首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Luteinizing hormone and follicle stimulating hormone secretion was stimulated by 4 min pulses of arachidonic acid (3 X 10(-5) to 10(-4)M) in superfused rat pituitary cells. The effect of its lipoxygenase metabolites, 5-hydroxy-6,8,11,14-eicosatetranoic acid (5-HETE) and 15-hydroxy-5,8,10,14-eicosatetranoic acid (15-HETE) was more potent on hormone release when added in the same dose. Using 3 X 10(-5)M 5-HETE, its releasing activity on gonadotropins was comparable to that of GnRH (10(-9)M). 15-HETE (3 X 10(-5)M) was even more potent on LH and FSH secretion than 5-HETE. The secretory profile induced by 5-HETE and 15-HETE was also similar to that shown for GnRH, resulting in a rapid increase and a more prolonged decline of the hormone release. The addition of these fatty acids to superfused pituitary cells did not alter the response of the cells to their physiological ligand. These findings give further support to the proposal that metabolites of arachidonic acid may be involved in receptor-mediated mechanisms of gonadotropin release in pituitary cells.  相似文献   

2.
Lipoxygenase-pathway metabolites of arachidonic acid are produced in pancreatic islets. They are are implicated in insulin release, since nonselective inhibitors of lipoxygenases inhibit glucose-induced insulin release. We studied the interplay in insulin release between glucose and selected icosanoids formed in 5-, 12- and 15-lipoxygenase pathways. Effects on immunoreactive insulin release of 10(7) to 10(6)-12-(R)-HETE, 12-(S)-HETE, hepoxilin A3, lipoxin B4, LTB4 or LTC4 were tested individually in 30-min incubations of freshly isolated young adult Wistar rat pancreatic islets, in the presence of 5.6 mM or 23 mM glucose. Basal insulin release (at 5.6 mM glucose) was stimulated by LTC4 and hepoxilin A3 (304% and 234% of controls at 5.6 mM glucose alone, respectively), inhibited by 12-(S)-HPETE (56%), and was not affected by 12-(R)-HETE, 12-(S)-HETE, lipoxin B4 or LTB4 (111%, 105%, 106% and 136%, respectively). Insulin release evoked by 23 mM glucose (190-320%) was inhibited (50-145%) by all icosanoids tested, except LTC4 (162%). We conclude that, among the lipoxygenase products tested, only leukotrienes and hepoxilin are candidates for a tonic-stimulatory influence on basal insulin release. Since glucose promotes icosanoid formation in islets, the observed inhibition of glucose-induced insulin release by lipoxygenase products suggests the existence of a negative-feedback system.  相似文献   

3.
Peritoneal macrophages (PM), obtained from 39 healthy women with normal laparoscopy findings, were stimulated with the ionophore A23187 or/and arachidonic acid (AA) both in adherence and in suspension. AA lipoxygenase metabolites were determined by reversed-phase HPLC. The major metabolites identified were 5-hydroxyeicosatetraenoic acid (5-HETE), leukotriene (LT)B4 and LTC4. The 20-hydroxy-LTB4, 20-carboxy-LTB4, and 15-HETE were not detected. Incubations of adherent PM with 2 microM A23187 induced the formation of LTB4, 110 +/- 19 pmol/10(6) cells, 5-HETE, 264 +/- 53 pmol/10(6) cells and LTC4, 192 +/- 37 pmol/10(6) cells. When incubated with 30 microM exogenous AA, adherent PM released similar amounts of 5-HETE (217 +/- 67 pmol/10(6) cells), but sevenfold less LTC4 (27 +/- 12 pmol/10(6) cells) (p less than 0.01). In these conditions LTB4 was not detectable. These results indicate that efficient LT synthesis in PM requires activation of the 5-lipoxygenase/LTA4 synthase, as demonstrated previously for blood phagocytes. When stimulated with ionophore, suspensions of Ficoll-Paque-purified PM produced the same lipoxygenase metabolites. The kinetics of accumulation of the 5-lipoxygenase/LTA4 synthase products in A23187-stimulated adherent cells varied for the various metabolites. LTB4 reached a plateau by 5 min, whereas LTC4 levels increased up to 60 min, the longest incubation time studied. Levels of 5-HETE were maximal at 5 min, and then slowly decreased with time. Thus, normal PM, in suspension or adherence, have the capacity to produce significant amounts of 5-HETE, LTB4, and LTC4. The profile of lipoxygenase products formed by the PM and the reactivity of this cell to AA and ionophore A23187 are similar to those of the human blood monocyte, but different from those of the human alveolar macrophage.  相似文献   

