首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the isolation and characterization of pds1 mutants in Saccharomyces cerevisiae. The initial pds1-1 allele was identified by its inviability after transient exposure to microtubule inhibitors and its precocious dissociation of sister chromatids in the presence of these microtubule inhibitors. These findings suggest that pds1 mutants might be defective in anaphase arrest that normally is imposed by a spindle-damage checkpoint. To further examine a role for Pds1p in anaphase arrest, we compared the cell cycle arrest of pds1 mutants and PDS1 cells after: (a) the inactivation of Cdc16p or Cdc23p, two proteins that are required for the degradation of mitotic cyclins and are putative components of the yeast anaphase promoting complex (APC); (b) the inactivation of Cdc20p, another protein implicated in the degradation of mitotic cyclins; and (c) the inactivation of Cdc13 protein or gamma irradiation, two circumstances that induce a DNA- damage checkpoint. Under all these conditions, anaphase is inhibited in PDS1 cells but not in pds1 mutants. From these results we suggest that Pds1 protein is an anaphase inhibitor in PDS1 cells but not in pds1 mutants. From these results we suggest that Pds1 protein is an anaphase inhibitor that plays a critical role in the control of anaphase by both APC and checkpoints. We also show that pds1 mutants exit mitosis and initiate new rounds of cell division after gamma irradiation and Cdc13p inactivation but no after nocodazole-treatment or inactivation of Cdc16p, Cdc20p or Cdc23p function. Therefore, in the DNA-damage checkpoint, Pds1p is required for the inhibition of cytokinesis and DNA replication as well as anaphase. The role of Pds1 protein in anaphase inhibition and general cell cycle regulation is discussed.  相似文献   

2.
In budding yeast, anaphase initiation is controlled by ubiquitin-dependent degradation of Pds1p. Analysis of pds1 mutants implicated Pds1p in the DNA damage, spindle assembly, and S-phase checkpoints. Though some components of these pathways are known, others remain to be identified. Moreover, the essential function of Pds1p, independent of its role in checkpoint control, has not been elucidated. To identify loci that genetically interact with PDS1, we screened for dosage suppressors of a temperature-sensitive pds1 allele, pds1-128, defective for checkpoint control at the permissive temperature and essential for viability at 37 degrees C. Genetic and functional interactions of two suppressors are described. RAD23 and DDI1 suppress the temperature and hydroxyurea, but not radiation or nocodazole, sensitivity of pds1-128. rad23 and ddi1 mutants are partially defective in S-phase checkpoint control but are proficient in DNA damage and spindle assembly checkpoints. Therefore, Rad23p and Ddi1p participate in a subset of Pds1p-dependent cell cycle controls. Both Rad23p and Ddi1p contain ubiquitin-associated (UBA) domains which are required for dosage suppression of pds1-128. UBA domains are found in several proteins involved in ubiquitin-dependent proteolysis, though no function has been assigned to them. Deletion of the UBA domains of Rad23p and Ddi1p renders cells defective in S-phase checkpoint control, implicating UBA domains in checkpoint signaling. Since Pds1p destruction, and thus checkpoint regulation of mitosis, depends on ubiquitin-dependent proteolysis, we propose that the UBA domains functionally interact with the ubiquitin system to control Pds1p degradation in response to checkpoint activation.  相似文献   

