首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two esterase genes (designated as estAT1 and estAT11, respectively) were cloned by activity-based screening of a fosmid library constructed with seashore sediment sample of the Arctic. The sequence analysis of the genes revealed that these esterase genes encoded proteins of 303 and 312 amino acids, respectively, and showed 40-50% identities to members of the hormone-sensitive lipase (HSL) family retaining a catalytic triad with a conserved GDSAG sequence and an oxyanion hole (HGGG). The esterases genes were overexpressed in Escherichia coli by co-expressing GroEL-GroES chaperonine, and the recombinant proteins (rEstAT1 and rEstAT11) were purified to homogeneity. The purified EstAT1 and EstAT11 were active in a broad range of temperature from 20 to 40 degrees C with an optimum temperature at 30 degrees C. The activation energies of rEstAT1 and rEstAT11 to hydrolyze p-nitrophenyl esters of butyrate were determined to be 12.65 kcal/mol and 11.26 kcal/mol, respectively, indicating that they are cold-adapted esterases. The purified EstAT1 and EstAT11 could hydrolyze racemic ofloxacin esters, and further rEstAT11 hydrolyzed preferentially (S)-racemic ofloxacin butyl ester with an enantiomeric excess (ee(p)) value of 70.3%. This work represents an example that develops enzymes from the Arctic using metagenomic approach, potentially applicable to chiral resolution of heat-labile substrates.  相似文献   

2.
Acinetobacter venetians V28 was isolated from the intestine of righteye flounder, Poecilopsetta plinthus caught in Vietnam seawater, and the esterase gene was cloned using a shotgun method. The amino acid sequence deduced from the nucleotide sequence (1,017 bp) corresponded to a protein of 338 amino acid residues with a molecular weight of 37,186. The esterase had 87% and 72% identities with the lipases of A. junii SH205 and A. calcoaceticus RUH2202, respectively. The esterase contained a putative leader sequence, as well as the conserved catalytic triad (Ser, His, Asp), consensus pentapeptide GXSXG, and oxyanion hole sequence (HG). The protein from the strain V28 was produced in both a soluble and an insoluble form when the Escherichia coli cells harboring the gene were cultured at 18 degrees C. The maximal activity of the purified enzyme was observed at a temperature of 40 degrees C and pH 9.0 using p-NP-caprylate as substrate; however, relative activity still reached to 70% even at 5 degrees C with an activation energy of 3.36 kcal/mol, which indicated that it was a cold-adapted enzyme. The enzyme was a nonmetalloprotein and was active against p-nitrophenyl esters of C4, C8, and C14. Remarkably, this enzyme retained much of its activity in the presence of commercial detergents and organic solvents. This cold-adapted esterase will be applicable as catalysts for reaction in the presence of organic solvents and detergents.  相似文献   

3.
Thermus thermophilus ribonuclease H was overexpressed and purified from Escherichia coli. The determination of the complete amino acid sequence allowed modification of that predicted from the DNA sequence, and the enzyme was shown to be composed of 166 amino acid residues with a molecular weight of 18,279. The isoelectric point of the enzyme was 10.5, and the specific absorption coefficient A0.1%(280) was 1.69. The enzymatic and physicochemical properties as well as the thermal and conformational stabilities of the enzyme were compared with those of E. coli RNase HI, which shows 52% amino acid sequence identity. Comparison of the far and near UV circular dichroism spectra suggests that the two enzymes are similar in the main chain folding but different in the spatial environments of tyrosine and tryptophan residues. The enzymatic activities of T. thermophilus RNase H at 37 and 70 degrees C for the hydrolysis of either an M13 DNA/RNA hybrid or a nonanucleotide duplex were approximately 5-fold lower and 3-fold higher, respectively, as compared with E. coli RNase HI at 37 degrees C. The melting temperature, Tm, of T. thermophilus RNase H was 82.1 degrees C in the presence of 1.2 M guanidine hydrochloride, which was 33.9 degrees C higher than that observed for E. coli RNase HI. The free energy changes of unfolding in the absence of denaturant, delta G[H2O], of T. thermophilus RNase H increased by 11.79 kcal/mol at 25 degrees C and 14.07 kcal/mol at 50 degrees C, as compared with E. coli RNase HI.  相似文献   