4.
Pituitary cells produce leukotrienes (LTs) and respond to exogenous administration of LTs by releasing gonadotropins. Specific high affinity leukotriene C4 (LTC4) binding has been found in membrane preparations of bovine anterior pituitaries. Unlabelled LTC4 displaced specific [3H]LTC4 binding. Other leukotrienes (LTB4, LTD4, LTE4, LTF4) did not compete with [3H]LTC4 for binding sites when administered at increasing concentrations together with a constant amount of radioligand indicating that the binding is highly specific for LTC4. Scatchard analysis of binding data obtained from saturation studies revealed a single binding site for [3H]LTC4 with a Kd of 8.95 +/- 5.53 nM and a B max of 15.44 +/- 6.93 pmol per mg of membrane protein. Glutathione S-transferase, a possible LTC4 binding site, did not display activity in the membrane fraction although the two glutathione derivates S-octylglutathione and S-decylglutathione competed with LTC4 in binding experiments. As leukotrienes are potent stimulators of gonadotropin secretion and modulators of gonadotropin-releasing hormone (GnRH)-induced gonadotropin release it is concluded that leukotrienes may be involved in the signal transduction pathway of GnRH and that they may act via a specific and high affinity receptor.  相似文献   

5.
The effects of various lipoxygenase metabolites of arachidonic acid (AA) were investigated on the growth of freshly isolated human bone marrow mononuclear cells and marrow stromal cell cultures. LTB4, LXA4, LXB4, 12-HETE and 15-HETE (1 microM) decreased [3H]-thymidine incorporation on marrow stromal cell cultures without affecting cell number. Only 12-HETE showed a dose-response effect on [3H]-thymidine incorporation. While LTB4 (1 microM) decreased thymidine incorporation on marrow mononuclear cells, LTC4, LXA4, LXB4, 12-HETE and 15-HETE had no effect. The lipoxygenase inhibitor NDGA had no effect on both cell types suggesting no role of endogenous lipoxygenase metabolites on cell growth. These results suggest no important role of lipoxygenase metabolites of AA on the proliferation of human marrow mononuclear cells and marrow stromal cell cultures.  相似文献   

6.
We have studied the effect of leukotrienes, (LT): B4, C4, D4 and E4 and the hydroxyeicosatetraenoic acids (HETEs) 5-HETE and 12-HETE on bone resorption in vitro. Resorption was measured by colorimetric assay of calcium released from neonatal mouse calvaria maintained in organ culture for 72h. All the LTs and HETEs stimulated bone resorption, with optimum responses at picomolar or nanomolar concentrations. The responses were biphasic, with a decreasing effect at higher concentrations. In contrast, prostaglandin E2 (PGE2) stimulated resorption only at 10nM and above. Indomethacin partially inhibited resorption by LTB4, LTC4 and LTD4, but did not affect resorption stimulated by LTE4, 5-HETE and 12-HETE. These results indicate that lipoxygenase products of arachidonic acid are highly potent bone resorbing factors and may play an important role in the localised bone loss associated with inflammatory lesions.  相似文献   

7.
Release of peptide leukotrienes from rat Kupffer cells   总被引:1,自引:0,他引:1  
Kupffer cells isolated from the normal rat liver were incubated with calcium ionophore A23187, and the levels of peptide leukotrienes (LTC4, LTD4, and LTE4) contained in the culture supernatant were determined by the combined technique of reverse-phase high-performance liquid chromatography and radioimmunoassay. In response to A23187, Kupffer cells released LTC4, LTD4, and LTE4. After 10 min-preincubation of Kupffer cells with AA861, a 5-lipoxygenase inhibitor, the generation of LTC4, LTD4, and LTE4 from A23187-stimulated Kupffer cells was significantly suppressed. Platelet activating factor (PAF), a phospholipid mediator, significantly enhanced the release of LTC4, LTD4, and LTE4 from Kupffer cells stimulated with A23187. These results suggested that Kupffer cells may participate in inflammatory and immunologic events in the liver tissue by the release of peptide leukotrienes.  相似文献   

