首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The model membrane approach was used to investigate the surface charge effect on the ion-antibiotic complexation process. Mixed monolayers of valinomycin and lipids were spread on subphases containing K+ or Na+. The surface charge density was modified by spreading ionizable valinomycin analogs on aqueous subphases of different pH or by changing the nature of the lipid (neutral, negatively charged) in the mixed film. Surface pressure and surface potential measurements demonstrated that a neutral lipid (phosphatidylcholine) or positively charged valinomycin analogs didn't enhance the anti-biotic complexing capacity. However, a maximal complexation is reached for a critical lipid concentration in the valinomycin-phosphatidylserine mixed film. The role of the surface charge on the valinomycin complexing properties was examined in terms of the Gouy-Chapman theory. As a consequence of the negative charge of the lipid monolayer, the K+ concentration near the surface is larger than the bulk concentration, by a Boltzmann factor. A good agreement was observed between the experimental results and the theoretical predictions. Conductance measurements of asymmetric bilayers containing a neutral lipid (egg lecithin) on one side and a negatively charged lipid (phosphatidyl-serine) on the other, confirm the role of the surface charge. Indeed, addition of K+ to the neutral side of the bilayer containing valinomycin had no effect on the conductance whereas addition of K+ to the charged side of the bilayer caused a 80-fold conductance increase.  相似文献   

2.
The model membrane approach was used to investigate the surface charge effect on the ion-antibiotic complexation process. Mixed monolayers of valinomycin and lipids were spread on subphases containing K+ or Na+. The surface charge density was modified by spreading ionizable valinomycin analogs on aqueous subphases of different pH or by changing the nature of the lipid (neutral, negatively charged) in the mixed film. Surface pressure and surface potential measurements demonstrated that a neutral lipid (phosphatidylcholine) or positively charged valinomycin analogs didn't enhance the antibiotic complexing capacity. However, a maximal complexation is reached for a critical lipid concentration in the valinomycin-phosphatidylserine mixed film. The role of the surface charge on the valinomycin complexing properties was examined in terms of the Gouy-Chapman theory. As a consequence of the negative charge of the lipid monolayer, the K+ concentration near the surface is larger than the bulk concentration, by a Boltzmann factor. A good agreement was observed between the experimental results and the theoretical predictions. Conductance measurements of asymmetric bilayers containing a neutral lipid (egg lecithin) on one side and a negatively charged lipid (phosphatidylserine) on the other, confirm the role of the surface charge. Indeed, addition of K+ to the neutral side of the bilayer containing valinomycin had no effect on the conductance whereas addition of K+ to the charged side of the bilayer caused a 80-fold conductance increase.  相似文献   

3.
K Fendler  E Grell  M Haubs    E Bamberg 《The EMBO journal》1985,4(12):3079-3085
The transport activity of purified Na+K+-ATPase was investigated by measuring the electrical pump current induced on black lipid membranes. Discs containing purified Na+K+-ATPase from pig kidney were attached to planar lipid bilayers in a sandwich-like structure. After the addition of only microM concentrations of an inactive photolabile ATP derivative [P3-1-(2-nitro)phenylethyladenosine 5'-triphosphate, caged ATP] ATP was released after illumination with u.v.-light, which led to a transient current in the system. The transient photoresponse indicates that the discs and the underlying membrane are capacitatively coupled. Stationary pump currents were obtained after the addition of the H+, Na+ exchanging agent monensin together with valinomycin to the membrane system, which increased the permeability of the black lipid membrane for the pumped ions. In the absence of ADP and Pi the half saturation for the maximal photoeffect was obtained at 6.5 microM released ATP. The addition of ADP decreased the pump activity. Pump activity was obtained only in the presence of Mg2+ together with Na+ and Na+ and K+. No pump current was obtained in the presence of Mg2+ together with K+. The electrical response was blocked completely by the Na+K+-ATPase-specific inhibitors vanadate and ouabain. No pump currents were observed with a chemically modified protein, which was labelled on the ATP binding site with fluoresceine isothiocyanate. The method described offers the possibility of investigating by direct electrical measurements ion transport of Na+K+-ATPase with a large variety of different parameters.  相似文献   

