the contrary, the oxygen burst induced by PMA or DOG was stimulated by genistein or ST638 and was inhibited by H-7 or staurosporine. Furthermore, O.-2 generation by guinea pig peritoneal neutrophils, which are already primed in vivo, was induced markedly by FMLP by a mechanism which was stimulated by a low concentration of genistein or ST638. Thus, FMLP-mediated O.-2-generation of HPPMN is coupled with rHuTNF-alpha- or rG-CSF-priming and is inhibited by TK inhibitors, whereas PMA- or DOG-induced O.-2 generation is not coupled with TNF-alpha or G-CSF-priming and is inhibited by PKC inhibitors. These results suggest that both PKC and TK play critical roles in the regulatory mechanism of priming and NADPH-oxidase activation in neutrophils.  相似文献   

12.
Crosslinking of surface-exposed domains on certain Chlamydomonas flagellar membrane glycoproteins induces their movement within the plane of the flagellar membrane. Previous work has shown that these membrane glycoprotein movements are dependent on a critical concentration of free calcium in the medium and are inhibited reversibly by calcium channel blockers and the protein kinase inhibitors H-7, H-8, and staurosporine. These observations suggest that the flagellum may use a signaling pathway that involves calcium-activated protein phosphorylation to initiate flagellar membrane glycoprotein movements. In order to pursue this hypothesis, we examined the calcium dependence of phosphorylation of flagellar membrane-matrix proteins using an in vitro system containing [gamma-32P]ATP or [35S]ATP gamma S. Using only endogenous enzymes and endogenous substrates found in the membrane-matrix fraction obtained by extraction of flagella with 0.05% Nonidet P-40, we observed both calcium-independent protein phosphorylation and calcium-dependent protein phosphorylation in addition to an active protein dephosphorylation activity. Addition of micromolar free calcium increased the amount of protein phosphorylation severalfold. Calcium-activated protein kinase activity was inhibited by H-7, H-8, and staurosporine, the same protein kinase inhibitors that inhibit the calcium-dependent glycoprotein redistribution in vivo. A small group of polypeptides in the 26-58 kDa range exhibited a dramatic increase in phosphorylation in the presence of 20 microM free calcium. We suggest that Chlamydomonas utilizes the intraflagellar free calcium concentration to regulate the phosphorylation of specific flagellar proteins in the membrane-matrix fraction, one or more of which may be involved in regulating the machinery responsible for flagellar membrane glycoprotein redistribution.  相似文献   

13.
[3H]Arachidonic acid is released after stimulation of rabbit neutrophils with fMet-Leu-Phe or platelet-activating factor (PAF). The release is rapid and dose-dependent, and is inhibited in phorbol 12-myristate 13-acetate (PMA)-treated rabbit neutrophils. The protein kinase C (PKC) inhibitor 1-(5-isoquinoline-sulphonyl)-2-methylpiperazine (H-7) prevents this inhibition. In addition, PMA increases arachidonic acid release in H-7-treated cells stimulated with fMet-Leu-Phe. [3H]Arachidonic acid release, but not the rise in the concentration of intracellular Ca2+, is inhibited in pertussis-toxin-treated neutrophils stimulated with PAF. The diacylglycerol kinase inhibitor R59022 increases the concentration of diacylglycerol and potentiates [3H]arachidonic acid release in neutrophils stimulated with fMet-Leu-Phe. This potentiation is not inhibited by H-7. These results suggest several points. (1) A rise in the intracellular concentration of free Ca2+ is not sufficient for arachidonic acid release in rabbit neutrophils stimulated by physiological stimuli. (2) A functional pertussis-toxin-sensitive guanine nucleotide regulatory protein and/or one or more of the changes produced by phospholipase C activation are necessary for arachidonic acid release produced by physiological stimuli. (3) Agents that stimulate PKC potentiate arachidonic acid release, and this potentiation is not inhibited by H-7. These agents produce their actions in part by direct membrane perturbation.  相似文献   