3.
Sister-chromatid separation at the metaphase–anaphase transition is regulated by a proteolytic cascade. Destruction of the securin Pds1p liberates the Esp1p separase, which ultimately targets the mitotic cohesin Mcd1p/Scc1p for destruction. Pds1p stabilization by the spindle or DNA damage checkpoints prevents sister-chromatid separation while mutants lacking PDS1 (pds1Δ) are temperature sensitive for growth due to elevated chromosome loss. This report examined the role of the budding yeast Pds1p in meiotic progression using genetic, cytological, and biochemical assays. Similar to its mitotic function, Pds1p destruction is required for metaphase I–anaphase I transition. However, even at the permissive temperature for growth, pds1Δ mutants arrest with prophase I spindle and nuclear characteristics. This arrest was partially suppressed by preventing recombination initiation or by inactivating a subset of recombination checkpoint components. Further studies revealed that Pds1p is required for recombination in both double-strand-break formation and synaptonemal complex assembly. Although deleting PDS1 did not affect the degradation of the meiotic cohesin Rec8p, Mcd1p was precociously destroyed as cells entered the meiotic program. This role is meiosis specific as Mcd1p destruction is not altered in vegetative pds1Δ cultures. These results define a previously undescribed role for Pds1p in cohesin maintenance, recombination, and meiotic progression.  相似文献   

4.
In Saccharomyces cerevisiae, the metaphase-anaphase transition is initiated by the anaphase-promoting complex-dependent degradation of Pds1, whereby Esp1 is activated to promote sister chromatid separation. Although this is a fundamental step in the cell cycle, little is known about the regulation of Esp1 and how loss of cohesion is coordinated with movement of the anaphase spindle. Here, we show that Esp1 has a novel role in promoting anaphase spindle elongation. The localization of Esp1 to the spindle apparatus, analyzed by live cell imaging, is regulated in a manner consistent with a function during anaphase B. The protein accumulates in the nucleus in G2 and is mobilized onto the spindle pole bodies and spindle midzone at anaphase onset, where it persists into midanaphase. Association with Pds1 occurs during S phase and is required for efficient nuclear targeting of Esp1. Spindle association is not fully restored in pds1 mutants expressing an Esp1-nuclear localization sequence fusion protein, suggesting that Pds1 is also required to promote Esp1 spindle binding. In agreement, Pds1 interacts with the spindle at the metaphase-anaphase transition and a fraction remains at the spindle pole bodies and the spindle midzone in anaphase cells. Finally, mutational analysis reveals that the conserved COOH-terminal region of Esp1 is important for spindle interaction.  相似文献   

5.
DeMase D  Zeng L  Cera C  Fasullo M 《DNA Repair》2005,4(1):59-69
In response to DNA damage, the Saccharomyces cerevisiae securin Pds1 blocks anaphase promotion by inhibiting ESP1-dependent degradation of cohesins. PDS1 is positioned downstream of the MEC1- and RAD9-mediated DNA damage-induced signal transduction pathways. Because cohesins participate in postreplicative repair and the pds1 mutant is radiation sensitive, we identified DNA repair pathways that are PDS1-dependent. We compared the radiation sensitivities and recombination phenotypes of pds1, rad9, rad51 single and double mutants, and found that whereas pds1 rad9 double mutants were synergistically more radiation sensitive than single mutants, pds1 rad51 mutants were not. To determine the role of PDS1 in recombinational repair pathways, we measured spontaneous and DNA damage-associated sister chromatid exchanges (SCEs) after exposure to X rays, UV and methyl methanesulfonate (MMS) and after the initiation of an HO endonuclease-generated double-strand break (DSB). The rates of spontaneous SCE and frequencies of DNA damage-associated SCE were similar in wild type and pds1 strains, but the latter exhibited reduced viability after exposure to DNA damaging agents. To determine whether pds1 mutants were defective in other pathways for DSB repair, we measured both single-strand annealing (SSA) and non-homologous end joining (NHEJ) in pds1 mutants. We found that the pds1 mutant was defective in SSA but efficient at ligating cohesive ends present on a linear plasmid. We therefore suggest that checkpoint genes control different pathways for DSB repair, and PDS1 and RAD9 have different roles in recombinational repair.  相似文献   

