首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The defensive effects of ants against aphid predators have been well documented in the mutualistic relationship of aphids and their attending ants. However, it is not clear whether ant attendance has any direct effect on the aphids' growth and reproduction. Through field experiments, this study evaluates the benefits and, in particular, the costs of ant attendance to aphid colonies, focusing on the drepanosiphid aphid Tuberculatus quercicola which is associated with the Daimyo oak, Quercus dentata , and which is always attended by the red wood ant Formica yessensis . Ant attendance was clearly beneficial to the aphid; the exclusion of ants led to a significant increase in the extinction rate of aphid colonies. However, MANOVA and randomized block ANOVA indicated that in colonies continuously attended by ants, aphids had significantly smaller body size and produced a smaller number of embryos than in colonies isolated from ants when they were reared under homogeneous host conditions free from natural enemies. Thus, ant attendance had a negative influence on the growth and reproduction of the aphids, even though it contributed to the greater longevity of the aphid colonies. We hypothesize that ant-attended aphids are under intense selective pressures that act against aphid clones which fail to attract many ants, so that aphids have developed an adaptive mechanism to allocate a larger fraction of resources to the honeydew when they are requested to do so by the ants in order to ensure the ants' consistent visitation.  相似文献   

2.
Juvenile Atlantic salmon or parr ( Salmo salar L.) maintain station at certain locations in flowing stream water. This position choice is assumed to involve the maximization of energy intake, based upon food availability which is usually directly related to water flow rate. Conversely energy expenditure, including station holding behaviour, foraging and defending preferred sites, is inversely related to water flow rate. Adaptations of parr to life in fast flows implies that station holding is energetically inexpensive at water speeds up to the maximum sustained holding speed, which is fish specific, thus the most important energetic consideration for parr is the ability to maximize food intake. Ten groups of three parr were each observed for 60 min within an artificial stream tank over a heterogeneous substratum. Individual position choice and behaviour were recorded continuously. For each location chosen by the parr the potential upstream line‐of‐sight (LOS), defined as the maximum distance upstream that the water surface would be visible, was calculated. At those sites where foraging behaviour was observed, the mean upstream potential LOS was significantly greater than at sites where other behaviours were observed and at 400 randomly generated sites within the tank. When foraging, parr usually take food from the stream drift and there is a significant time expenditure on food location, identification and catching. Results presented here would seem to confirm that to maximize time available to make these decisions, a fish would be expected to maximize the distance over which it can observe potential food particles.  相似文献   

3.
Rowles AD  O'Dowd DJ 《Oecologia》2009,158(4):709-716
The indirect effects of biological invasions on native communities are poorly understood. Disruption of native ant communities following invasion by the Argentine ant (Linepithema humile) is widely reported to lead indirectly to the near complete collapse of seed dispersal services. In coastal scrub in southeastern Australia, we examined seed dispersal and handling of two native and two invasive alien plant species at Argentine ant-invaded or -uninvaded sites. The Argentine ant virtually eliminates the native keystone disperser Rhytidoponera victoriae, but seed dispersal did not collapse following invasion. Indeed, Argentine ants directly accounted for 92% of all ant-seed interactions and sustained overall seed dispersal rates. Nevertheless, dispersal quantity and quality among seed species differed between Argentine ant-invaded and -uninvaded sites. Argentine ants removed significantly fewer native Acacia retinodes seeds, but significantly more small seeds of invasive Polygala myrtifolia than did native ants at uninvaded sites. They also handled significantly more large seeds of A. sophorae, but rarely moved them >5 cm, instead recruiting en masse, consuming elaiosomes piecemeal and burying seeds in situ. In contrast, Argentine ants transported and interred P. myrtifolia seeds in their shallow nests. Experiments with artificial diaspores that varied in diaspore and elaiosome masses, but kept seed morphology and elaiosome quality constant, showed that removal by L. humile depended on the interaction of seed size and percentage elaiosome reward. Small diaspores were frequently taken, independent of high or low elaiosome reward, but large artificial diaspores with high reward instead elicited mass recruitment by Argentine ants and were rarely moved. Thus, Argentine ants appear to favour some diaspore types and reject others based largely on diaspore size and percentage reward. Such variability in response indirectly reduces native seed dispersal and can directly facilitate the spread of an invasive alien shrub.  相似文献   