4.
The gene encoding an esterase (PsyEst) of Psychrobacter sp. Ant300, a psychrophilic bacterium isolated from Antarctic soil, was cloned, sequenced, and expressed in Escherichia coli. PsyEst, which is a member of hormone-sensitive lipase (HSL) group of the lipase/esterase family, is a cold-active, themolabile enzyme with high catalytic activity at low temperatures (5-25 degrees C), low activation energy (e.g., 4.6 kcal/mol for hydrolysis of p-nitrophenyl butyrate), and a t(1/2) value of 16 min for thermal inactivation during incubation at 40 degrees C and pH 7.9. A three-dimensional structural model of PsyEst predicted that Gly(244) was located in the loop near the active site of PsyEst and that substitution of this amino-acid residue by proline should potentially rigidify the active-site environment of the enzyme. Thus, we introduced the Gly(244)-->Pro substitution into the enzyme. Stability studies showed that the t(1/2) value for thermal inactivation of the mutant during incubation at 40 degrees C and pH 7.9 was 11.6 h, which was significantly greater than that of the wild-type enzyme. The k(cat)/K(m) value of the mutant was lower for all substrates examined than the value of the wild type. Moreover, this amino-acid substitution caused a shift of the acyl-chain length specificity of the enzyme toward higher preference for short-chain fatty acid esters. All of these observations could be explained in terms of a decrease in active-site flexibility brought about by the mutation and were consistent with the hypothesis that cold activity and thermolability arise from local flexibility around the active site of the enzyme.  相似文献   

5.
Despite decades of intense study, the complementarity of beta-lactams for beta-lactamases and penicillin binding proteins is poorly understood. For most of these enzymes, beta-lactam binding involves rapid formation of a covalent intermediate. This makes measuring the equilibrium between bound and free beta-lactam difficult, effectively precluding measurement of the interaction energy between the ligand and the enzyme. Here, we explore the energetic complementarity of beta-lactams for the beta-lactamase AmpC through reversible denaturation of adducts of the enzyme with beta-lactams. AmpC from Escherichia coli was reversibly denatured by temperature in a two-state manner with a temperature of melting (Tm) of 54.6 degrees C and a van't Hoff enthalpy of unfolding (deltaH(VH)) of 182 kcal/mol. Solvent denaturation gave a Gibbs free energy of unfolding in the absence of denaturant (deltaG(u)H2O) of 14.0 kcal/mol. Ligand binding perturbed the stability of the enzyme. The penicillin cloxacillin stabilized AmpC by 3.2 kcal/mol (deltaTm = +5.8 degrees C); the monobactam aztreonam stabilized the enzyme by 2.7 kcal/mol (deltaTm = +4.9 degrees C). Both acylating inhibitors complement the active site. Surprisingly, the oxacephem moxalactam and the carbapenem imipenem both destabilized AmpC, by 1.8 kcal/mol (deltaTm = -3.2 degrees C) and 0.7 kcal/mol (deltaTm = -1.2 degrees C), respectively. These beta-lactams, which share nonhydrogen substituents in the 6(7)alpha position of the beta-lactam ring, make unfavorable noncovalent interactions with the enzyme. Complexes of AmpC with transition state analog inhibitors were also reversibly denatured; both benzo(b)thiophene-2-boronic acid (BZBTH2B) and p-nitrophenyl phenylphosphonate (PNPP) stabilized AmpC. Finally, a catalytically inactive mutant of AmpC, Y150F, was reversibly denatured. It was 0.7 kcal/mol (deltaTm = -1.3 degrees C) less stable than wild-type (WT) by thermal denaturation. Both the cloxacillin and the moxalactam adducts with Y150F were significantly destabilized relative to their WT counterparts, suggesting that this residue plays a role in recognizing the acylated intermediate of the beta-lactamase reaction. Reversible denaturation allows for energetic analyses of the complementarity of AmpC for beta-lactams, through ligand binding, and for itself, through residue substitution. Reversible denaturation may be a useful way to study ligand complementarity to other beta-lactam binding proteins as well.  相似文献   