4.
Selective ion binding and membrane activity of synthetic cyclopeptides   总被引:1,自引:0,他引:1  
Four cyclic peptides related to the membrane-active complexones PV, cyclo-(L-Pro-Lval-D-Pro-D-Val)3, and valinomycin were synthesized: (1) cyclo-(L-Pro-L-Ala-D-Val)3 or PVPA, (2) cyclo-(L-Ala-L-Val-D-Pro-D-Val)3 or PVAV, (3) cyclo-(L-Pro-L-Val-D-Pro-D-Val)2-L-Pro-D-Val or PV-10, (4) cyclo-(L-Pro-L-Val-D-Pro-D-Val)2 or PV-8. In a two-phase extraction assay the affinity of PV and PVPA for alkali picrates was about three orders or magnitude greater than that of valinomycin. It was about equal to valinomycin for PVAV and much lower for PV-10 and PV-8. PV, PVPA and PVAV showed a selectivity sequence similar to that of valinomycin, namely K+ approximately Rb+ greater than Cs+ greater than Na+ greater than Li+. In the series PV, PV-10, PV-, the preference for K+ over Na+ was 700, 5 and less than 1, respectively. Thus, it was possible to reverse the selectivity of PV for K+ over Na+ by reducing the ring size from 12 to 8 amino acid residues. In sheep red cell lipid bilayer membranes PVPA increased the membrane conductance significantly in the presence of either KCl or NaCl but it was less potent than PV. PV-10, PV-8 and PVAV on the other hand were ineffective in this assay. The inactivity of PVAV as a potassium carrier in membrane was in contrast to its high affinity for potassium picrate in two-phase assays. Such a behaviour may be observed of a compound that has too low an aqueous cation binding constant to use the solution-complexation mechanism of PV (Davis et al. (1976) Biochemistry 15, 768--774 and Pinkerton et al. (1969) Biochem. Biophys. Res. Commun. 35, 512--518) and too slow binding and release kinetics to use the interfacial-complexation mechanism of valinomycin.  相似文献   

5.
An assay was developed for K+ in aqueous solution at neutral pH. The method was based on the change in optical absorbance of the hydrophobic indicator 7-(n-decyl)-2-methyl-4-(3',5'-dichlorophen-4'-one)indonaphthl++ +-1-ol (MEDPIN) in phospholipid vesicles. Formation of a ternary complex between a valinomycin-K+ pair and the anionic form of MEDPIN in the bilayer resulted in an absorption band at 584 nm. K+ concentration was determined by monitoring the MEDPIN absorbance at 584 nm and MEDPIN quenching of lissamine rhodamine B sulfonylphosphatidylethanolamine (L-RhB-PE) fluorescence by an energy-transfer mechanism. Both the fluorescence intensity and lifetime of L-RhB-PE decreased by more than 25% upon addition of 50 mM K+. Kinetic studies using stopped-flow photometry showed a single-exponential reaction of MEDPIN and valinomycin in vesicles with aqueous K+ (maximum rate 1.7 s-1) that was dependent upon [valinomycin] and [K+]. The lipid surface charge was shown to influence the ratio of anionic to neutral MEDPIN at constant pH, and to alter the sensitivity of MEDPIN absorbance to aqueous [K+]. A 1:20 neutral/negative lipid mole ratio was optimal for K+ detection at pH 7.4. Spectroscopic and kinetic data suggest that the optical response of MEDPIN to K+ involves the formation of a ternary complex between K+, valinomycin and MEDPIN.  相似文献   

