共查询到20条相似文献,搜索用时 11 毫秒
1.
根据GenBank上WSSV囊膜蛋白基因vp19的序列,设计并合成引物,PCR扩增得到vp19基因并克隆到pGEM‐T载体中,经过BamHⅠ/HindⅢ酶切、连接并将vp19插入到pET32b表达载体中。用重组质粒pET32b-vp19转化大肠杆菌Origam(iDE3)pLysS,在IPTG诱导下,融合蛋白Trx-VP19以可溶性的形式得到表达,经SDS-PAGE和Western-blot检测显示其分子量与预期的大小相符合。目的蛋白经Ni2 柱纯化并定量后分别直接注射鳌虾和包被饲料投喂鳌虾。实验结果表明注射Trx-VP19可以提高鳌虾个体抗WSSV感染力的作用。 相似文献
2.
Kuan-Yu Chen Tai-Ching Hsu Po-Yu Huang Shih-Ting Kang Chu-Fang Lo Wei-Pang Huang Li-Li Chen 《Fish & shellfish immunology》2009,27(3):460-465
White spot syndrome virus (WSSV) can cause the most serious viral disease of shrimp and has a wide host range among crustaceans. Although researches show a lot about its genome and structure, information concerning the mechanism of how WSSV infects' cells is lacking. In this study, some experiments were applied to confirm the biological meaning of the protein–protein interaction between WSSV envelope protein, VP53A, and Penaeus monodon chitin-binding protein (PmCBP). Immunofluorescent study indicated that PmCBP is located on the cell surface of host cells. PmCBP amounts of about 34 kDa can be detected in both P. monodon and Litopenaeus vannamei tissues by Western blotting. In the in vivo neutralization experiment, both rVP53A and rPmCBP that were produced by Esherichia coli can promote resp. a 40% and 20% survival rate of the shrimp which were challenged by WSSV. Furthermore, a yeast-two-hybrid result revealed that PmCBP could interact with at least 11 WSSV envelope proteins. Those findings suggest that PmCBP may be involved in WSSV infection. 相似文献
3.
根据GenBank上WSSV囊膜蛋白基因vp28的序列,设计并合成引物,PCR扩增得到vp28基因,成功构建重组表达载体pET22b-vp28并转化大肠杆菌BL21(DE3)。基因工程菌株37℃IPTG诱导,表达产物经Western-blot和SDS-PAGE检测显示有与预期大小32kDa相符合的目的蛋白。用Ni2 -柱纯化的目的蛋白分别直接注射螯虾和包被饲料投喂螯虾,实验结果表明vp28在大肠杆菌中的表达产物有显著提高虾体抗WSSV感染力的作用,而且注射效果更好。 相似文献
4.
5.
Sunil Kumar Sahu Kandasamy Kathiresan Reena Singh Poomalai Senthilraja 《Bioinformation》2012,8(18):897-900
White spot syndrome (WSS) is one of the most common and most disastrous diseases of shrimp worldwide. It causes up to 100%
mortality within 3 to 4 days in commercial shrimp farms, resulting in large economic losses to the shrimp farming industry. VP28
envelope protein of WSSV is reported to play a key role in the systemic infection in shrimps. Considering the most sombre issue of
viral disease in cultivated shrimp, the present study was undertaken to substantiate the inhibition potential of Avicennia marinaderived
phytochemicals against the WSSV envelope protein VP28. Seven A. marina-derived phytochemicals namely stigmasterol,
triterpenoid, betulin, lupeol, avicenol-A, betulinic acid and quercetin were docked against the WSSV protein VP28 by using Argus
lab molecular docking software. The chemical structures of the phytochemicals were retrieved from Pubchem database and
generated from SMILES notation. Similarly the protein structure of the envelope protein was obtained from protein data bank
(PDB-ID: 2ED6). Binding sites were predicted by using ligand explorer software. Among the phytochemicals screened,
stigmasterol, lupeol and betulin showed the best binding exhibiting the potential to block VP28 envelope protein of WSSV, which
could possibly inhibit the attachment of WSSV to the host species. Further experimental studies will provide a clear
understanding on the mode of action of these phytochemicals individually or synergistically against WSSV envelope protein and
can be used as an inhibitory drug to reduce white spot related severe complications in crustaceans. 相似文献
6.