6.
The gene for esterase (rEst1) was isolated from a new species of genus Rheinheimera by functional screening of E. coli cells transformed with the pSMART/HaeIII genomic library. E. coli cells harboring the esterase gene insert could grow and produce clear halo zones on tributyrin agar. The rEst1 ORF consisted of 1,029 bp, corresponding to 342 amino acid residues with a molecular mass of 37 kDa. The signal P program 3.0 revealed the presence of a signal peptide of 25 amino acids. Esterase activity, however, was associated with a homotrimeric form of molecular mass 95 kDa and not with the monomeric form. The deduced amino acid sequence showed only 54% sequence identity with the closest lipase from Cellvibrio japonicus strain Ueda 107. Conserved domain search and multiple sequence alignment revealed the presence of an esterase/ lipase conserved domain consisting of a GXSXG motif, HGGG motif (oxyanion hole) and HGF motif, typical of the class IV hormone sensitive lipase family. On the basis of the sequence comparison with known esterases/ lipases, REst1 represents a new esterase belonging to class IV family. The purified enzyme worked optimally at 50 degrees C and pH 8, utilized pNP esters of short chain lengths, and showed best catalytic activity with p-nitrophenyl butyrate (C?), indicating that it was an esterase. The enzyme was completely inhibited by PMSF and DEPC and showed moderate organotolerance.  相似文献   

7.
A highly active inorganic pyrophosphatase was purified to electrophoretical homogeneity from the cytosol of Sulfolobus acidocaldarius strain 7, an extremely thermoacidophilic archaebacterium. The enzyme has an apparent molecular mass of 80 kDa as estimated by gel permeation chromatography, and showed a 21-kDa polypeptide on SDS-PAGE, suggesting that the archaebacterial enzyme is similar to most of the eubacterial pyrophosphatases rather than eukaryotic ones. The pI = 5.1. The enzyme showed relatively high content of Pro and low content of Ser plus Thr. The optimal pH was 6.5 (at 56 degrees C). From the Arrhenius plot an activation energy of 11.2 kcal/mol was obtained between 37-95 degrees C. The specific activity was 617 mumol Pi release min-1 mg-1 at 56 degrees C. The S. acidocaldarius pyrophosphatase was extremely stable. Complete activity remained after incubation at 100 degrees C for 10 min. No dissociation into subunit or unfolding of polypeptide chain occurred in the presence of 8 M urea. Experiments using guanidine-HCl suggested that the transition between a native tetrameric state and an unfolded state is completely reversible, and essentially independent of any additional factors such as divalent metal cation or dithiothreitol.  相似文献   

8.
An unidentified Bacillus licheniformis trehalose-6-phosphate hydrolase (BlTreA) gene was cloned and heterologously expressed in Escherichia coli M15 cells. The over-expressed BlTreA was purified to apparent homogeneity by metal-affinity chromatography and its molecular mass was determined to be approximately 65.9 kDa. The temperature and pH optima for BlTreA were 30 °C and 8.0, respectively. The enzyme hydrolyzed p-nitrophenyl-α-d-glucopyranoside (pNPG) and trehalose-6-phosphate efficiently, but it was inactive toward five other p-nitrophenyl derivatives. Steady-state kinetics with pNPG showed that BlTreA had a K(M) value of 5.2mM and a k(cat) value of 30.2s(-1). Circular dichroism analysis revealed that the secondary structures of BlTreA did not altered by 5-10% acetone and 10-20% ethanol, whereas 5-10% SDS had a detrimental effect on the folding of the enzyme. Thermal unfolding of this enzyme was found to be highly irreversible. The native enzyme started to unfold beyond ~0.14 M guanidine hydrochloride (GdnHCl) and reached the unfolded intermediates, [GdnHCl](0.5,N-I) and [GdnHCl](0.5,I-U), at 1.02 and 2.24 M, respectively. BlTreA was unfolded completely by 8M urea with [urea](0.5,N-U) of 4.98 M, corresponding to a free energy change of 4.29 kcal/mol for the N→U process. Moreover, the enzyme was unfolded by GdnHCl through a reversible pathway and the refolding reaction exhibited an intermediate state. Taken together, the characterization data provide a foundation for the future structure-function studies of BlTreA, a typical member of glycoside hydrolase family 13.  相似文献   