6.
Measurements of voltage relaxations following brief charge-pulses applied to lipid bilayers have been performed at different hydrostatic pressures in the presence of the neutral carriers cyclo (D-Val-L-Pro-L-Val-D-Pro)3(PV) and valinomycin. From double-exponential relaxations observed in membranes containing PV-K+ complexes estimates were obtained of the amount of membrane absorbed complexes, NMS, and of the rate of complex translocation, kMS. The pressure dependence of kMS corresponded to an activation volume for translocation of approximately 12 cm3/mol independent of ionic strength and K+ concentration. The pressure dependence of NMS strongly varied with K+-concentration suggesting a major role of ion-complexation in solution which is estimated to involve a reaction volume of 25.5 cm3/mol, while the volume of absorption of a PV-K+ complex by the membrane was estimated -7.5 cm3/mol. The relaxations observed in the presence of valinomycin contained three exponentials and could be used to estimate four rate constants and one absorption parameter which characterize the valinomycin-mediated transport. When the transport of Rb+ was tested, the rate constant for the complex dissociation, kD, and the total concentration of free and complexed carriers in the membrane, No, were found to be pressure insensitive. The translocation rates for the complex, kMS and for the free carrier, kS, were instead markedly pressure dependent according to estimated activation volumes in the range of 11 to 18 cm3/mol. The recombination rate constant kR was also pressure dependent according to an activation volume of 12-14 cm3/mol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
1. The K+ transport in erythrocytes induced by gramicidin A or valinomycin is a first-order reaction. The activation energy of the induced transport is low and amounts to 6 and 10 kcal/mole, respectively. The indirect method for calculation of the driving force of diffusion, c, is given; in pig erythrocytes the c value for gramicidin A is 21.7, and for valinomycin 35.4 mM-KCl. 2. The valinomycin-induced transport was found to be the same in erythrocytes and biomolecular lipid membranes. The gramicidin A-induced transport corresponds to that of a single gramicidin channel, and not to the multichannel transport observed in the model systems. 3. Erythrocytes of various mammals show large differences in sensitivity to the ionophores. No correlation could be found between membrane lipids and the induced permeability. The role of membrane proteins in ionophore-induced permeability is discussed.  相似文献   

8.
Voltage-dependent proton fluxes in liposomes   总被引:2,自引:0,他引:2  
Liposomes containing buffered KCl were prepared from bacterial lipids, were diluted into K+-free media and were treated with valinomycin to induce the formation of a diffusion potential (delta psi). Upon formation of such a potential, substantial proton influx was observed, as assayed by the quenching of 9-aminoacridine fluorescence. Complete reversal of fluorescence quenching occurred when the potential was collapsed by addition of KCl or when methylamine was added. Studies of proton influx as a function of the theoretical magnitude of the delta psi indicated that the phenomenon occurred only above a delta psi of about -60 mV. Establishment of a Na+ diffusion potential also resulted in proton influx. Treatment of K+-loaded liposomes with N,N'-dicyclohexylcarbodiimide did not reduce the delta psi-dependent proton influx. Moreover, proton influx could be demonstrated upon imposition of a diffusion potential in liposomes prepared from a synthetic lipid. The proton fluxes associated with generation of a diffusion potential in liposomes may complicate studies of reconstituted systems in which proton translocation should occur, and may affect the magnitude of the electrochemical proton gradient that is operant under some conditions.  相似文献   

9.
(Na+ + K+)-ATPase from kidney outer medulla was incorporated into tightly-sealed, single-shelled lipid vesicles by a detergent-dialysis procedure. The rate of ATP-driven potassium extrusion from vesicles formed from different phosphatidylcholines (PC) was measured optically, using a voltage-sensitive dye in the presence of valinomycin. High transport rates were observed for di(18:1)PC, di(20:1)PC and di(22:1)PC, whereas vesicles formed from di(14:1)PC and di(16:1)PC were virtually inactive. The variation of pumping activity with lipid structure mainly results from differences in the amount of enzyme incorporated with the correct orientation into the vesicle membrane, and to a lesser extent from lipid-dependent variations of the intrinsic turnover rate of the enzyme. The activation energy of ion transport decreases in the order di(16:1)PC, di(18:1)PC, di(20:1)PC approximately equal to di(22:1)PC.  相似文献   