4.
Myrmecochorous plant seeds have nutrient rich appendages, elaiosomes, which induce some ant species to carry the seeds back to their nest where the elaiosome is consumed and the seed is discarded unharmed. The benefits to plants of dispersal of their seeds in this way have been well documented, but the benefits to the ants from consuming the elaiosomes have rarely been measured and are less clear. Ant benefits from myrmecochory were investigated in a laboratory experiment using the ant Myrmica ruginodis and seeds of Ulex species. To separate the effects of elaiosome consumption on the development of newly produced larvae versus existing larvae, ten ‘Queenright’ colonies containing a queen were compared to ten ‘Queenless’ colonies. Six measures of colony fitness over a complete annual cycle were taken: sexual production, larval weight and number, pupal weight and number, and worker survival. Queenless colonies fed with elaiosomes produced 100.0±29.3 (mean ± SE) of larvae compared to non-elaiosome fed colonies which produced 49.6±19.0; an increase of 102%. Larval weight increased in both Queenright and Queenless colonies. In colonies fed with elaiosomes, larvae weighed 1.02±0.1 mg, but in non-elaiosome fed colonies larvae weighed 0.69±0.1 mg; an increase of 48%. The food supplement provided by Ulex elaiosomes was trivial in energetic terms, under the conditions of an ample diet, suggesting that these effects might be due to the presence of essential nutrients. Chemical analysis of Ulex elaiosomes showed the presence of four essential fatty acids and four essential sterols for ants.  相似文献   

5.
Fungus-growing ants, their cultivated fungi and the cultivar-attacking parasite Escovopsis coevolve as a complex community. Higher-level phylogenetic congruence of the symbionts suggests specialized long-term associations of host-parasite clades but reveals little about parasite specificity at finer scales of species-species and genotype-genotype interactions. By coupling sequence and amplified fragment length polymorphism genotyping analyses with experimental evidence, we examine (i) the host specificity of Escovopsis strains infecting colonies of three closely related ant species in the genus Cyphomyrmex, and (ii) potential mechanisms constraining the Escovopsis host range. Incongruence of cultivar and ant relationships across the three focal Cyphomyrmex spp. allows us to test whether Escovopsis strains track their cultivar or the ant hosts. Phylogenetic analyses demonstrate that the Escovopsis phylogeny matches the cultivar phylogeny but not the ant phylogeny, indicating that the parasites are cultivar specific. Cross-infection experiments establish that ant gardens can be infected by parasite strains with which they are not typically associated in the field, but that infection is more likely when gardens are inoculated with their typical parasite strains. Thus, Escovopsis specialization is shaped by the parasite's ability to overcome only a narrow range of garden-specific defences, but specialization is probably additionally constrained by ecological factors, including the other symbionts (i.e. ants and their antibiotic-producing bacteria) within the coevolved fungus-growing ant symbiosis.  相似文献   

6.
Bao  & Addicott 《Ecology letters》1998,1(3):155-159
Yucca baccata cheats in its obligate pollination/seed predation mutualism with yucca moths. Although all individuals use the pollination services of yucca moths, many individuals do not reciprocate in sustaining yucca moth larvae. Cheating is associated with the morphology of Y. baccata pistils. In Y. baccata , the apex of the ovary contains only inviable ovules, and there are two distinct flower types, one of which has twice as many potentially viable ovules as the other. Because yucca moths oviposit at the apex of Y. baccata ovaries, larvae in flowers with few viable ovules fail to encounter viable ovules and therefore perish. Inflorescences generally have just one flower type, implying that some individuals cheat whereas others maintain the yucca moth population. Our most surprising observation, however, is that although the proportion of cheaters should be low, over 70% of Y. baccata individuals cheat. We hypothesize that both density- and frequency-dependent processes maintain a balance of cheaters and noncheaters in this system.  相似文献   