9.
An esterase (EC 3.1.1.1) produced by an isolated strain of Bacillus subtilis RRL 1789 exhibited moderate to high enantioselectivity in the kinetic resolution of several substrates like aryl carbinols, hydroxy esters, and halo esters. The enzyme named as B. subtilis esterase (BSE), was purified to >95% purity with a specific activity of 944 U/mg protein and 12% overall yield. The purified enzyme is approximately 52 kDa monomer, maximally activity at 37 degrees C and pH 8.0 and fairly stable up to 55 degrees C. The enzyme does not exhibit the phenomenon of interfacial activation with tributyrin and p-nitrophenyl butyrate beyond the saturation concentration. The enzyme showed preference for triacyglycerols and esters of p-nitrophenol with short chain fatty acid. Presence of Ca2+ ions increases the activity of enzyme by approximately 20% but its presence does not have any influence on the thermostability of the enzyme. The enzyme is not a metalloprotein and belongs to the family of serine proteases. The N-terminal amino acid sequence of BSE determined, as Met-Thr-Pro-Glu-Iso-Val-Thr-Thr-Glu-Tyr-Gly- revealed similarity with the N-terminal amino acid sequence of p-nitrobenzylesterase of B. subtilis.  相似文献   

10.
Ribonuclease T1 has two disulfide bonds linking cysteine residues 2-10 and 6-103. We have prepared a derivative of ribonuclease T1 in which one disulfide bond is broken and the cysteine residues carboxymethylated, (2-10)-RCM-T1, and three derivatives in which both disulfides are broken and the cysteine residues reduced, R-T1, carboxamidomethylated, RCAM-T1, or carboxymethylated, RCM-T1. The RNA hydrolyzing activity of these proteins has been measured, and urea and thermal denaturation studies have been used to determine conformational stability. The activity, melting temperature, and conformational stability of the proteins are: ribonuclease T1 (100%, 59.3 degrees C, 10.2 kcal/mol), (2-10)-RCM-T1 (86%, 53.3 degrees C, 6.8 kcal/mol), R-T1 (53%, 27.2 degrees C, 3.0 kcal/mol), RCAM-T1 (43%, 21.2 degrees C, 1.5 kcal/mol), and RCM-T1 (35%, 16.6 degrees C, 0.9 kcal/mol). Thus, the conformational stability is decreased by 3.4 kcal/mol when one disulfide bond is broken and by 7.2-9.3 kcal/mol when both disulfide bonds are broken. It is quite remarkable that RNase T1 can fold and function with both disulfide bonds broken and the cysteine residues carboxymethylated. The large decrease in the stability is due mainly to an increase in the conformational entropy of the unfolded protein which results when the constraints of the disulfide bonds on the flexibility are removed. We propose a new equation for predicting the effect of a cross-link on the conformational entropy of a protein: delta Sconf = -2.1 - (3/2)R 1n n, where n is the number of residues between the side chains which are cross-linked. This equation gives much better agreement with experimental results than other forms of this equation which have been used previously.  相似文献   