6.
At the metaphase to anaphase transition, chromosome segregation is initiated by the splitting of sister chromatids. Subsequently, spindles elongate, separating the sister chromosomes into two sets. Here, we investigate the cell cycle requirements for spindle elongation in budding yeast using mutants affecting sister chromatid cohesion or DNA replication. We show that separation of sister chromatids is not sufficient for proper spindle integrity during elongation. Rather, successful spindle elongation and stability require both sister chromatid separation and anaphase-promoting complex activation. Spindle integrity during elongation is dependent on proteolysis of the securin Pds1 but not on the activity of the separase Esp1. Our data suggest that stabilization of the elongating spindle at the metaphase to anaphase transition involves Pds1-dependent targets other than Esp1.  相似文献   

7.
The accurate segregation of sister chromatids at the metaphase to anaphase transition in Saccharomyces cerevisiae is regulated by the activity of the anaphase-promoting complex or cyclosome (APC/C). In the event of spindle damage or monopolar spindle attachment, the spindle checkpoint is activated and inhibits APC/C activity towards the anaphase inhibitor Pds1p, resulting in a cell cycle arrest at metaphase. We have identified a novel allele of a gene for an APC/C subunit, cdc16-183 , in S. cerevisiae. cdc16-183 mutants arrest at metaphase at 37°C, and are supersensitive to the spindle-damaging agent nocodazole, which activates the spindle checkpoint, at lower temperatures. This supersensitivity to nocodazole cannot be explained by impairment of the spindle checkpoint pathway, as cells respond normally to spindle damage with a stable metaphase arrest and high levels of Pds1p. Despite showing metaphase arrest at G2/M at 37°C, cdc16-183 mutants are able to perform tested G1 functions normally at this temperature. This is the first demonstration that a mutation in a core APC/C subunit can result in a MAD2-dependent arrest at the restrictive temperature. Our results suggest that the cdc16-183 mutant may have a novel APC/C defect(s) that mimics or activates the spindle checkpoint pathway.Communicated by C. P. Hollenberg  相似文献   

8.
Sister chromatid cohesion is established during S phase and maintained until anaphase. The cohesin complex (Mcd1p/Scc1p, Smc1p, Smc3p Irr1p/Scc3p in budding yeast) serves a structural role as it is required at all times when cohesion exists. Pds5p co-localizes temporally and spatially with cohesin on chromosomes but is thought to serve as a regulator of cohesion maintenance during mitosis. In contrast, Ctf7p/Eco1p is required during S phase for establishment but is not required during mitosis. Here we provide genetic and biochemical evidence that the pathways of cohesion establishment and maintenance are intimately linked. Our results show that mutants in ctf7 and pds5 are synthetically lethal. Moreover, over-expression of either CTF7 or PDS5 exhibits reciprocal suppression of the other mutant’s temperature sensitivity. The suppression by CTF7 is specific for pds5 mutants as CTF7 over-expression increases the temperature sensitivity of an mcd1 mutant but has no effect on smc1 or smc3 mutants. Three additional findings provide new insights into the process of cohesion establishment. First, over-expression of ctf7 alleles deficient in acetylase activity exhibit significantly reduced suppression of the pds5 mutant but exacerbated toxicity to the mcd1 mutant. Second, using chromosome spreads and chromatin immuno-precipitation, we find neither cohesin complex nor Pds5p chromosomal localization is altered in ctf7 mutants. Finally, biochemical analysis reveals that Ctf7p and Pds5p co-immunoprecipitate, which physically links these regulators of cohesion establishment and maintenance. We propose a model whereby Ctf7p and Pds5p co-operate to facilitate efficient establishment by mediating changes in cohesin complex on chromosomes after its deposition.  相似文献   