Aims: To achieve high‐level expression and secretion of active VP28 directed by a processing‐efficient signal peptide in Bacillus subtilis WB600 and exploit the possibility of obtaining an oral vaccine against white spot syndrome virus (WSSV) using vegetative cells or spores as delivery vehicles. Methods and Results: The polymerase chain reaction (PCR)‐amplified vp28 gene was inserted into a shuttle expression vector with a novel signal peptide sequence. After electro‐transformation, time‐courses for recombinant VP28 (rVP28) secretion level in B. subtilis WB600 were analysed. Crayfish were divided into three groups subsequently challenged by 7‐h immersion at different time points after vaccination. Subgroups including 20 inter‐moult crayfish with an average weight of 15 g in triplicate were vaccinated by feeding coated food pellets with vegetative cells or spores for 20 days. Vaccination trials showed that rVP28 by spore delivery induced a higher resistance than using vegetative cells. Challenged at 14 days postvaccination, the relative per cent survival (RPS) values of groups of rVP28‐bv and rVP28‐bs was 51·7% and 78·3%, respectively. Conclusions: The recombinant B. subtilis strain with the ability of high‐level secretion of rVP28 can evoke protection of crayfish against WSSV by oral delivery. Significance and Impact of the Study: Oral vaccination by the B. subtilis vehicle containing VP28 opens a new way for designing practical vaccines to control WSSV. 相似文献
7.
Protection of Penaeus monodon against white spot syndrome by continuous oral administration of a low concentration of Bacillus subtilis spores expressing the VP28 antigen 下载免费PDF全文
K.‐C. Pham H.T.T. Tran C. Van Doan P.H. Le A.T. Van Nguyen H.A. Nguyen H.A. Hong S.M. Cutting T.‐N. Phan 《Letters in applied microbiology》2017,64(3):184-191
8.
Nucleases are phosphodiesterases that hydrolyze DNA and/or RNA. In a search for shrimp nucleases involved in apoptosis, we discovered a nuclease from hepatopancreatic cDNA of the black tiger shrimp Penaeus monodon. The full-length nuclease gene was amplified and revealed to contain 1668bp corresponding to 381 deduced amino acid residues in the mature enzyme. Sequence analysis indicated 83% nucleic acid identity and 89% amino acid identity to a nuclease from the Kuruma shrimp Penaeus japonicus (also called Marsupenaeus japonicus). Comparative analysis of sequences, conserved motifs and phylogenetic trees indicated that P. monodon nuclease (PMN) belonged to the family of DNA/RNA non-specific endonucleases (DRNSN). RT-PCR analysis using primers specific for PMN mRNA with seven different shrimp tissues revealed that expression in normal shrimp was restricted to the hepatopancreas. Semiquantitative RT-PCR analysis of PMN using hepatopancreatic mRNA from normal shrimp and from shrimp challenged with white spot syndrome virus (WSSV) indicated significant up-regulation of PMN in the hepatopancreas (P<0.05) at the early stage of viral infection but a return to baseline levels as gross signs of disease developed. At the same time, expression was always confined to the hepatopancreas and never seen in other tissues, including those reported to be prime targets for WSSV and subject to increased levels of apoptosis after infection. The results suggested that PMN is probably a digestive enzyme that is unlikely to be involved in hallmark DNA digestion associated with apoptosis. 相似文献
9.
Ponprateep S Tharntada S Somboonwiwat K Tassanakajon A 《Fish & shellfish immunology》2012,32(1):26-34
Anti-lipopolysaccharide factors (ALFs) are antimicrobial peptides previously identified in various crustaceans. Out of five isoforms identified in Penaeus monodon, ALFPm3 is the best characterized, exhibits antibacterial and antifungal activities and can protect the shrimp from viral infections. Herein, the most recent identified ALFPm, called ALFPm6, is characterized for its potential role in the shrimp’s immunity. RNA interference-mediated gene silencing was used to study the function of ALFPm6 in comparison to ALFPm3. Knockdown of ALFPm3 gene led to rapid death with a cumulative shrimp mortality of 86% within 7 days, accompanied by a 12- and 50-fold higher bacterial count after 2 days in the haemolymph and hepatopancreas, respectively, compared to the control shrimp injected with GFP dsRNA. In contrast, gene silencing of ALFPm6 alone had no effect on the shrimp mortality, but led to a significant increase in the cumulative mortality and a faster mortality rate following Vibrio harveyi and white spot syndrome virus (WSSV) infections, respectively. These results support the roles of ALFPm6 and ALFPm3 in the protection of shrimp against microbial infections. 相似文献
10.