14.
To examine whether or not the activation of cyclic AMP-dependent protein kinase is coupled to the exocytosis of amylase from rat parotid cells, the effect of protein kinase inhibitors on amylase release and protein phosphorylation was studied. A membrane-permeable inhibitor of cyclic AMP-dependent protein kinase, N-[2-(methylamino)ethyl]-5-isoquinolinesulphonamide (H-8), and peptide fragments of the heat-stable protein kinase inhibitor [PKI-(5-24)-peptide and PKI-(14-24)-amide] strongly inhibited cyclic AMP-dependent protein kinase activity in the cell homogenate. However, H-8 had no inhibitory effect on amylase release from either intact or saponin-permeabilized parotid cells stimulated by isoproterenol or cyclic AMP. Moreover, PKI-(5-24)-peptide and PKI-(14-24)-amide did not inhibit cyclic AMP-evoked amylase release from saponin-permeabilized cells, whereas cyclic AMP-dependent phosphorylations of 21 and 26 kDa proteins in intact or permeabilized cells were markedly inhibited by these inhibitors. These results suggest that cyclic AMP-dependent protein phosphorylation is not directly involved in the exocytosis of amylase regulated by cyclic AMP.  相似文献   

15.
The protein kinase C activators phorbol myristate acetate (PMA), mezerein, oleoylacetylglycerol, and (-)-indolactam V, although without direct effect on arachidonic acid release, greatly enhance the release of platelet arachidonic acid caused by the Ca2+ ionophores A23187 and ionomycin. In contrast, 4 alpha-phorbol 12,13-didecanoate and (+)-indolactam V, which lack the ability to activate kinase C, do not potentiate arachidonate release. Release of arachidonic acid occurs without activation of phospholipase C and is therefore mediated by phospholipase A2. Synergism between PMA and A23187 is not affected by inactivation of the Na+/H+ exchanger with dimethylamiloride. The time course and dose-response for the effect of PMA at 23 degrees C closely correlate with the phosphorylation of a set of relatively "slowly" phosphorylated proteins (P20, P35, P41, P60), but not the rapidly phosphorylated P47 protein. P20 is myosin light chain, and P41 is probably Gi alpha, but the other proteins have not been positively identified. Depletion of metabolic ATP stores by antimycin A plus 2-deoxyglucose abolishes both protein phorphorylation and the potentiation of arachidonate release by PMA, but does not prevent fatty acid release by the ionophores. Similarly, the kinase C inhibitors H-7 and staurosporine produce, respectively, partial and complete inhibition of PMA-potentiated arachidonic acid release and protein phosphorylation, without affecting the direct response to ionophores. These results indicate that protein phosphorylation, mediated by kinase C, promotes the phospholipase A2 dependent release of arachidonic acid in platelets when intracellular Ca2+ is elevated by Ca2+ ionophores.  相似文献   

16.
We investigated activation of mitogen-activated protein kinase (MAPK) subtype cascades in human neutrophils stimulated by IL-1beta. IL-1beta induced phosphorylation and activation of p38 MAPK and phosphorylation of MAPK kinase-3/6 (MKK3/6). Maximal activation of p38 MAPK was obtained by stimulation of cells with 300 U/ml IL-1beta for 10 min. Extracellular signal-regulated kinase (ERK) was faintly phosphorylated and c-Jun N-terminal kinase (JNK) was not phosphorylated by IL-1beta. IL-1beta primed neutrophils for enhanced release of superoxide (O(2)(-)) stimulated by FMLP in parallel with increased phosphorylation of p38 MAPK. IL-1beta also induced O(2)(-) release and up-regulation of CD11b and CD15, and both responses were inhibited by SB203580 (p38 MAPK inhibitor), suggesting that p38 MAPK activation mediates IL-1beta-induced O(2)(-) release and up-regulation of CD11b and CD15. Combined stimulation of neutrophils with IL-1beta and G-CSF, a selective activator of the ERK cascade, resulted in the additive effects when the priming effect and phosphorylation of p38 MAPK and ERK were assessed. IL-1beta induced phosphorylation of ERK and JNK as well as p38 MAPK in human endothelial cells. These findings suggest that 1) in human neutrophils the MKK3/6-p38 MAPK cascade is selectively activated by IL-1beta and activation of this cascade mediates IL-1beta-induced O(2)(-) release and up-regulation of CD11b and CD15, and 2) the IL-1R-p38 MAPK pathway and the G-CSF receptor-ERK pathway work independently for activation of neutrophils.  相似文献   