9.
Sister chromatid cohesion enables chromosomes to achieve bipolar attachment to the mitotic spindle and its dissolution is required for chromosome segregation. The cohesin complex serves as the primary molecular glue responsible for cohesion. Pds5p binds to the same chromosomal loci as the cohesin complex but plays a distinct role as a regulator of cohesion maintenance. Catenation between sister chromatids must also be removed by Topoisomerase II (Top2p) enzymatic activity to enable chromosome segregation. We identified TOP2 as a high-copy suppressor of the temperature sensitivity of pds5 mutants. TOP2 suppression is specific for pds5 mutants as it does not suppress mutants in the cohesin complex. TOP2 suppresses mini-chromosome loss in pds5 mutants indicating that it rescues a chromosome segregation defect. Surprisingly, TOP2 over-expression fails to suppress the cohesion defect of pds5 mutants, suggesting that it suppresses an additional and as yet uncharacterized defect in pds5 mutants that is essential for viability. A catalytically dead TOP2 allele suppresses pds5 temperature sensitivity, suggesting that suppression is unrelated to Top2p enzymatic function. Consistent with this idea, when the pds5 mutant is combined with the top2-4 mutant, which accumulates DNA catenanes due to defective enzymatic activity, the double mutants exhibit synthetic sickness indicating that increased catenation is toxic to pds5 cells. Our results suggest that Pds5p and Top2p cooperate to promote proper chromosome segregation by a mechanism unrelated to either cohesion or catenation/decatenation.  相似文献   

10.
Budding yeast PDS5 is an essential gene in mitosis and is required for chromosome condensation and sister chromatid cohesion. Here we report that PDS also is required in meiosis. Pds5p localizes on chromosomes at all stages during meiotic cycle, except anaphase I. PDS5 plays an important role at first meiotic prophase. Failure in function of PDS5 causes premature separation of chromosomes. The loading of Pds5p onto chromosome requires the function of REC8, but the association of Rec8p with chromosome is independent of PDS5. Mutant analysis and live cell imaging indicate that PDS5 play a role in meiosis II as well.  相似文献   

11.
Ross KE  Cohen-Fix O 《Genetics》2003,165(2):489-503
Cdh1p, a substrate specificity factor for the cell cycle-regulated ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C), promotes exit from mitosis by directing the degradation of a number of proteins, including the mitotic cyclins. Here we present evidence that Cdh1p activity at the M/G(1) transition is important not only for mitotic exit but also for high-fidelity chromosome segregation in the subsequent cell cycle. CDH1 showed genetic interactions with MAD2 and PDS1, genes encoding components of the mitotic spindle assembly checkpoint that acts at metaphase to prevent premature chromosome segregation. Unlike cdh1delta and mad2delta single mutants, the mad2delta cdh1delta double mutant grew slowly and exhibited high rates of chromosome and plasmid loss. Simultaneous deletion of PDS1 and CDH1 caused extensive chromosome missegregation and cell death. Our data suggest that at least part of the chromosome loss can be attributed to kinetochore/spindle problems. Our data further suggest that Cdh1p and Sic1p, a Cdc28p/Clb inhibitor, have overlapping as well as nonoverlapping roles in ensuring proper chromosome segregation. The severe growth defects of both mad2delta cdh1delta and pds1delta cdh1dDelta strains were rescued by overexpressing Swe1p, a G(2)/M inhibitor of the cyclin-dependent kinase, Cdc28p/Clb. We propose that the failure to degrade cyclins at the end of mitosis leaves cdh1delta mutant strains with abnormal Cdc28p/Clb activity that interferes with proper chromosome segregation.  相似文献   

12.
In most eukaryotic cells, DNA replication is confined to S phase of the cell cycle [1]. During this interval, S-phase checkpoint controls restrain mitosis until replication is complete [2]. In budding yeast, the anaphase inhibitor Pds1p has been associated with the checkpoint arrest of mitosis when DNA is damaged or when mitotic spindles have formed aberrantly [3] [4], but not when DNA replication is blocked with hydroxyurea (HU). Previous studies have implicated the protein kinase Mec1p in S-phase checkpoint control [5]. Unlike mec1 mutants, pds1 mutants efficiently inhibit anaphase when replication is blocked. This does not, however, exclude an essential S-phase checkpoint function of Pds1 beyond the early S-phase arrest point of a HU block. Here, we show that Pds1p is an essential component of a previously unsuspected checkpoint control system that couples the completion of S phase with mitosis. Further, the S-phase checkpoint comprises at least two distinct pathways. A Mec1p-dependent pathway operates early in S phase, but a Pds1p-dependent pathway becomes essential part way through S phase.  相似文献   