10.
本实验中测量了缬氨霉素对双层平板膜系统的电性质和紫膜碎片BLM上光电响应的作用.实验结果表明:缬氨霉素对K~+很灵敏,它可使大豆磷脂BLM的膜电阻下降近四个量级,膜的稳定性也下降.它对Na~+也有作用,但其作用不如K~+那么明显.在缬氨霉素作用下,K~+对紫膜碎片BLM光电响应的影响十分明显,它可以使光电压完全消失.Na~+对紫膜碎片BLM的作用则比K~+的作用小得多.  相似文献   

11.
The effect of a negatively charged mono-sialoglyco-sphingolipid (GM1-ganglioside) on the molecular organization and on physiochemical properties of lipid/peptide (valinomycin) systems was investigated in monolayers at the air/water interface. At a high molar fraction of GM1, the surface pressure/area isotherms of the two-component films of the system GM1/valinomycin and the isotherm of the pure ganglioside monolayer are identical concerning the space requirement of the molecules and thereby the packing of the monolayer. Using space-filling molecular models, a simple calculation gives the theoretical amount of 4.5 ganglioside molecules associated with one molecule of the depsipeptide valinomycin. The average surface potential indicates, that valinomycin, interacting with the polar head group of GM1, becomes partly embedded within the lipid interface. For GM1/eicosanol and valinomycin/eicosanol mixtures, the agreement between theory and experimental data strongly supports the model of ideal mixing without any molecular interactions between the different components. The results suggest the formation of a ganglioside/valinomycin complex with simultaneous alteration of the surface potential and molecular structure of the single components.  相似文献   

12.
Illumination of biological membranes with visible light in the presence of membrane-active sensitizers (e.g. rose bengal) is known to inactivate transport proteins such as ion channels and ion pumps. In some cases, however, illumination gives rise to an activation of transport. This is shown here for ion channels formed by alamethicin in lipid membranes, and for porin channels, which were isolated from the outer membrane of E. coli (OmpC) and from the outer membrane of mitochondria (VDAC) and were reconstituted in lipid membranes. An activation (in the form of an increased conductance) was also observed in the presence of the cation carriers valinomycin and nonactin. The activation phenomena were only present, if the membranes were made from lipids containing unsaturated double bonds. Activation was reduced in the presence of the antioxidant vitamin E.We suggest that the activation of the different transport systems has a common physical basis, namely an increase of the dielectric constant, epsilon(m), of the membrane interior by the presence of polar oxidation products of photodynamically induced lipid peroxidation. Experimental evidence for an enhanced dielectric constant was obtained from the finding of a light-induced increase of the membrane capacitance in the presence of rose bengal.  相似文献   

13.
Lysine-valinomycine and two N epsilon-acyl derivatives are compared with respect to their potency to transport Rb+ ions across thin lipid membranes. Lysine-valinomycin acts as a neutral ion carrier only above a pH of about 7 of the aqueous solutions, while at lower pH the molecules seem to be positively charged due to a protonation of the epsilon-NH2 group of the lysine residue. A kinetic analysis based on voltage jump relaxation experiments and on the nonlinearity of the current-voltage characteristics showed that the conductance increment delta per carrier molecule for uncharged lysine-valinomycin is similar to that of natural valinomycin. The attachment of a rather bulky side group such as the dansyl or para-nitrobenzyloxycarbonyl group reduced delta by approximately one order of magnitude. Some of the relaxation data of the valinomycin analogues were influenced by an unspecific relaxation of the pure lipid membrane. This structural relaxation represents a limitation to the possibility of analyzing specific transport systems in thin lipid membranes by the voltage jump or charge pulse techniques. It is shown that the time dependence of this structural relaxation--which was first published by Sargent (1975)--is at variance with a three capacitor equivalent circuit of the membrane, which was suggested by Coster and Smith (1974) on the basis of a.c. measurements. A modified equivalent circuit has been found to represent a satisfactory analogue for the current relaxation in the presence of valinomycin. It turned out, however, that such an equivalent circuit provides little insight into the molecular mechanism of transport.  相似文献   