11.
This work describes differential effects of solvent in complexes of the aminoglycoside phosphotransferase(3')-IIIa (APH) with different aminoglycosides and the detection of change in solvent structure at specific sites away from substrates. Binding of kanamycins to APH occurs with a larger negative DeltaH in H2O relative to D2O (DeltaDeltaH(H2O-D2O) < 0), while the reverse is true for neomycins. Unusually large negative DeltaCp values were observed for binding of aminoglycosides to APH. DeltaCp for the APH-neomycin complex was -1.6 kcal x mol(-1) x deg(-1). A break at 30 degrees C was observed in the APH-kanamycin complex yielding DeltaCp values of -0.7 kcal x mol(-1) x deg(-1) and -3.8 kcal x mol(-1) x deg(-1) below and above 30 degrees C, respectively. Neither the change in accessible surface area (DeltaASA) nor contributions from heats of ionization were sufficient to explain the large negative DeltaCp values. Most significantly, 15N-1H HSQC experiments showed that temperature-dependent shifts of the backbone amide protons of Leu 88, Ser 91, Cys 98, and Leu143 revealed a break at 30 degrees C only in the APH-kanamycin complex in spectra collected between 21 degrees C and 38 degrees C. These amino acids represent solvent reorganization sites that experience a change in solvent structure in their immediate environment as structurally different ligands bind to the enzyme. These residues were away from the substrate binding site and distributed in three hydrophobic patches in APH. Overall, our results show that a large number of factors affect DeltaCp and binding of structurally different ligand groups cause different solvent structure in the active site as well as differentially affecting specific sites away from the ligand binding site.  相似文献   

12.
Bovine and dogfish chymotrypsins were compared to determine if chymotrypsin from a poikilothermic organism (spiny dogfish (Squalus acanthias] adapted to low temperatures possessed catalytic properties different from those of the same enzyme from a warm-blooded animal. An improved procedure was developed for isolating dogfish pancreatic chymotrypsin. The least hydrophobic and smallest substrate used, p-nitrophenyl acetate, had similar enthalpies of association (delta Ha) with both enzymes, whereas larger, more hydrophobic substrates had delta Ha values that were of opposite sign for the two enzymes. As the temperature increased, the association constants (1/Ks) for p-nitrophenyl valerate and p-nitrophenyltrimethyl acetate increased for dogfish chymotrypsin and decreased for bovine chymotrypsin, while the free energies of association (delta Ga) remained relatively constant. Acylation of chymotrypsin was 1.5-2.5 times slower in the dogfish enzyme than in the bovine enzyme except below 15 degrees C with p-nitrophenyltrimethyl acetate. delta H++ for acylation by p-nitrophenyltrimethyl acetate were 2.0 kcal/mol for the dogfish enzyme and 10.2 kcal/mol for the bovine, whereas delta H++ values were only slightly lower in the dogfish enzyme for the other two substrates. For all substrates, the deacylation rate constant (kcat) was greater with dogfish chymotrypsin than bovine. However, the free energies of activation (delta G++) for deacylation were nearly equal between the two enzymes for each of the substrates.  相似文献   

13.
1. When Triton-filled lysosomes from rat liver are incubated for up to 50min at 37 degrees C, pH7.4, in 0.25m-sucrose, no loss of latency of N-acetyl-beta-glucosaminidase or p-nitrophenyl phosphatase occurs unless the incubated lysosomes are cooled to approx. 15 degrees C. 2. It is suggested that a phase change takes place in the incubated lysosomal membranes on cooling; it starts at approx. 15 degrees C and probably is not complete at 0 degrees C. 3. Incubation of the lysosomes causes an increased potential for loss of latency of the lysosomal enzymes. This potential is not fully expressed at elevated temperature (e.g. 37 degrees C), but is expressed on cooling. 4. The increase at elevated temperature in potential for loss of latency exhibits biphasic kinetics, with an initial rapid phase followed by a slower phase, which is linear with respect to time. The extra loss of latency resulting from the rapid phase in proportional to the temperature of the incubation. 5. Arrhenius plots of the increase is potential for loss of latency during the slow phase for N-acetyl-beta-glucosaminidase and p-nitrophenyl phosphatase exhibit marked deviations from linearity beginning at approx. 15 degrees C. This suggests that the increase in potential for loss of latency is affected by a phase change that occurs around this temperature. 6. Activation energies for the increase in potential for loss of latency at and above 22 degrees C are 53.1+/-5.4kJ/mol (12.7+/-1.3kcal/mol) for N-acetyl-beta-glucosaminidase and 45.2+/-7.5kJ/mol (10.8+/-1.8kcal/mol) for p-nitrophenyl phosphatase. It is postulated that these energies reflect enzymic action, the products of which cause loss of latency to occur on cooling.  相似文献   