13.
Ubiquitin-mediated proteolysis triggered by the anaphase-promoting complex/cyclosome (APC/C) is essential for sister chromatid separation and the mitotic exit. Like ubiquitylation, protein modification with the small ubiquitin-related modifier SUMO appears to be important during mitosis, because yeast cells impaired in the SUMO-conjugating enzyme Ubc9 were found to be blocked in mitosis and defective in cyclin degradation. Here, we analysed the role of SUMOylation in the metaphase/anaphase transition and in APC/C-mediated proteolysis in Saccharomyces cerevisiae. We show that cells depleted of Ubc9 or Smt3, the yeast SUMO protein, mostly arrested with undivided nuclei and with high levels of securin Pds1. This metaphase block was partially relieved by a deletion of PDS1. The absence of Ubc9 or Smt3 also resulted in defects in chromosome segregation. Temperature-sensitive ubc9-2 mutants were delayed in proteolysis of Pds1 and of cyclin Clb2 during mitosis. The requirement of SUMOylation for APC/C-mediated degradation was tested more directly in G1-arrested cells. Both ubc9-2 and smt3-331 mutants were defective in efficient degradation of Pds1 and mitotic cyclins, whereas proteolysis of unstable proteins that are not APC/C substrates was unaffected. We conclude that SUMOylation is needed for efficient proteolysis mediated by APC/C in budding yeast.  相似文献   

14.
Cell cycle progression of somatic cells depends on net mass accumulation. In Saccharomyces cerevisiae the cAMP-dependent kinases (PKAs) promote cytoplasmic growth and modulate the growth-regulated mechanism triggering the begin of DNA synthesis. By altering the cAMP signal in budding yeast cells we show here that mitotic events can also depend on growth. In fact, the hyperactivation of PKAs permanently inhibited both anaphase and exit from mitosis when cell growth was repressed. In S. cerevisiae the anaphase promoting complex (APC) triggers entry into anaphase by mediating the degradation of Pds1p. The cAMP pathway activation was lethal together with a partial impairment of the Cdc16p APC subunit, causing a preanaphase arrest, and conversely low PKA activity suppressed the lethality of cdc16-1 cells. Deregulated PKAs partially prevented the decrease of Pds1p intracellular levels concomitantly with the anaphase inhibition, and the PKA-dependent preanaphase arrest could be suppressed in pds1(-) cells. Thus, the cAMP pathway and APC functionally interact in S. cerevisiae and Pds1p is required for the cAMP-mediated inhibition of chromosome separation. Exit from mitosis requires APC, Cdc15p, and the polo-like Cdc5p kinase. PKA hyperactivation and a cdc15 mutation were synthetically lethal and brought to a telophase arrest. Finally, a low cAMP signal allowed cell division at a small cell size and suppressed the lethality of cdc15-2 or cdc5-1 cells. We propose that mitosis progression and the M/G1 phase transition specifically depend on cell growth through a mechanism modulated by PKAs and interacting with the APC/CDC15/CDC5 mitotic system. A possible functional antagonism between PKAs and the mitosis promoting factor is also discussed.  相似文献   

15.
Pds5p and the cohesin complex are required for sister chromatid cohesion and localize to the same chromosomal loci over the same cell cycle window. However, Pds5p and the cohesin complex likely have distinct roles in cohesion. We report that pds5 mutants establish cohesion, but during mitosis exhibit precocious sister dissociation. Thus, unlike the cohesin complex, which is required for cohesion establishment and maintenance, Pds5p is required only for maintenance. We identified SMT4, which encodes a SUMO isopeptidase, as a high copy suppressor of both the temperature sensitivity and precocious sister dissociation of pds5 mutants. In contrast, SMT4 does not suppress temperature sensitivity of cohesin complex mutants. Pds5p is SUMO conjugated, with sumoylation peaking during mitosis. SMT4 overexpression reduces Pds5p sumoylation, whereas smt4 mutants have increased Pds5p sumoylation. smt4 mutants were previously shown to be defective in cohesion maintenance during mitosis. These data provide the first link between a protein required for cohesion, Pds5p, and sumoylation, and suggest that Pds5p sumoylation promotes the dissolution of cohesion.  相似文献   