7.
Costs of ant attendance for aphids   总被引:3,自引:0,他引:3  
1. Interactions between aphids and ants are considered to be mutualistic, with both partners benefiting. Costs associated with such interactions are likely to be less obvious, although they can be expected, especially if these associations are facultative.
2. It is demonstrated here that there are costs in several life-history parameters to individual aphids resulting from ant attendance. Over several generations Aphis fabae cirsiiacanthoides feeding on Cirsium arvense , at a range of developmental stages, suffered significant costs when tended by Lasius niger , e.g. in terms of a prolonged developmental time, delayed offspring production, proportionally smaller gonads, fewer well developed embryos and a reduced mean relative growth rate. These effects are similar to those observed when aphids feed on poor quality plants.
3. This is the first indication that there is a cost for aphids associated with ant attendance. The significance of this for the evolution of ant attendance in aphids is discussed.  相似文献   

8.
In most mutualisms, partners disperse independently of each other. For instance, in ant-plant symbioses, plants disperse as seeds, and ants disperse as winged queens. For an ant-plant mutualism to persist, therefore, queens must be able to locate and colonise host plant saplings. It has been suggested that host plants emit volatile chemical cues that attract dispersing queens, but this has never been demonstrated experimentally. We used a Y-tube olfactometry protocol to test this hypothesis in the tropical understorey antplant Cordia nodosa Lam. (Boraginaceae), which associates with two genera of ants, Azteca (Dolichoderinae) and Allomerus (Myrmicinae). Both genera show significant attraction to the volatiles of C. nodosa over control understorey plant species that do not associate with ants. These results support the hypothesis that ants are attracted to volatiles emitted by their host plant and suggest a key preadaptation that promoted the evolution of ant-plant symbioses. Received 1 July 2005; revised 2 November 2005; accepted 8 November 2005.  相似文献   

9.
Scarcity of essential nutrients has led plants to evolve alternative nutritional strategies, such as myrmecotrophy (ant-waste-derived nutrition) and carnivory (invertebrate predation). The carnivorous plant Nepenthes bicalcarata grows in the Bornean peatswamp forests and is believed to have a mutualistic relationship with its symbiotic ant Camponotus schmitzi. However, the benefits provided by the ant have not been quantified. We tested the hypothesis of a nutritional mutualism, using foliar isotopic and reflectance analyses and by comparing fitness-related traits between ant-inhabited and uninhabited plants. Plants inhabited by C. schmitzi produced more leaves of greater area and nitrogen content than unoccupied plants. The ants were estimated to provide a 200% increase in foliar nitrogen to adult plants. Inhabited plants also produced more and larger pitchers containing higher prey biomass. C. schmitzi-occupied pitchers differed qualitatively in containing C. schmitzi wastes and captured large ants and flying insects. Pitcher abortion rates were lower in inhabited plants partly because of herbivore deterrence as herbivory-aborted buds decreased with ant occupation rate. Lower abortion was also attributed to ant nutritional service. The ants had higher δ(15)N values than any tested prey, and foliar δ(15)N increased with ant occupation rate, confirming their predatory behaviour and demonstrating their direct contribution to the plant-recycled N. We estimated that N. bicalcarata derives on average 42% of its foliar N from C. schmitzi wastes, (76% in highly-occupied plants). According to the Structure Independent Pigment Index, plants without C. schmitzi were nutrient stressed compared to both occupied plants, and pitcher-lacking plants. This attests to the physiological cost of pitcher production and poor nutrient assimilation in the absence of the symbiont. Hence C. schmitzi contributes crucially to the nutrition of N. bicalcarata, via protection of assimilatory organs, enhancement of prey capture, and myrmecotrophy. This combination of carnivory and myrmecotrophy represents an outstanding strategy of nutrient sequestration.  相似文献   