14.
Several models have been proposed to explain the high temperatures required to denature enzymes from thermophilic organisms; some involve greater maximum thermodynamic stability for the thermophile, and others do not. To test these models, we reversibly melted two analogous protein domains in a two-state manner. E2cd is the isolated catalytic domain of cellulase E2 from the thermophile Thermomonospora fusca. CenAP30 is the analogous domain of the cellulase CenA from the mesophile Cellulomonas fimi. When reversibly denatured in a common buffer, the thermophilic enzyme E2cd had a temperature of melting (Tm) of 72.2 degrees C, a van't Hoff enthalpy of unfolding (DeltaHVH) of 190 kcal/mol, and an entropy of unfolding (DeltaSu) of 0.55 kcal/(mol*K); the mesophilic enzyme CenAP30 had a Tm of 56.4 degrees C, a DeltaHVH of 107 kcal/mol, and a DeltaSu of 0. 32 kcal/(mol*K). The higher DeltaHVH and DeltaSu values for E2cd suggest that its free energy of unfolding (DeltaGu) has a steeper dependence on temperature at the Tm than CenAP30. This result supports models that predict a greater maximum thermodynamic stability for thermophilic enzymes than for their mesophilic counterparts. This was further explored by urea denaturation. Under reducing conditions at 30 degrees C, E2cd had a concentration of melting (Cm) of 5.2 M and a DeltaGu of 11.2 kcal/mol; CenAP30 had a Cm of 2.6 M and a DeltaGu of 4.3 kcal/mol. Under nonreducing conditions, the Cm and DeltaGu of CenAP30 were increased to 4.5 M and 10.8 kcal/mol at 30 degrees C; the Cm for E2cd was increased to at least 7.4 M at 32 degrees C. We were unable to determine a DeltaGu value for E2cd under nonreducing conditions due to problems with reversibility. These data suggest that E2cd attains its greater thermal stability (DeltaTm = 15.8 degrees C) through a greater thermodynamic stability (DeltaDeltaGu = 6.9 kcal/mol) compared to its mesophilic analogue CenAP30.  相似文献   

15.
A previous report (Hirose, M., Akuta, T., and Takahashi, N. (1989) J. Biol. Chem. 264, 16867-16872) has shown that for the efficient oxidative refolding of disulfide-reduced ovotransferrin, a preincubation under reduced conditions at a low temperature is essential. To study the renaturation pathway, the disulfide-reduced N-terminal half-molecule of ovotransferrin was analyzed by CD spectrum. The reduced protein was found to take, at low temperatures, a partially folded conformation that can be distinguished from both the native and denatured states. The folded protein was in a metastable state with delta GD value of 2.2-2.8 kcal/mol at 6 degrees C. The conformation was variable depending on temperature conditions; its stability was decreased at a lower temperature (1.0-1.2 kcal/mol at 0 degrees C). Subsequent reoxidation at 6 degrees C by oxidized glutathione led efficiently the reduced protein to the correctly renatured form having the iron-binding capacity, indicating that the partially folded state is the immediate precursor to subsequent oxidative refolding.  相似文献   