16.
Photosynthetic organisms synthesize carotenoids for harvesting light energy, photoprotection, and maintaining the structure and function of photosynthetic membranes. A light-sensitive, phytoene-accumulating mutant, pds1-1, was isolated in Chlamydomonas reinhardtii and found to be genetically linked to the phytoene desaturase (PDS) gene. PDS catalyzes the second step in carotenoid biosynthesis-the conversion of phytoene to ζ-carotene. Decreased accumulation of downstream colored carotenoids suggested that the pds1-1 mutant is leaky for PDS activity. A screen for enhancers of the pds1-1 mutation yielded the pds1-2 allele, which completely lacks PDS activity. A second independent null mutant (pds1-3) was identified using DNA insertional mutagenesis. Both null mutants accumulate only phytoene and no other carotenoids. All three phytoene-accumulating mutants exhibited slower growth rates and reduced plating efficiency compared to wild-type cells and white phytoene synthase mutants. Insight into amino acid residues important for PDS activity was obtained through the characterization of intragenic suppressors of pds1-2. The suppressor mutants fell into three classes: revertants of the pds1-1 point mutation, mutations that changed PDS amino acid residue Pro64 to Phe, and mutations that converted PDS residue Lys90 to Met. Characterization of pds1-2 intragenic suppressors coupled with computational structure prediction of PDS suggest that amino acids at positions 90 and 143 are in close contact in the active PDS enzyme and have important roles in its structural stability and/or activity.  相似文献   

17.
Saccharomyces cerevisiae proteins Cdc4 and Cdc20 contain WD40 repeats and participate in proteolytic processes. However, they are thought to act at two different stages of the cell cycle: Cdc4 is involved in the proteolysis of the Cdk inhibitor, Sic1, necessary for G(1)/S transition, while Cdc20 mediates anaphase-promoting complex-dependent degradation of anaphase inhibitor Pds1, a process necessary for the onset of chromosome segregation. We have isolated three mutant alleles of CDC4 (cdc4-10, cdc4-11, and cdc4-16) which suppress the nuclear division defect of cdc20-1 cells. However, the previously characterized mutation cdc4-1 and a new allele, cdc4-12, do not alleviate the defect of cdc20-1 cells. This genetic interaction suggests an additional role for Cdc4 in G(2)/M. Reexamination of the cdc4-1 mutant revealed that, in addition to being defective in the onset of S phase, it is also defective in G(2)/M transition when released from hydroxyurea-induced S-phase arrest. A second function for CDC4 in late S or G(2) phase was further confirmed by the observation that cells lacking the CDC4 gene are arrested both at G(1)/S and at G(2)/M. We subsequently isolated additional temperature-sensitive mutations in the CDC4 gene (such as cdc4-12) that render the mutant defective in both G(1)/S and G(2)/M transitions at the restrictive temperature. While the G(1)/S block in both cdc4-12 and cdc4Delta mutants is abolished by the deletion of the SIC1 gene (causing the mutants to be arrested predominantly in G(2)/M), the preanaphase arrest in the cdc4-12 mutant is relieved by the deletion of PDS1. Collectively, these observations suggest that, in addition to its involvement in the initiation of S phase, Cdc4 may also be required for the onset of anaphase.  相似文献   