8.
We have examined the effects of endogenous lipoxygenase products on basal progesterone (P4) production by cultured bovine mid-luteal cells. The involvement of lipoxygenase products in the stimulatory effect of LH on luteal cAMP accumulation and P4 production was also examined. Bovine luteal cells from mid-cycle corpora lutea (CL) were exposed for 16 h to a lipoxygenase inhibitor (nordihydroguaiaretic acid: NDGA; 0.33-33 microM). For the last 4 h of incubation, the cells were exposed to LH and/or three different lipoxygenase products, 5-, 12- and 15-hydroxyeicosatetraenoic acid (HETE). NDGA inhibited P4 production by the cells in a dose-dependent manner (P < 0.05). NDGA-reduced P4 production was reversed by the addition of 12-HETE, but not 5- or 15-HETE, whereas 5-, 12- and 15-HETE alone showed no significant effect on P4 production in the intact cells. Furthermore, NDGA (33 microM) blocked the stimulatory action of LH on P4 production (P < 0.05), without changing cAMP accumulation (P > 0.1). When the cells were exposed to 5-, 12- or 15-HETE with LH and NDGA, only 15-HETE maintained the stimulatory effect of LH on P4 production in the cells (P < 0.05). These results suggest that endogenous lipoxygenase products play important roles in P4 production by bovine CL, i.e. basal P4 production is supported by 12-HETE, and LH-stimulated P4 production is partially mediated via the activation of lipoxygenase and subsequent 15-HETE formation downstream of the LH-activated cAMP-PKA-phosphorylation pathway.  相似文献   

9.
Inbred hyper-reactive rats, actively sensitized to OVA, were anesthetized, cannulated, and ventilated with room air. Tracheal instillation of Ag (OVA) resulted in an elevation of airways pressure (14.4 +/- 0.6 cm H2O). Measurement of biliary peptide leukotriene levels before and after Ag challenge using reverse phase HPLC and RIA techniques showed significant elevations in leukotriene (LT) levels, the amounts released being LTC4 (3.65 +/- 0.78), LTD4 (2.8 +/- 1.11), and N-Ac LTE4 (3.87 +/- 1.15) expressed as ng/100 g of body weight, n = 13. Identification of these metabolites were confirmed by HPLC/RIA techniques and LTC4 was further characterized by UV spectroscopy and its enzymatic conversion by gamma-glutamyl transpeptidase to LTD4. [3H]LTC4 (16 ng) administration by tracheal instillation resulted in a 31.4 +/- 4.3% recovery of radioactivity through the bile over 4 h (n = 3) with the major identified metabolite being N-Ac LTE4. [3H]LTC4 (16 ng) plus synthetic LTC4 (5 micrograms) showed a 30.8 +/- 3.1% recovery through the bile after tracheal instillation (3-h collection, n = 4) with significant amounts of LTC4 as well as N-Ac LTE4 present. [3H]LTC4 administration by the portal vein resulted in a 37.4 +/- 8.8% biliary recovery over 60 min (n = 6), the metabolites present in the bile being LTC4, LTD4, LTE4, and N-Ac LTE4. Pretreatment with the 5-lipoxygenase inhibitor L-656,224 (15 mg/kg, 3.5 h pre-p.o.) before Ag challenge resulted in a significant inhibition (greater than 90%, p less than 0.05) of biliary leukotriene levels in this model. Our study demonstrates that peptide leukotrienes are produced in the anesthetized rat after pulmonary anaphylaxis and that biliary leukotriene measurement is suitable for showing the biochemical efficacy of leukotriene inhibitors in vivo. In vivo tracer experiments suggest that the biliary metabolic profile of the peptide leukotrienes is dependent on the site and levels of release as well as the efficiency of the vascular clearance of the various metabolites.  相似文献   

10.
Influence of hypoxia on 5-lipoxygenase pathway in rat alveolar macrophages   总被引:1,自引:0,他引:1  
The effect of hypoxia was studied on the ionophore A23187-induced leukotriene production by rat alveolar macrophages. The production of LTB4 and LTC4 decreased with reducing oxygenation without change of cell viability. The synthesis of 5-HETE increased during hypoxia and the total production of LTB4, LTC4 and 5-HETE, the major metabolites of the 5-lipoxygenase pathway in rat alveolar macrophages, was equal during normoxia and hypoxia. Arachidonate release and LTA4-converting into LTB4 and LTC4 was unaffected by hypoxia. LTB4- and LTC4-degradating activities were not affected by hypoxia. These results suggest that LTA4 synthase reaction of leukotrienes biosynthesis might be suppressed by hypoxia.  相似文献   