14.
M Jackson  H H Mantsch 《Biopolymers》1991,31(10):1205-1212
The structure of valinomycin in a range of organic solvents of varying polarity and in detergent and lipid dispersions has been studied by Fourier transform ir spectroscopy. In solvents of low polarity such as chloroform, ir spectra of valinomycin are fully consistent with the bracelet structure proposed on the basis of nmr spectroscopy, showing a single narrow amide I component attributable to the presence of beta-turns and a single band arising from nonhydrogen-bonded ester C = O groups. K+ complexation results in a downward shift in the amide I band frequency, indicating an increase in the strength of the amide hydrogen bonds, along with a shift to lower frequencies of the ester C = O absorption due to a reduction in electron density in these bonds upon complexation. Identical results were obtained with NH4+, a finding not previously reported. In solvents of both medium (CHCl3/DMSO 3:1) and high (pure DMSO) polarity, we find evidence of significant disruption of the internal hydrogen-bonding network of the peptide and the appearance of a band suggesting the presence of free amide C = O groups. In such solvents, complexation with K+ and NH4+ was not observed. The structure of valinomycin in detergent micelles resembles that in nonpolar organic solvents. However, changes were found in the amide I and ester carbonyl maxima as 2H2O penetrated the micelle which suggest significant interaction between the solvent and peptide. Complexation with K+ was reduced in cationic detergent micelles as a result of a decrease in the effective K+ concentration due to charge repulsion at the micelle surface.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The stimulation presence of a protonophore [3,5-di(ter-butyl)-4-hydroxybenzylidenemalononitrile or carbonyl cyanide m-chlorophenylhydrazone] and valinomycin in a liposome suspension results in time-dependent inactivation of ion transport by both the protonophore and valinomycin. Correlation of the inactivation with spectrophotometric observations on the formation of a complex between the protonophore and valinomycin strongly suggests that the complex observed has no (or very low) activity for the transport of either H+ or K+. The stoichiometry of valinomycin and the protonophore in the inactive complex is shown to be 1:1.  相似文献   

16.
Cyclo(L-Lac-L-Val-D-Pro-D-Val)3 (PV-Lac) a structural analogue of the ion-carrier valinomycin, increases the cation permeability of lipid bilayer membranes by forming a 1:1 ion-carrier complex. The selectively sequence for PV-Lac is identical to that of valinomycin; i.e., Rb+ greater than K+ greater than Cs+ greater than or equal to NH+4 greater than Na+ greater than Li+. The steady-state zero-voltage conductance, G(0), is a saturating function of KCl concentration. A similar behavior was found for Rb+, Cs+, and NH+4. However, the ion concentration at which G(0) reaches a plateau strongly depends on membrane composition. The current-voltage curves present saturating characteristics, except at low ion concentrations of Rb+, K+, or Cs+. The ion concentration at which the saturating characteristics appear depends on membrane composition. These and other results presented in this paper agree with a model that assumes complexation between carrier and ion at the membrane-water interface. Current relaxation after voltage-jump studies were also performed for PV-Lac. Both the time constant and the amplitude of the current after a voltage jump strongly depend on ion concentration and membrane composition. These results, together with the stationary conductance data, were used to evaluate the rate constants of the PV-Lac-mediated K+ transport. In glycerolmonooleate they are: association rate constant, 2 x 10(6) M-1 s-1; dissociation rate constant, 4 x 10(5) s-1; translocation rate constant for complex, 5 x 10(4) s-1; and the rate of translocation of the free carrier (ks), 55 s-1. ks is much smaller for PV-Lac than for valinomycin and thus limits the efficiency with which the carrier is able to translocate cations across the membrane.  相似文献   