17.
A 40000 g supernatant fraction from extracts of germinating wheat ( Triticum turgidum Desf. cv. Edmore) endosperm contains protein kinase activity that phosphorylates several endogenous proteins. In vitro incorporation of radiolabel from [32P]-ATP into phosphoproteins was maximal in the presence of 1 m M CaCl2 and 5 m M MgCl2Ca2+ at micromolar concentrations greatly stimulated the phosphorylation of 49 and 47 kDa polypeptides and also inhibited the phosphorylation of a few specific polypeptides. The phosphorylation of the 49 and 47 kDa polypeptides was present at 2 days after seed germination and was maximal at 8 days. Quantitative protein changes were also detected during the seed germination, but differences could not be correlated with changes in protein phosphorylation. Phosphoamino acid analysis by two dimensional thin-layer electrophoresis showed that the Ca2+-dependent protein kinase phosphorylates a serine residue of the 47 kDa polypeptide. Ca2+-dependent protein kinase phosphorylates a serine residue of the 47 KDa polypeptide. Ca2+ dependent protein phosphorylktion was inhibited by phenothiazine-derived drugs. Addition of S-adenosylmethionine to the in vitro phosphorylation reaction specifically inhibited the Ca2+-dependent protein phosphorylation.  相似文献   

18.
Protein phosphorylation plays a central role in mediating abscisic acid (ABA) signaling transduction in plant cells, whereas many of the sensory proteins involving in ABA signaling pathway remain unclear. Here, using a modified in vitro kinase assay, our results showed that ABA and H2O2 induced a rapid activation of total protein kinases and calcium dependent protein kinases in the leaves of maize seedlings. However, ABA-induced activation of protein kinases was inhibited by reactive oxygen species (ROS) inhibitors or scavengers. Protein kinase inhibitors decelerated not only the ABA and H2O2 -induced kinase activity but also ABA or H2O2-induced antioxidant enzyme activity. Protein phosphorylation caused by ABA and H2O2 preceded ABA or H2O2 -induced antioxidant defense obviously. Using in-gel kinase assays, our results showed that several protein kinases with molecular masses of 66kDa, 52kDa, 49kDa and 35kDa respectively might mediate ABA and H2O2-induced antioxidant defense. And the 66kDa and 49kDa protein kinases may act downstream of ROS, and the 52kDa and 35kDa protein kinases may act between ABA and ROS in ABA-induced antioxidant defensive signaling.  相似文献   

19.
This experiment was performed to clarify the role of protein kinase C (PKC) delta in NADPH oxidase-dependent O(2-) production and actin polymerization followed by phagocytosis in neutrophils. Bovine neutrophils and human neutrophil-like differentiated HL-60 (dHL-60) cells were stimulated with serum-opsonized zymosan (OZ) and fMet-Leu-Phe (fMLP), respectively. Rottlerin, a specific inhibitor of PKCdelta, attenuated the production of O(2-) from NADPH oxidase in both neutrophils and dHL-60 cells. However, it did not inhibit the translocation of p47(phox) from the cytosol to the membrane in either type of cell or the phosphorylation of p47(phox) in dHL-60 cells. GF109203X (GFX), an inhibitor of cPKC, attenuated not only the production of O(2-) but also the translocation of p47(phox) in both cells. Furthermore, rottlerin significantly attenuated the ingestion of opsonized particles and the formation of F-actin in OZ-stimulated neutrophils, whereas, GFX did not affect those phagocytic processes. These results suggest that both PKCdelta and cPKC regulate NADPH oxidase through different pathways, but only PKCdelta regulates the phagocytic function in neutrophils.  相似文献   

20.
蛋白磷酸化在植物细胞脱落酸(ABA)介导的信号转导中起重要作用。然而,很多参与ABA信号途径的蛋白元件仍不清楚。使用改进的体外激酶试验方法的研究结果表明,在玉米叶片中,ABA和H2O2能够快速活化蛋白激酶总活性和Ca2+依赖型蛋白激酶总活性;ABA诱导的蛋白激酶总活性增加可以被活性氧的抑制剂和清除剂抑制,蛋白激酶抑制剂不仅可以降低ABA和H2O2诱导的激酶活性增加,而且也可以弱化它们对抗氧化防护酶活性的诱导作用;ABA和H2O2引发的蛋白磷酸化作用显著居先于它们诱导的抗氧化防护作用。使用凝胶激酶试验方法进行研究发现,一组分子量分别为66kDa, 52kDa, 49kDa和35kDa的蛋白激酶可能介导了ABA和H2O2诱导的抗氧化防护反应,并且66kDa和49kDa的蛋白激酶可能在ROS的下游起作用, 而52kDa和35kDa的蛋白激酶可能在ABA和ROS的下游起作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号