11.
Metabolism of cysteinyl leukotrienes in monkey and man   总被引:1,自引:0,他引:1  
The proinflammatory cysteinyl leukotrienes are inactivated in primates by (a) intravascular degradation, (b) hepatic and renal uptake from the blood circulation, (c) intracellular metabolism of leukotriene E4 (LTE4), and (d) biliary and renal excretion of LTC4 degradation products. We have analyzed cysteinyl leukotriene metabolites excreted into bile and urine of the monkey Macaca fascicularis and of man. In both species, hepatobiliary leukotriene elimination predominated over renal excretion. In a representative healthy human subject at least 25% of the administered radioactivity were recovered from bile and 20% from urine within 24 h. In monkey and man intravenous administration of 14,15-3H2-labeled LTC4 resulted in the biliary and urinary excretion of labeled LTE4, omega-hydroxy-LTE4, omega-carboxy-LTE4, omega-carboxy-dinor-LTE4, and omega-carboxy-tetranor-dihydro-LTE4. Small amounts of N-acetyl-LTE4 were detected in human urine only. Oxidative metabolism of LTE4 proceeded more rapidly in the monkey resulting in the formation of higher relative amounts of omega-oxidized leukotrienes in this species as compared to man. [3H]H2O amounted to less than 2% of the administered dose in monkey and human bile and urine samples. Incubation of isolated human hepatocytes with [3H2]LTC4, [3H2]LTD4, and [3H2]LTE4 showed that only [3H2]LTE4 underwent intracellular oxidative metabolism resulting in the formation of omega- and beta-oxidation products. N-Acetylated LTE4 derivatives were not detected as products formed by human hepatocytes. By a combination of reversed-phase high-performance liquid chromatography and radioimmunoassay, endogenous LTE4 and N-acetyl-LTE4 were detected in human urine in concentrations of 220 +/- 40 and 24 +/- 3 pM, corresponding to 12 +/- 1 and 1.5 +/- 0.2 nmol/mol creatinine, respectively (mean +/- SEM; n = 10). Endogenous LTD4 and LTE4 were detected in human bile (n = 3) in concentrations between 0.2-0.9 nM. Our results demonstrate that LTD4 and LTE4 are major LTC4 metabolites in human bile and/or urine and may serve as index metabolites for the measurement of endogenously generated cysteinyl leukotrienes. Moreover, omega-oxidation and subsequent beta-oxidation from the omega-end contribute to the metabolic degradation of LTE4 not only in monkey but also in man.  相似文献   

12.
We characterized the release of arachidonic acid (AA) metabolites in lung effluent following lung ischemia-reperfusion since they may contribute to the pathophysiology of reperfusion lung injury. The left pulmonary artery of rabbits (N = 5) was occluded for 24 hrs with a surgically implanted vascular clip. At 24 hrs, the heart and lungs were removed en bloc and perfused with Ringers-albumin (0.5 gm%) at 60 ml/min while statically inflated with 95% O2-5% CO2. The lipid fraction of the lung effluent was concentrated using the Bligh-Dyer extraction and analyzed by gradient RP-HPLC. Samples obtained in the first minute of reperfusion showed significant increases in LTB4 (+180%), LTC4 (+3600%), 15-HETE (+370%), 5-HPETE (+270%), PGE2 (+140%), 6-keto-PGF1 alpha (+110%) and 12-HHT (+160%) compared to the effluent from the right control lung. The reperfusion-induced increases in LTB4, LTC4, LTD4 and 15-HETE were inhibited greater than or equal to 70% by pretreatment with the 5-LO inhibitors L663,536 or L651,392. The increases in lipid concentrations corresponded to significantly increased pulmonary arterial pressure from a baseline value of 9.5 +/- 0.3 to 29.3 +/- 2.9 (cmH2O) during the first min of reperfusion. The pulmonary arterial pressure remained elevated for at least 20 min of reperfusion. Reperfusion also resulted in PMN uptake (assessed by lung tissue myeloperoxidase content) in the reperfused lung versus control lung (25.0 +/- 2.4 vs. 10.5 +/- 2.5 units). The generation of lipoxygenase metabolites during the initial phase of reperfusion may contribute to post-reperfusion PMN uptake and pulmonary vasoconstriction.  相似文献   