17.
Changes in the fluorescent intensity of the dye 3,3′-dipropylthiodicarbocyanine iodide were measured in suspensions of hamster liver mitochondria upon the development of a K+ diffusion potential by the addition of valinomycin and upon the development of the energized state by the addition of succinate or ATP. The changes (large decreases) seen with the addition of succinate or ATP (inhibitable by NaCN and oligomycin respectively) were comparable to those recorded upon the addition of valinomycin to mitochondria suspended in media containing low concentrations of K+. The change observed with succinate was partially reversed by the addition of either 2,4-dinitrophenol or ADP. Oligomycin prevented the reversal seen with ADP. Decreases in fluorescent intensity were also recorded when succinate was added to suspensions of inner membranes (prepared from rat liver mitochondria) containing the dye. With submitochondrial particles (also from rat liver mitochondria), however, increases in fluorescent intensity were seen upon the addition of succinate or ATP. These observations are consistent with the idea that a large negative (internal) potential develops across the inner membrane of the mitochondrion during energization and with other aspects of the chemiosmotic hypothesis.  相似文献   

18.
A vesicular microsomal fraction isolated from hog fundic mucosa demonstrates the capacity to take up equal amounts of RB+ and Cl-. The amount of the Rb+ uptake is sensitive to the extravesicular osmolarity, and rate of uptake is sensitive to temperature. 86Rb+ efflux is dependent upon the cation composition of the diluting solution. ATP, but not beta-gamma methylene ATP, induces a reversible efflux of 86Rb+ from loaded vesicles, and this is dependent upon a functional K+-ATPase. The ATP induced efflux is not affected by CCCP (carbonyl cyanide m-chlorophenylhydrazone) or TCS (tetrachlorosalicylanilide) nor by lipid soluble ions or valinomycin. Nigericin inhibits the efflux by 40%. Uptake of the lipid soluble ion 14C-SCN- has been demonstrated and is enhanced by ATP only in the presence of valinomycin. The results are consistent with a neutral or isopotential exchange of H+ for Rb+ mediated by K+-ATPase.  相似文献   

19.
用瞬间二向色性方法测量了菌紫质分子在DMPC脂质囊泡膜中的旋转扩散运动.观察了缬氨霉素和膜电位对菌紫质分子旋转扩散运动的影响.在低脂与蛋白比例时,缬氨霉素明显影响菌紫质分子的旋转扩散运动,在高脂与蛋白比例时,缬氨霉素对菌紫质分子的旋转扩散动的影响不明显.无论在高的或低的脂与蛋白比例下,膜电位都影响到菌紫质分子的旋转扩散运动.  相似文献   

20.
The K+ ionophore valinomycin at concentrations of 1 X 10(-8) M and over, stimulated 2-deoxy-D-glucose (2DG) and 3-O-methylglucose (3OMG) uptake in Swiss 3T3 fibroblasts. The rate-limiting step of 2DG uptake was transport rather than phosphorylation, in the control or valinomycin-treated cells. Kinetic analysis showed that valinomycin increased the Vmax for 2DG uptake without change of the Km. The valinomycin-stimulated 2DG uptake was insensitive to 10 micrograms/ml cycloheximide, and extracellular K+ concentrations between 0.1 and 50 mM. On the other hand, valinomycin at the concentration of 1 X 10(-8) M and over, induced a rapid decrease in cellular ATP content, followed by stimulation of 2DG uptake and recovery of the ATP content. A similar relationship between the reduction of cellular ATP content and the subsequent stimulation of 2DG uptake was observed when the cells were treated not only with 2,4-dinitrophenol and iodoacetic acid, but also with other monovalent cation ionophores or inhibitors of oxidative phosphorylation. These results suggest that valinomycin may posttranslationally stimulate hexose transport by increasing the number of functional carriers of hexose or changing their mobility, and the rapid decrease in cellular ATP pools by valinomycin may be a trigger of the stimulation of the hexose transport in Swiss 3T3 fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号