16.
The zygomycete fungus Rhizomucor pusillus HHT-1, cultured on L(+)arabinose as a sole carbon source, produced extracellular alpha-L-arabinofuranosidase. The enzyme was purified by (NH4)2SO4 fractionation, gel filtration, and ion exchange chromatography. The molecular mass of this monomeric enzyme was 88 kDa. The native enzyme had a pI of 4.2 and displayed a pH optimum and stability of 4.0 and 7.0-10.0, respectively. The temperature optimum was 65 degrees C, and it was stable up to 70 degrees C. The Km and Vmax for p-nitrophenyl alpha-L-arabinofuranoside were 0.59 mM and 387 micromol x min(-1) x mg(-1) protein, respectively. Activity was not stimulated by metal cofactors. The N-terminal amino acid sequence did not show any similarity to other arabinofuranosidases. Higher hydrolytic activity was recorded with pnitrophenyl alpha-L-arabinofuranoside, arabinotriose, and sugar beet arabinan; lower hydrolytic activity was recorded with oat-spelt xylan and arabinogalactan, indicating specificity for the low molecular mass L(+)-arabinose containing oligosaccharides with furanoside configuration.  相似文献   

17.
A novel lipase was isolated from a metagenomic library of Baltic Sea sediment bacteria. Prokaryotic DNA was extracted and cloned into a copy control fosmid vector (pCC1FOS) generating a library of >7000 clones with inserts of 24-39 kb. Screening for clones expressing lipolytic activity based on the hydrolysis of tributyrin and p-nitrophenyl esters, identified 1% of the fosmids as positive. An insert of 29 kb was fragmented and subcloned. Subclones with lipolytic activity were sequenced and an open reading frame of 978 bp encoding a 35.4-kDa putative lipase/esterase h1Lip1 (DQ118648) with 54% amino acid similarity to a Pseudomonas putida esterase (BAD07370) was identified. Conserved regions, including the putative active site, GDSAG, a catalytic triad (Ser148, Glu242 and His272) and a HGG motif, were identified. The h1Lip1 lipase was over expressed, (pGEX-6P-3 vector), purified and shown to hydrolyse p-nitrophenyl esters of fatty acids with chain lengths up to C14. Hydrolysis of the triglyceride derivative 1,2-di-O-lauryl-rac-glycero-3-glutaric acid 6'-methylresorufin ester (DGGR) confirmed that h1Lip1 was a lipase. The apparent optimal temperature for h1Lip1, by hydrolysis of p-nitrophenyl butyrate, was 35 degrees C. Thermal stability analysis showed that h1Lip1 was unstable at 25 degrees C and inactivated at 40 degrees C with t1/2 <5 min.  相似文献   

18.
The complete time course of the hydrolysis of p-nitrophenyl phosphate catalyzed by the low molecular weight (acid) phosphotyrosyl protein phosphatase from bovine heart was elucidated and analyzed in detail. Burst titration kinetics were demonstrated for the first time with this class of enzyme. At pH 7.0, 4.5 degrees C, a transient pre-steady-state "burst" of p-nitrophenol was formed with a rate constant of 48 s-1. The burst was effectively stoichiometric and corresponded to a single enzyme active site/molecule. The burst was followed by a slow steady-state turnover of the phosphoenzyme intermediate with a rate constant of 1.2 s-1. Product inhibition studies indicated an ordered uni-bi kinetic scheme for the hydrolysis. Partition experiments conducted for several substrates revealed a constant product ratio. Vmax was constant for these substrates, and the overall rate of hydrolysis was increased greatly in the presence of alcohol acceptors. An enzyme-catalyzed 18O exchange between inorganic phosphate and water was detected and occurred with kcat = 4.47 x 10(-3) s-1 at pH 5.0, 37 degrees C. These results were all consistent with the existence of a phosphoenzyme intermediate in the catalytic pathway and with the breakdown of the intermediate being the rate-limiting step. The true Michaelis binding constant Ks = 6.0 mM, the apparent Km = 0.38 mM, and the rate constants for phosphorylation (k2 = 540 s-1) and dephosphorylation (k3 = 36.5 s-1) were determined under steady-state conditions with p-nitrophenyl phosphate at pH 5.0 and 37 degrees C in the presence of phosphate acceptors. The energies of activation for the enzyme-catalyzed hydrolysis at pH 5.0 and 7.0 were 13.6 and 14.1 kcal/mol, respectively. The activation energy for the enzyme-catalyzed medium 18O exchange between phosphate and water was 20.2 kcal/mol. Using the available equilibrium and rate constants, an energetic diagram was constructed for the enzyme-catalyzed reaction.  相似文献   