10.
Indirect defences involve the protection of a host organism by a mutualistic partner. Threat of predation to the host organism may induce the production of rewards and/or signals that attract the mutualistic partner. In laboratory and field experiments we show that threatened lycaenid butterfly larvae (Plebejus acmon) produce more nectar rewards from their gland and were tended by protective ants twice as much as controls. Ant attendance did not affect the leaf consumption or feeding behaviour of larvae in the absence of predators. Inducible nectar production and indirect defence in this system may be a mechanism by which larvae provide rewards for services when they are needed the most. Such a system may stabilize the mutualistic association between lycaenid larvae and ants by preventing exploitation by either partner.  相似文献   

11.
Symbioses shape all levels of biological organization. Although symbiotic interactions are typically viewed as bipartite associations, with two organisms interacting largely in isolation from other organisms, the presence and importance of additional symbionts is becoming increasingly more apparent. This study examines the importance of a third mutualist within the ancient symbiosis between leaf-cutting ants and their fungal cultivars. Specifically, we experimentally examine the role of a filamentous bacterium (actinomycete), which is typically carried on the cuticle of fungus-growing ants, in suppressing the growth of a specialized microfungal parasite ( Escovopsis ) of the fungus garden. We conducted two-by-two factorial design experiments crossing the presence/absence of actinomycete with the presence/absence of Escovopsis within small sub-colonies of Acromyrmex octospinosus . In these experiments, infection by Escovopsis became much more extensive within fungus gardens and had a greater impact on the health of gardens in those sub-colonies with the bacterium removed from workers as compared to gardens with the bacterium still present on the ants. We establish that the actinomycete bacterium is most abundant on those major workers tending the garden, providing further support that the bacterium is involved in garden hygiene. We also found a significantly higher abundance of actinomycete on workers in colonies experimentally infected with Escovopsis as compared to uninfected control colonies. We suggest that mutualisms between antibiotic-producing microbes and higher organisms may be common associations that are mostly overlooked and that the role of symbionts in reducing the impact of parasites is likely an important aspect in the cost-benefit assessment of mutualisms.  相似文献   

12.
We develop an approach for studying population dynamics resulting from mutualism by employing functional responses based on density-dependent benefits and costs. These functional responses express how the population growth rate of a mutualist is modified by the density of its partner. We present several possible dependencies of gross benefits and costs, and hence net effects, to a mutualist as functions of the density of its partner. Net effects to mutualists are likely a monotonically saturating or unimodal function of the density of their partner. We show that fundamental differences in the growth, limitation, and dynamics of a population can occur when net effects to that population change linearly, unimodally, or in a saturating fashion. We use the mutualism between senita cactus and its pollinating seed-eating moth as an example to show the influence of different benefit and cost functional responses on population dynamics and stability of mutualisms. We investigated two mechanisms that may alter this mutualism's functional responses: distribution of eggs among flowers and fruit abortion. Differences in how benefits and costs vary with density can alter the stability of this mutualism. In particular, fruit abortion may allow for a stable equilibrium where none could otherwise exist.  相似文献   

13.
The influence of foraging by the ant, Lasius niger, on the population growth of two aphid species, Lachnus tropicalis and Myzocallis kuricola, on chestnut trees, Castanea crenata, was examined. The ant-tending effect was divergent depending on the aphid density per ant: it was positive when there were few aphids per ant, but negative when there were many aphids per ant. In addition, the density of one aphid species also influenced the ant-tending effect on the other aphid. Furthermore, the influences were asymmetrical: an increase in L. tropicalis density per ant reversed the ants effect on this species and on M. kuricola, while an increase in M. kuricola per ant did not significantly influence the ants effect on L. tropicalis. Thus, the ant seems to stabilize the L. tropicalis population density and keep this species from extinction, while the ants effect on M. kuricola depends on the density of L. tropicalis and may lead M. kuricola to extermination. This change in the ant-tending effect corresponds to the previously detected density-dependent change in predation activity of the ants on aphids. In contrast, the density-dependent change in the protection effect of the ants against natural enemies does not explain the results.  相似文献   

