首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The MJY-alpha epithelial-like mammary tumor cell line was adapted for cultivation in suspension using a shaker culture technique. Replication of suspension (MJY-beta) cells was more sensitive than monolayer cells to decreases in the concentration of serum in the medium. Comparison of amino acid incoerporation and lactate production rates revealed additional differences between monolayer and suspension cultures. In addition, growth in susfpension resulted in 10- to 400-fold increases in mouse mammary tumor virus (MMTV) production by the mammary tumor cells. Incrases in MMTV yield were detected within 48 h of culture initiation and MMTV production remained elevated throughout 20 cell passages in suspension. Exposure of MJY-beta cells to 14 μM hydrocorticone further increased MMTV yield two-to five-fold. The MJY-beta suspension cultures demonstrated that these epithelial-like cells do not require attachment to a solid substrate for replication or for MMTV production. Loss of structural polarization associated with growth as a monolayer resulted in stimulation of MMTV production greater than and independent of steroid exposure. This work was supported by the T. J. Martell Foundation for Cancer and Leukemia Research and by USPHS grant 5P-30CA23102. F. M. is a trainee on MSTP grant GM07280 from the National Institute of Health. This work was submitted in partial fullfillment of the requirements for the Ph. D. degree (F. M.).  相似文献   

2.
3.
4.
5.
The vast majority of plus strands synthesized in quail cells acutely infected with avian sarcoma virus were subgenomic in size, generally less than 3 kilobases (kb). A series of discrete species could be identified after agarose gel electrophoresis by annealing with various complementary DNAs, indicating specificity in the initiation and termination of plus strands. The first plus strand to appear (within 2 h postinfection) was similar in length to the long redundancy at the ends of linear DNA (0.35 kb), and it annealed with complementary DNAs specific for the 3' and 5' termini of viral RNA (Varmus et al., J. Mol. Biol. 120:50-82, 1978). Several subgenomic plus-strand fragments (0.94, 1.38, 2.3, and 3.4 kb) annealed with these reagents. At least the 0.94- and 1.38-kb strands were located at the same end of linear DNA as the 0.35-kb strand, indicating that multiple specific sites for initiation were employed to generate strands which overlapped on the structural map. We were unable to detect RNA liked to plus strands isolated as early as 2.5 h postinfection; thus, the primers must be short (fewer than 50 to 100 nucleotides), rapidly removed, or not composed of RNA. To determine whether multiple priming events are a general property of retroviral DNA synthesis in vivo, we also examined plus strands of mouse mammary tumor virus DNA in chronically infected rat cells after induction of RNA and subsequent DNA synthesis with dexamethasone. In this case, multiple, discrete subgenomic DNA plus strands were not found when the same methods applied to avian sarcoma virus DNA were used; instead, the plus strands present in the linear DNA of mouse mammary tumor virus fell mainly into two classes: (i) strands of ca. 1.3 kb which appeared early in synthesis and were similar in size and genetic content to the terminally repeated sequence in linear DNA; and (ii) plus strands of the same length as linear DNA. A heterogeneous population of other strands diminished with time, was not found in completed molecules, and was probably composed of strands undergoing elongation. These two retroviruses thus appear to differ with respect to both the number of priming sites used for the synthesis of plus strands and the abundance of full-length plus strands. On the other hand the major subgenomic plus strand of mouse mammary tumor virus DNA (1.3 kb) is probably the functional homolog of a major subgenomic plus strand of avian sarcoma virus DNA (0.35 kb). The significance of this plus strand species is discussed in the context of current models which hold that it is used as a template for the completion of the minus strand, thereby generating the long terminal redundancy.  相似文献   

6.
7.
Mouse mammary tumor virus (MMTV) is a milk-transmitted betaretrovirus that causes mammary tumors in mice. Although mammary epithelial cells are the ultimate targets of MMTV, the virus utilizes components of the host immune system to establish infection. Previous studies indicated that dendritic cells play a role in MMTV infection. Here we show that dendritic cells are the first cells to be infected by MMTV in vivo and that they are capable of producing infectious virus that can be transmitted to other cell types. Moreover, upon contact with the virus, dendritic cells became more mature and migrated in response to the chemokine macrophage inflammatory protein 3beta. Finally, we demonstrate that targeted ablation of dendritic cells in vivo dramatically attenuated MMTV infection. These data indicate that MMTV infection of dendritic cells is critical to initial propagation of the virus in vivo.  相似文献   