We have developed a sensitive and rapid lateral-flow immunoassay (LFIA) for WSSV, using colloidal gold as an indicator. The fusion protein, VP (19 28), was expressed in E. coli, purified and used to prepare polyclonal antibodies. The purified anti-VP (19 28) IgG were conjugated with colloidal gold. Unconjugated anti-VP (19 28) IgG and goat anti-rabbit IgG were immobilized on nitrocellulose membranes. After assembly, three groups (5 individual animals in each group) of shrimp samples were tested which included healthy, moribund and dead shrimps. For each group, three different tissues (body juices, gills and hepatopancreas) were tested at the same time. In parallel, all the samples were also analyzed using PCR for comparison. Out of 45 samples tested, 30 were detected as positive while 15 were classified as negative. The results of LFIA correlate with those obtained by the PCR analysis, indicating that these two detection methods have the same efficacy in the limited number of samples tested in this preliminary study. 相似文献
11.
We have developed a sensitive and rapid lateral-flow immunoassay (LFIA) for WSSV,using colloidal gold as an indicator.The fusion protein,VP (19+28),was expressed in E.coli,purified and used to prepare polyclonal antibodies.The purified anti-VP (19+28) IgG were conjugated with colloidal gold.Unconjugated anti-VP (19+28) IgG and goat anti-rabbit IgG were immobilized on nitrocellulose membranes.After assembly,three groups (5 individual animals in each group) of shrimp samples were tested which included healthy,moribund and dead shrimps.For each group,three different tissues (body juices,gills and hepatopancreas) were tested at the same time.In parallel,all the samples were also analyzed using PCR for comparison.Out of 45 samples tested,30 were detected as positive while 15 were classified as negative.The results of LFIA correlate with those obtained by the PCR analysis,indicating that these two detection methods have the same efficacy in the limited number of samples tested in this preliminary study. 相似文献
12.
White spot syndrome virus (WSSV), a unique member within the virus family Nimaviridae, is the most notorious aquatic virus infecting shrimp and other crustaceans and has caused enormous economic losses in the shrimp farming industry worldwide. Therefore, a comprehensive understanding of WSSV morphogenesis, structural proteins, and replication is essential for developing prevention measures of this serious parasite. The viral genome is approximately 300kb and contains more than 180 open reading frames (ORF). However, most of proteins encoded by these ORF have not been characterized. Due to the importance of WSSV structural proteins in the composition of the virion structure, infection process and interaction with host cells, knowledge of structural proteins is essential to understanding WSSV entry and infection as well as for exploring effective prevention measures. This review article summarizes mainly current investigations on WSSV structural proteins including the relative quantities, localization, function and protein-protein interactions. Traditional proteomic studies of 1D or 2D gel electrophoresis separations and mass spectrometry (MS) followed by database searches have identified a total of 39 structural proteins. Shotgun proteomics and iTRAQ were initiated to identify more structural proteins. To date, it is estimated that WSSV is assembled by at least 59 structural proteins, among them 35 are defined as the envelope fraction (including tegument proteins) and 9 as nucleocapsid proteins. Furthermore, the interaction within several major structural proteins has also been investigated. This identitification and characterization of WSSV protein components should help in the understanding of the viral assembly process and elucidate the roles of several major structural proteins. 相似文献
13.
【目的】研究对虾白斑综合征病毒(White spot syndrome virus,WSSV)囊膜蛋白sVP53B克隆、表达、纯化及抗血清制备。【方法】根据WSSV囊膜蛋白基因序列,设计引物,PCR扩增出功能序列(Svp53B),构建到pET-16b载体后,转化至大肠杆菌Rosetta 2诱导表达,用SDS-PAGE、Western blotting检测优化表达。表达产物采用Ni-NTA琼脂糖磁珠进行纯化、割胶回收融合蛋白,以纯化的Svp53B-his为抗原,免疫兔子获得多克隆抗体,通过间接ELISA检测抗体的效价。【结果】构建重组质粒pET-16b-Svp53B,在大肠杆菌Rosetta 2中以1 mmol/L IPTG诱导表达量最高,主要以包涵体形式表达。纯化包涵体蛋白免疫兔子,获得多克隆血清,效价达到1:150 000。【结论】原核表达并纯化得到高纯度的WSSV囊膜蛋白sVP53B,制备的兔源多克隆血清亲和力高、特异性好,这对后期进一步研究VP53B与经口侵染相关功能奠定了基础。 相似文献
14.