19.
The thermodynamic and spectroscopic properties of a cysteine-free variant of Escherichia coli dihydrofolate reductase (AS-DHFR) were investigated using the combined effects of urea and temperature as denaturing agents. Circular dichroism (CD), absorption, and fluorescence spectra were recorded during temperature-induced unfolding at different urea concentrations and during urea-induced unfolding at different temperatures. The first three vectors obtained by singular-value decomposition of each set of unfolding spectra were incorporated into a global analysis of a unique thermodynamic model. Although individual unfolding profiles can be described as a two-state process, a simultaneous fit of 99 vectors requires a three-state model as the minimal scheme to describe the unfolding reaction along both perturbation axes. The model, which involves native (N), intermediate (I), and unfolded (U) states, predicts a maximum apparent stability, DeltaG degrees (NU), of 6 kcal mol(-)(1) at 15 degrees C, an apparent m(NU) value of 2 kcal mol(-)(1) M(-)(1), and an apparent heat capacity change, DeltaC(p)()(-NU), of 2.5 kcal mol(-)(1) K(-)(1). The intermediate species has a maximum stability of approximately 2 kcal mol(-)(1) and a compactness closer to that of the native than to that of the unfolded state. The population of the intermediate is maximal ( approximately 70%) around 50 degrees C and falls below the limits of detection of > or =2 M urea or at temperatures of <35 or >65 degrees C. The fluorescence properties of the equilibrium intermediate resemble those of a transient intermediate detected during refolding from the urea-denatured state, suggesting that a tryptophan-containing hydrophobic cluster in the adenosine-binding domain plays a key role in both the equilibrium and kinetic reactions. The CD spectroscopic properties of the native state reveal the presence of two principal isoforms that differ in ligand binding affinities and in the packing of the adenosine-binding domain. The relative populations of these species change slightly with temperature and do not depend on the urea concentration, implying that the two native isoforms are well-structured and compact. Global analysis of data from multiple spectroscopic probes and several methods of unfolding is a powerful tool for revealing structural and thermodynamic properties of partially and fully folded forms of DHFR.  相似文献   

20.
Kleeb AC  Kast P  Hilvert D 《Biochemistry》2006,45(47):14101-14110
Prephenate dehydratase (PDT) is an important but poorly characterized enzyme that is involved in the production of L-phenylalanine. Multiple-sequence alignments and a phylogenetic tree suggest that the PDT family has a common structural fold. On the basis of its sequence, the PDT from the extreme thermophile Methanocaldococcus jannaschii (MjPDT) was chosen as a promising representative of this family for pursuing structural and functional studies. The corresponding pheA gene was cloned and expressed in Escherichia coli. It encodes a monofunctional and thermostable enzyme with an N-terminal catalytic domain and a C-terminal regulatory ACT domain. Biophysical characterization suggests a dimeric (62 kDa) protein with mixed alpha/beta secondary structure elements. MjPDT unfolds in a two-state manner (Tm = 94 degrees C), and its free energy of unfolding [DeltaGU(H2O)] is 32.0 kcal/mol. The purified enzyme catalyzes the conversion of prephenate to phenylpyruvate according to Michaelis-Menten kinetics (kcat = 12.3 s-1 and Km = 22 microM at 30 degrees C), and its activity is pH-independent over the range of pH 5-10. It is feedback-inhibited by L-phenylalanine (Ki = 0.5 microM), but not by L-tyrosine or L-tryptophan. Comparison of its activation parameters (DeltaH(++)= 15 kcal/mol and DeltaS(++)= -3 cal mol-1 K-1) with those for the spontaneous reaction (DeltaH(++) = 17 kcal/mol and DeltaS(++)= -28 cal mol-1 K-1) suggests that MjPDT functions largely as an entropy trap. By providing a highly preorganized microenvironment for the dehydration-decarboxylation sequence, the enzyme may avoid the extensive solvent reorganization that accompanies formation of the carbocationic intermediate in the uncatalyzed reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号