8.
We determined the prevalence of mouse mammary tumor virus (MMTV) in introduced, free-roaming, wild house mice (Mus musculus domesticus) [corrected] and compared envelope (env) and long terminal repeat (LTR) nucleotide sequences of viruses from wild mice and other sources. Mice were trapped on two occasions, in October (spring) and the following May (autumn) of 2003-2004 in the Mallee region of northwestern Victoria, Australia. Animals were assigned to three cohorts (subadult, young, and old adults) based on their body length. The DNA from salivary glands (62 of 62 mice) and mammary glands (19 of 32 female mice) was screened for the MMTV envelope (env) gene, and the long terminal repeat (LTR) region including the superantigen (SAg) sequence was amplified from a subset. Positive polymerase chain reaction (PCR) results for the MMTV env PCR were detected from salivary gland tissues from 60 of 62 (97%) mice and from mammary gland tissues from 19 of 19 (100%) female mice. All but two mice were positive for MMTV env across both sexes and the three cohorts. Similarity of the SAg carboxy-terminal nucleotide sequence between free-roaming wild house mice varied from 64% to 99%, although most of this variation was due to DNA sequences from two mice (M4 and M5). Phylogenetic analysis of the LTR region did not result in distinct grouping of sequences derived from mice when comparisons were made among sequences from mice in the US, Europe, and Australia, and MMTV-like virus (MMTV-LV) env sequences derived from human hosts. We report a high prevalence of the MMTV env sequence during a sampling period when peak mouse density was low. This indicates that MMTV is an enzootic virus in a population of wild, free-ranging mice in northwestern Victoria, in Australia. Phylogenetic analysis, based upon env and LTR sequence data, indicated minor variation among all isolates. This represents the first report on the prevalence of MMTV in mouse populations in Australia.  相似文献   

9.
A simple method is described allowing the enhancement of the visibility of small gold probes for the electron microscopy. This method, which allows the silver intensification of gold directly on epon-embedded ultrathin sections, was used for the electron microscopic localization of Mouse Mammary Tumor Virus (MMTV) antigens in cultured cells derived from GR and BALB/cfRIII mouse mammary tumors. After the immunostaining with the preembedding protein A-gold technique, the ultrathin sections, placed on 200 mesh copper grids, were rehydrated and exposed to a photographic developer containing silver nitrate. During this physical development gold particles are incapsulated in growing shells of metallic silver, which gradually become more and more visible. We were able to obtain a heavy labelling of the viral particles, well visible even at low magnification, with a negligeable background staining. The present technique can be useful whenever it is necessary to use the smallest gold probes today available.  相似文献   

10.
The relationship of protein glycosylation to compartmentalization and processing of mouse mammary tumor virus (MTV) glycoproteins has been examined in M1.54, a cloned line of MTV-infected rat hepatoma tissue culture cells. Previous work established that full maturation of MTV glycoproteins in this cell line requires dexamethasone, a synthetic glucocorticoid (Firestone, G. L., Payvar, F., and Yamamoto, K. R. (1982) Nature (Lond.) 300, 221-225). The ability to regulate production of the full complement of five mature membrane-associated and secreted viral glycoproteins from one initially synthesized precursor has been used to advantage in the present work. At concentrations of tunicamycin that specifically inhibit N-linked protein glycosylation, incorporation of [35S]methionine into total cellular and secreted protein is not detectably affected, MTV-specific mRNAs are produced normally, and the nonglycosylated form of the glycosylated viral precursor polyprotein accumulates within the cells. However, tunicamycin inhibits the site-specific cleavage of the glycosylated polyprotein and distribution of MTV polypeptides to the cell surface and extracellular fractions. Thus, when tunicamycin-treated cultures of M1.54 are exposed to dexamethasone and [35S]methionine, no labeled viral antigens are detected in the culture medium. Similarly, tunicamycin prevents the appearance of membrane-associated viral antigens that can be labeled externally by lactoperoxidase-mediated iodination and it protects the cells against the cytolytic effects of MTV-specific antiserum and complement. Taken together, these results are consistent with the view that while glycosylation of some proteins may be unessential for their compartmentalization and processing, it does appear to be correlated with proper maturation of others. The hormone-dependent maturation of MTV glycoproteins in M1.54 may be particularly useful for study of this latter class since glycosylation is stringently associated with their compartmentalization and cleavage.  相似文献   

11.
12.
13.
The mouse mammary tumor virus enters mammary epithelial cells via a plasma membrane protein that binds to a viral envelope glycoprotein, gp52. In intact cells, this gp52 receptor can be phosphorylated by activators of protein kinase A and protein kinase C (PKC), but this modification does not occur in response to epidermal growth factor, whose receptor is a tyrosine kinase, or to gp52. Phosphorylation of the gp52 receptor rapidly leads to internalization and gradual loss of binding activity. Both the phosphorylation and the intrnalization induced by PKC are abolished by prior downregulation of this kinase. Although the physiological function of the gp52 receptor is unknown, its binding to gp52 can stimulate several biological activities, including amino acid accumulation. Receptor processingimpairs this gp52-induced amino acid uptake, as well as viral infection, by depleting the binding protein at the cell surface. In contrast, PKC augments insulin-induced amino acid transport, and PKC downregulation abolishes the action of insulin, suggesting that insulin and gp52 utlize partially separate pathways leading to amino acid transport. These data further suggest that PKC may be involved in this insulin-stimulated activity. © 1994 Wiley-Liss, Inc.  相似文献   