A time-course study on the resistance of Penaeus japonicus induced by artificial infection with white spot syndrome virus 总被引:1,自引:0,他引:1
The onset and duration of resistance in experimental survivors of Penaeus japonicus produced by an intramuscular injection with white spot syndrome virus (WSSV) were surveyed by re-challenge tests with the virus conducted at weeks 1-4 and months 1-3 post initial exposure (PIE) to the virus. Virus neutralising activity in the survivors' plasma was also examined. Plasma-treated WSSV was separated from the plasma by centrifugation and then injected into na?ve shrimp, in parallel with each re-challenge test. Re-challenge tests of the survivors conducted at weeks 1-4 PIE revealed that the resistance commenced at week 3 (relative percent survival, RPS: 39%) and almost fully developed at week 4 (RPS: 58%), because statistically significant differences in survival rates were observed between the test (previously virus exposed) and control groups at weeks 3 and 4. Re-challenge at months 1-3 PIE resulted in RPS values of 67, 54 and 6%, respectively, indicating the resistance persisted until month 2. RPS values in neutralisation tests performed at weeks 1-4 and months 1-3 PIE were -5, 14, 36, 50, 100, 38 and 6%, respectively, which coincided with the RPS values in each re-challenge test conducted in parallel. The present results demonstrated that resistance of P. japonicus against the viral pathogen developed 3 or 4 weeks after an exposure to the virus, and it persisted for another month at 24 degrees C. The resistance was paralleled by a humoral neutralising factor(s) in the plasma of shrimp. 相似文献
15.
根据GenBank上WSSV囊膜蛋白基因vp19和vp28的序列,设计并合成两对引物,PCR扩增得到vp19和vp28两基因,大小分别为370bp和630bp。通过EcoRI位点连接两基因,再按正确的阅读框插入表达载体pET-22b( )中,构建出重组表达载体pET-vp(19 28)并转化大肠杆菌BL21(DE3)。基因工程菌株35℃IPTG诱导,表达产物经SDS-PAGE检测显示有与预期大小41kDa相吻合的融合蛋白带。用Ni^2 -柱纯化的基因工程蛋白免疫新西兰大白兔制备抗血清,进行螯虾活体中和病毒实验,结果表明抗血清对WSSV的中和效率达到了100%。 相似文献
16.
Amod D. Kulkarni Viswanath Kiron Jan H. W. M. Rombout Monica F. Brinchmann Jorge M. O. Fernandes Naduvilamuriparampu S. Sudheer Bright I. S. Singh 《Proteomics》2014,14(13-14):1660-1673
White spot syndrome virus (WSSV) is a pathogen that causes considerable mortality of the farmed shrimp, Penaeus monodon. Candidate ‘vaccines’, WSSV envelope protein VP28 and formalin‐inactivated WSSV, can provide short‐lived protection against the virus. In this study, P. monodon was orally intubated with the aforementioned vaccine candidates, and protein expression in the gut of immunised shrimps was profiled. The alterations in protein profiles in shrimps infected orally with live‐WSSV were also examined. Seventeen of the identified proteins in the vaccine and WSSV‐intubated shrimps varied significantly compared to those in the control shrimps. These proteins, classified under exoskeletal, cytoskeletal, immune‐related, intracellular organelle part, intracellular calcium‐binding or energy metabolism, are thought to directly or indirectly affect shrimp's immunity. The changes in the expression levels of crustacyanin, serine proteases, myosin light chain, and ER protein 57 observed in orally vaccinated shrimp may probably be linked to immunoprotective responses. On the other hand, altered expression of proteins linked to exoskeleton, calcium regulation and energy metabolism in WSSV‐intubated shrimps is likely to symbolise disturbances in calcium homeostasis and energy metabolism. 相似文献
17.
根据GenBank上WSSV囊膜蛋白基因vp19和vp28的序列,设计并合成两对引物,PCR扩增得到vp19和vp28两基因,大小分别为370bp和630bp.通过EcoRI位点连接两基因,再按正确的阅读框插入表达载体pET-22b(+)中,构建出重组表达载体pET-vp(19+28)并转化大肠杆菌BL21(DE3).基因工程菌株35℃IPTG诱导,表达产物经SDS-PAGE检测显示有与预期大小41kDa相吻合的融合蛋白带.用Ni2+-柱纯化的基因工程蛋白免疫新西兰大白兔制备抗血清,进行螯虾活体中和病毒实验,结果表明抗血清对WSSV的中和效率达到了100%. 相似文献
18.