18.
E J Schott  M A Hoyt 《Genetics》1998,148(2):599-610
We identified an allele of Saccharomyces cerevisiae CDC20 that exhibits a spindle-assembly checkpoint defect. Previous studies indicated that loss of CDC20 function caused cell cycle arrest prior to the onset of anaphase. In contrast, CDC20-50 caused inappropriate cell cycle progression through M phase in the absence of mitotic spindle function. This effect of CDC20-50 was dominant over wild type and was eliminated by a second mutation causing loss of function, suggesting that it encodes an overactive form of Cdc20p. Overexpression of CDC20 was found to cause a similar checkpoint defect, causing bypass of the preanaphase arrest produced by either microtubule-depolymerizing compounds or MPS1 overexpression. CDC20 overexpression was also able to overcome the anaphase delay caused by high levels of the anaphase inhibitor Pds1p, but not a mutant form immune to anaphase-promoting complex- (APC-)mediated proteolysis. CDC20 overexpression was unable to promote anaphase in cells deficient in APC function. These findings suggest that Cdc20p is a limiting factor that promotes anaphase entry by antagonizing Pds1p. Cdc20p may promote the APC-dependent proteolytic degradation of Pds1p and other factors that act to inhibit cell cycle progression through mitosis.  相似文献   

19.
Budding yeast Mec1, encoded by the yeast ATR/ATM homolog, negatively regulates cell cycle progression by activating Rad53 (Chk2) and Chk1, two parallel downstream checkpoint pathways. Chk1 phosphorylates Pds1 (securin), which prevents Pds1 degradation. We determined whether activation of both downstream pathways is required to establish G2 arrest in response to double-strand breaks (DSBs). In a hypomorphic mec1 mutant, Rad53 activation was not required to establish G2 arrest triggered by a single HO endonuclease-generated DSB. However, Pds1 phosphorylation did correlate with G2 arrest and mec1-21 pds1 cells did not arrest in G2 after exposure to ionizing radiation. The G2 checkpoint genes, CHK1 and PDS1, did confer radiation resistance in mec1-21, indicating that CHK1-mediated pathway is functional in the mec1 hypomorph. Thus, phosphorylation of Pds1 but not Rad53 correlates with G2 arrest in response to DSBs in the mec1 hypomorphic mutant.  相似文献   

20.
In Saccharomyces cerevisiae, Mec1/ATR plays a primary role in sensing and transducing checkpoint signals in response to different types of DNA lesions, while the role of the Tel1/ATM kinase in DNA damage checkpoints is not as well defined. We found that UV irradiation in G(1) in the absence of Mec1 activates a Tel1/MRX-dependent checkpoint, which specifically inhibits the metaphase-to-anaphase transition. Activation of this checkpoint leads to phosphorylation of the downstream checkpoint kinases Rad53 and Chk1, which are required for Tel1-dependent cell cycle arrest, and their adaptor Rad9. The spindle assembly checkpoint protein Mad2 also partially contributes to the G(2)/M arrest of UV-irradiated mec1Delta cells independently of Rad53 phosphorylation and activation. The inability of UV-irradiated mec1Delta cells to undergo anaphase can be relieved by eliminating the anaphase inhibitor Pds1, whose phosphorylation and stabilization in these cells depend on Tel1, suggesting that Pds1 persistence may be responsible for the inability to undergo anaphase. Moreover, while UV irradiation can trigger Mec1-dependent Rad53 phosphorylation and activation in G(1)- and G(2)-arrested cells, Tel1-dependent checkpoint activation requires entry into S phase independently of the cell cycle phase at which cells are UV irradiated, and it is decreased when single-stranded DNA signaling is affected by the rfa1-t11 allele. This indicates that UV-damaged DNA molecules need to undergo structural changes in order to activate the Tel1-dependent checkpoint. Active Clb-cyclin-dependent kinase 1 (CDK1) complexes also participate in triggering this checkpoint and are required to maintain both Mec1- and Tel1-dependent Rad53 phosphorylation, suggesting that they may provide critical phosphorylation events in the DNA damage checkpoint cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号