14.
Until now it was thought that the retrovirus mouse mammary tumor virus preferentially infects B cells, which thereafter proliferate and differentiate due to superantigen-mediated T cell help. We describe in this study that dendritic cells are infectable at levels comparable to B cells in the first days after virus injection. Moreover, IgM knockout mice have chronically deleted superantigen-reactive T cells after MMTV injection, indicating that superantigen presentation by dendritic cells is sufficient for T cell deletion. In both subsets initially only few cells were infected, but there was an exponential increase in numbers of infected B cells due to superantigen-mediated T cell help, explaining that at the peak of the response infection is almost exclusively found in B cells. The level of infection in vivo was below 1 in 1000 dendritic cells or B cells. Infection levels in freshly isolated dendritic cells from spleen, Langerhans cells from skin, or bone marrow-derived dendritic cells were compared in an in vitro infection assay. Immature dendritic cells such as Langerhans cells or bone marrow-derived dendritic cells were infected 10- to 30-fold more efficiently than mature splenic dendritic cells. Bone marrow-derived dendritic cells carrying an endogenous mouse mammary tumor virus superantigen were highly efficient at inducing a superantigen response in vivo. These results highlight the importance of professional APC and efficient T cell priming for the establishment of a persistent infection by mouse mammary tumor virus.  相似文献   

15.
16.
Summary Five different mouse mammary tumor cell lines were propagated in a serum free medium. Evaluation of growth characteristics, including logarithmic growth, cell population increase, protein production and days to confluency, showed serum-free medium comparable to serum-containing medium. Mouse mammary tumor virus expression and production, in C3H and GR tumor cell lines, as determined by virus particle counting and RNA dependent DNA polymerase assays, subsequent to dexamethasone stimulation revealed equivalent to higher levels of virus in serum-free medium as compared to serum-containing medium.  相似文献   

17.
Both T and B cells shed infectious mouse mammary tumor virus.   总被引:2,自引:1,他引:1       下载免费PDF全文
Mouse mammary tumor virus (MMTV) infected both B and T tissue culture cells and primary B and T cells in vivo after milk-borne transmission of the virus. The infected tissue culture cells processed viral proteins, and both these and primary B and T cells shed virus when cultured in vitro. Moreover, the infected B and T tissue culture cells transmitted virus to uninfected mammary gland cells in vitro. The level of infection of these different cell types in vivo was dependent on the strain of mouse, with C3H/HeN mice showing greater B-cell infection and BALB/c mice greater T-cell infection after nursing on MMTV-infected C3H/HeN mothers. Although their B cells were less infected, BALB/c mice developed tumors more rapidly than C3H/HeN mice. These results indicate that both infected T and B cells are potential carriers of MMTV in vivo.  相似文献   

18.
Glucocorticoids increase expression of specific genes by a mechanism involving binding to and "activation" of a specific receptor protein. Other steroids, such as RU 486, bind to the glucocorticoid receptor but the resultant steroid-receptor complex is unable to activate glucocorticoid sensitive genes. In the present study we have observed that steroid regulation of the glucocorticoid-regulated mouse mammary tumor virus (MMTV) genome in cultured mouse mammary tumor cells is altered by treatment of the cells with inhibitors of (ADP-ribose)n synthetase. The ability of glucocorticoid agonists to increase MMTV is about 2-fold increased by the inhibitor treatment. Interestingly, RU 486 and other steroids that are normally inactive in control cells are very good inducers of MMTV in the treated cells. This alteration in MMTV expression is associated with a 37% increase in nuclear binding of the glucocorticoid, triamcinolone acetonide, and also RU 486 in the inhibitor-treated cells. Steroids that do not bind to the glucocorticoid receptor are not inducers in control or in treated cells. The results point to a role for ADP-ribosylation of proteins as a negative regulator of MMTV expression and suggest a mechanism for activation of steroid-sensitive genomes.  相似文献   

19.
20.
To investigate whether superantigen (SAG) from endogenous mouse mammary tumor virus functions as an immunogenic or a tumorigenic factor in tumor development, the BALB/c myeloma cell line FO was transfected with the SAG gene from the 3' Mtv-50 long terminal repeat (LTR) open reading frame (ORF), the product of which was specific for Vbeta6. All five transfectants expressing Mtv-50 LTR ORF mRNA showed stimulatory activity for Vbeta6 T-cell hybridomas in vitro; this activity was inhibited by the addition of anti-Mtv-7 monoclonal antibody (MAb) or anti-major histocompatibility complex class II I-A(d) and I-E(d) MAb. All transfectants with the SAG gene grew more rapidly than did mock transfectants in BALB/c mice after subcutaneous inoculation, whereas all clones, including mock transfectants, grew equally well in athymic nude mice. A significant fraction of Vbeta6 T cells selectively expressed activation markers, including CD44(high), CD62L(low), and CD69(high), and produced large amounts of interleukin 5 (IL-5) and IL-6 in BALB/c mice inoculated with transfectants. These results suggested that the expression of viral SAG enhances the tumorigenicity of a myeloma cell line through the stimulation of SAG-reactive T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号