Protection of Penaeus monodon against white spot syndrome virus by inactivated vaccine with herbal immunostimulants 总被引:1,自引:0,他引:1
Yogeeswaran A Velmurugan S Punitha SM Babu MM Selvaraj T Kumaran T Citarasu T 《Fish & shellfish immunology》2012,32(6):1058-1067
To improve the immune response in tiger shrimp Penaeus monodon against WSSV infection, juveniles (350 ± 10 mg) were vaccinated with formalin-inactivated WSSV and fed with herbal immunostimulants. The methanolic extracts of herbal immunostimulants such as Acalypha indica, Cynodon dactylon, Picrorrhiza kurrooa, Withania somnifera and Zingiber officinalis were incorporated in formulated diets at different concentrations; 250 (ED(1)), 500 (ED(2)), 1000 (ED(3)) and 2000 (ED(4)) mg kg(-1) of feed and fed for 60 days after vaccination. After 30 and 60 days intervals of feeding, the shrimps were challenged with WSSV, which were isolated and propagated from the infected crustaceans. The shrimps fed with control diets (C(1)) succumbed to death within 5 days after WSSV challenge, when no vaccination and immunostimulations were given. The other control groups (C(2) and C(3)) had slight improvements in all parameters including survival. The percentage survival was significantly (P < 0.05) increased to 30, 50 and 60% in the ED(2), ED(3) and ED(4) diets respectively after 60 days challenging. The better haematological, biochemical and immunological parameters were also found in the herbal extracts supplemented diets fed vaccinated shrimps. The present study revealed that the combined effect of immunostimulation and vaccination helped to boost the immune system against WSSV infection and hence this application can be adopted for shrimp culture. 相似文献
19.
Aim: Surface‐displayed heterologous antigens on Bacillus subtilis spores can induce the vertebrate animals tested to generate local and systematic immune response through oral immunization. Here, the protection potential of the recombinant spores displaying the VP28 protein of white spot syndrome virus (WSSV) was investigated in the invertebrate crayfish (Cambarus clarkii). Methods and Results: The VP28 protein was successfully displayed on the surfaces of B. subtilis spores using CotB or CotC as a fusion partner. Crayfish were administrated orally by feeding the feed pellets coated with B. subtilis spores for 7 days and immediately followed by WSSV challenge. Oral administration of either spores expressing CotB‐VP28 or CotC‐VP28 resulted in significantly higher relative survival rates of 37·9 and 44·8% compared with the crayfish orally administrated with the spores nonexpressing VP28 (10·3% relative survival rate). When challenges were separately conducted at 7 and 21 days after oral administration, the relative survival rates increased to 46·4 and 50% at 7 days post‐oral administration, but decreased to 30 and 33·3% at 21 days after oral administration. Conclusion: These evidences indicate that the surface‐displayed VP28 on B. subtilis spore could induce protection of crayfish against WSSV via oral administration. Significance and Impact of the Study: This is the first report to use the spore surface display system to deliver orally a heterologous antigen in an aquatic invertebrate animal, crayfish. The results presented here suggest that the spore‐displayed VP28 might be suitable for an oral booster vaccine on prevention of WSSV infection in shrimp farming. 相似文献
20.
We studied the possible role that marine microalgae may play during the outbreaks of WSS (white spot syndrome). In order to elucidate the possibility of marine microalgae carrying WSSV (white spot syndrome virus), six marine microalgae (Isochrysis galbana, Skeletonema costatum, Chlorella sp., Heterosigma akashiwo, Scrippsiella trochoidea, Dunaliella salina) were co-cultured with adult Marsupenaeus japonicus infected with WSSV and were assayed daily by nested-PCR to study whether they could carry WSSV. Further experiments were conducted to investigate whether the virus carried by microalgae could re-infect juvenile M. japonicus. Results showed that all of the experimental microalgae, except H. akashiwo could carry WSSV, and among them, Chlorella sp. and S. trochoidea had the strongest WSSV-carrying ability. Unlike other invertebrate carriers of WSSV, the WSSV detections in microalgae, which were positive after 1 and 3 days, were negative after 10days of incubation. WSSV detection results in juvenile M. japonicus showed that the juvenile shrimp were re-infected by co-cultured Chlorella sp., although the juvenile M. japonicus carried so small an amount of WSSV that it could only be detected by nested-PCR. The results of this experiment suggest that microalgae might be one possible horizontal transmission pathway for WSSV. Further research, however, is required to better understand the factors behind the different carrying abilities and virus-carrying mechanisms of different microalgae. 相似文献