14.
Lack of ant attendance may induce compensatory plant growth   总被引:3,自引:0,他引:3  
Three levels in ant–plant protection systems need to be considered to fully understand how these symbiotic systems work. Here we present the effect of Oecophylla smaragdina ants on (1) the arthropod community, (2) herbivory, and (3) plant performance, within a studied mangrove ant–plant protection system. On Rhizophora mucronata trees in Thailand ants successfully colonised ant trees attached with a string to a natural ant tree, whereas they were unable to colonise control trees without this connection. Trees were monitored and arthropods (numbers and composition), leaf damage, leaf turnover and growth rates (stem diameter, tree height and total leaf area) were recorded in two surveys covering a period of 12 months. The number of herbivorous arthropods, but not the number of predators, was significantly lower on ant trees compared to control trees. Likewise, the amount of leaf damage inflicted by the four major groups of herbivores (Chrysomelidae, Tortricidae, Geometridae and Sesarminae) was significantly lower on ant trees compared to control trees and so was the leaf turnover rate. In spite of this, the released herbivore pressure on ant trees did not translate into higher growth rates. In contrast, all growth responses increased more on control trees compared to ant trees. Differences between the two groups were insignificant but leaf area increase was only marginally nonsignificant (P=0.062). The results show that ants remove herbivorous arthropods more efficiently than predators but ant-colonised mangroves do not necessarily benefit from this despite the resulting decrease in herbivory.  相似文献   

15.
Mutualisms between invasive ants and honeydew-producing Hemiptera have the potential to result in unusually high population levels of both partners, with subsequent major changes to ecosystem composition and dynamics. We assessed the relationship between the invasive ant, Pheidole megacephala, and its hemipteran mutualists, Dysmicoccus sp. and Pulvinaria urbicola, on Cousine Island, Seychelles. We also assessed the impacts of the mutualism on the condition of the hemipteran host plant, Pisonia grandis, a native and functionally important tree species. There was a strong positive relationship between Ph. megacephala activity and hemipteran abundance, and the exclusion of ants from Pi. grandis resulted in a significant decline in Pu. urbicola abundance. High abundance of the mutualists was strongly associated with damage to the Pi. grandis forest. This indicates that the mutualism is contributing to the massive increase in the population levels of the mutualist species, and is intensifying their impacts on the island. The widespread trophobiosis and its associated high densities of mutualists pose serious threats to the ecosystem, highlighting the need to control the ant and associated hemipteran populations.  相似文献   

16.
Mutualisms and facilitations can fundamentally change the relationship between an organism's realized and fundamental niche. Invasive species may prove particularly suitable models for investigating this relationship as many are dependent on finding new partners for successful establishment. We conducted field-based experiments testing whether a native tree facilitates the successful survival of the invasive Argentine ant, Linepithema humile (Mayr), through unfavorable winter conditions in the southeastern United States. We found Argentine ant nests aggregated around the native loblolly pine, Pinus taeda L., during the winter months. The bark of this tree absorbed enough radiant solar energy to reach temperatures suitable for Argentine ant foraging even when ambient temperatures should have curtailed all foraging. Conversely, foraging ceased when the trunk was shaded. The sun-warmed bark of this tree gave the Argentine ant access to a stable honeydew resource. Argentine ants were not found on or near deciduous trees even though bark temperatures were warm enough to permit Argentine ant foraging on cold winter days. Augmenting deciduous trees with sucrose water through the winter months lead to Argentine ant nests remaining at their base and Argentine ants foraging on the tree. The Argentine ant requires both foraging opportunity and a reliable winter food source to survive through unfavorable winter conditions in the southeastern United States. The loblolly pine provided both of these requirements extending the realized niche of Argentine ants beyond its fundamental niche.  相似文献   

17.
18.
Eugene W. Schupp 《Oecologia》1986,70(3):379-385
Summary In this 15 month investigation I experimentally demonstrated that sapling Cecropia aff. obtusifolia in lowland western Ecuador grow more vigorously when occupied by the ant Azteca constructor than when the ants have been removed. Thus the interaction is directly beneficial to Cecropia juveniles. The difference in growth is associated with differences in herbivory and vine cover. Removal of ants significantly increases nocturnal Coleoptera herbivory on unoccupied plants. In contrast to the influence on beetle numbers, Azteca are ineffective against Homoptera and cecidomyiid gall flies. Although ant-occupied saplings had less chewing herbivore damage throughout the study, the ants were more effective protectors in the dry season than in the rainy season, when herbivore pressure increased. In addition to reducing herbivory, Azteca efficiently remove vines from occupied saplings.  相似文献   

19.
By estimating relative costs and benefits, we explored the role of the homopteran partner in the protection mutualism between the myrmecophyte Leonardoxa africana T3, the ant Aphomomyrmex afer, and sap-sucking homopterans tended by ants in the tree''s swollen hollow twigs. The ants obtain nest sites and food from their host-plant (food is obtained either directly by extrafloral nectar or indirectly via homopterans). Aphomomyrmex workers patrol the young leaves of L. africana T3 and protect them against phytophagous insects. Because ants tended, either solely or primarily, coccids in some trees and pseudococcids in others, we were able to study whether the nature of the interaction was dependent on the identity of the third partner. First, the type of homopteran affects the benefits to the tree of maintaining a large ant colony. Larger colony size (relative to tree size) confers greater protection against herbivory; this relationship is more pronounced for trees whose ants tend pseudococcids than for those in which ants tend coccids. Second, for trees (and associated ant colonies) of comparable size, homopteran biomass was much larger in trees harbouring coccids than in trees with pseudococcids. Thus, the cost to the tree of maintaining ants may be greater when ants are associated with coccids. The net benefits to the plant of maintaining ants appear to be much greater with pseudococcids as the third partner. To explore how the type of homopteran affects functioning of the system, we attempted to determine which of the resources (nest sites, extrafloral nectar, and homopterans) is likely to limit ant colony size. In trees where ants tended coccids, ant-colony biomass was strongly dependent on the number of extrafloral nectaries. In contrast, in trees whose ants tended only pseudococcids, colony biomass was not related to the number of nectaries and was most strongly determined by the volume of available nest sites. We present hypotheses to explain how the type of homopteran affects functioning of this symbiosis, and discuss the implications of our study for the evolutionary ecology of ant–plant–homopteran relationships.  相似文献   

20.
Takao Itioka  Tamiji Inoue 《Oecologia》1996,106(4):448-454
The intensity of attendance by a honeydew-foraging ant, Lasuis niger, on the red wax scale insect, Ceroplastes rubens, was estimated at different manipulated densities in the field. The time that individual ants were present and the total attendance time (seconds x number of ants) of ants on scale-infested twigs significantly increased as the density of C. rubens increased, i.e. ant attendance was density dependent. To determine the effects of density dependence of ant attendance on parasitism of C. rubens by Anicetus beneficus, we measured parasitism rates in the field at different density levels of C. rubens both with ant attendance and with ants excluded. Parasitism rates were higher when ants were excluded, at each density level. Although the parasitism rate significantly deceased as scale density increased, whether or not ants attended, the difference in parasitism rate between density levels was strikingly less without ant attendance. Therefore, the density-dependent decrease of parasitism rate was more pronounced with ant attendance. Mortality not due to parasitism showed density dependence in both conditions and did not change when ants were excluded. These results indicate that attending ants reduce parasitism and that, as a consequence of the density dependence of ant attendance, the efficiency of reduction of parasitism by ants is enhanced at higher densities of C. rubens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号