13.
1. The uptake, metabolism and biliary excretion of the cysteinyl leukotrienes LTC4, LTD4 and LTE4, were studied in a non-recirculating rat liver perfusion system at constant flow in both antegrade (from the portal to the caval vein) and retrograde (from the caval to the portal vein) perfusion directions. During a 5-min infusion of [3H]LTC4, [3H]LTD4 and [3H]LTE4 (10 nmol/l each) in antegrade perfusions single-pass extractions of radioactivity from the perfusate were 66%, 81% and 83%, respectively. Corresponding values for LTC4 and LTD4 in retrograde perfusions were 83% and 93%, respectively, indicating a more efficient uptake of cysteinyl leukotrienes in retrograde than in antegrade perfusions. The concentrations of unmetabolized leukotrienes in the effluent perfusate were 8-12% in antegrade and 2-4% in retrograde perfusions. [14C]Taurocholate extraction from the perfusate was inhibited by LTC4 by only 3%, suggesting that an opening of portal-venous/hepatic-venous shunts does not explain the effects of perfusion direction on hepatic LTC4 uptake. 2. Following infusion of [3H]LTC4 and [3H]LTD4, in the antegrade perfusion direction, about 80% and 87%, respectively, of the radiolabel taken up by the liver was excreted into bile. In retrograde perfusions, however, only 40% and 57%, respectively, was excreted into bile and the remainder was slowly redistributed into the perfusate, indicating that leukotrienes were taken up into a hepatic compartment with less effective biliary elimination or converted to metabolites escaping biliary excretion. The metabolite pattern found in bile was not affected by the direction of perfusion. Biliary products of LTC4 were polar metabolites (31-38%), LTD4 (27-30%), LTE4 (about 1%) and N-acetyl-LTE4 (3-4%) in addition to unmodified LTC4 (17-18%). 3. LTC4 was identified as a major metabolite of [3H]LTD4 in bile, amounting to about 20% of the total radioactivity excreted into bile. This is probably due to a gamma-glutamyltransferase-catalyzed glutamyl transfer from glutathione in the biliary compartment, as demonstrated in in vitro experiments. The presence of sinusoidal gamma-glutamyltransferase activity in perfused rat liver was shown in experiments on the hydrolysis of infused gamma-glutamyl-p-nitroanilide. 90% inhibition of this enzyme activity by AT-125 did not affect the metabolism of LTC4. 4. When [3H]LTE4 was infused in the antegrade perfusion direction, biliary metabolites comprised N-acetyl-LTE4 (24%) and polar components (60%).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Mast cells and macrophages were isolated from human lung tissues by using density gradient centrifugation, cell sorter, and adherence techniques. Passively sensitized mast cells in the absence of exogenous arachidonic acid (AA) released leukotriene (LT)C4, LTD4, PGD2, and thromboxane-B2 when challenged with Ag, and in the presence of AA, released 5-hydroxyeicosatetraenoic acid (HETE) and 15-HETE in addition to the above metabolites. Passively sensitized macrophages did not release significant amounts of AA metabolites when challenged with Ag. However, these cells released LTB4, LTC4, LTD4, LTE4, 5-HETE, PGE2 and 6-keto-PGF1 alpha when co-incubated with activated mast cells. During co-incubation, mast cells also generated greater amount of AA metabolites than when they were activated alone. The stimulatory action of mast cells on macrophages was shown to be due to the extracellular factor(s) present in the supernatant of the activated mast cells. Both heat and trypsin inhibited the biologic activity of mast cell-derived stimulatory factor. In addition, extraction of mast cells' materials with chloroform or ether showed no activity associated with the organic phase, suggesting it possibly possesses a protein nature, such as peptides, protease, or peptidase. These results suggest that mast cell-macrophage interaction might be important in the generation of multiple mediators in the airways during immediate hypersensitivity reactions.  相似文献   

15.
Escherichia coli hemolysin (HlyA) is a prototype of a large family of pore-forming proteinaceous exotoxins that have been implicated in the pathogenetic sequelae of severe infection and sepsis, including development of acute lung injury. In the present study in rabbit alveolar macrophages (AMs), subcytolytic concentrations of purified HlyA evoked rapid synthesis of platelet-activating factor, with quantities approaching those in response to maximum calcium ionophore challenge. In parallel, large quantities of leukotriene (LT) B(4) and 5-, 8-, 9-, 12-, and 15-hydroxyeicosatetraenoic acid (HETE) were liberated from HlyA-exposed AMs depending on exogenous arachidonic acid (AA) supply. Coadministration of eicosapentaenoic acid (EPA) dose dependently suppressed generation of the proinflammatory lipoxygenase products LTB(4) and 5-, 8-, 9-, and 12-HETE in parallel with the appearance of the corresponding EPA-derived metabolites LTB(5) and 5-, 8-, 9-, and 12-hydroxyeicosapentaenoic acid (HEPE). At equimolar concentrations, EPA turned out to be the preferred substrate over AA for these AM lipoxygenase pathways, with the sum of LTB(5) and 5-, 8-, 9-, and 12-HEPE surpassing the sum of LTB(4) and 5-, 8-, 9-, and 12-HETE by >80-fold. In contrast, coadminstration of EPA did not significantly reduce HlyA-elicited generation of the anti-inflammatory AA lipoxygenase product 15-HETE. We conclude that AMs are sensitive target cells for HlyA attack, resulting in marked proinflammatory lipid mediator synthesis. In the presence of EPA, lipoxygenase product formation is shifted from a pro- to an anti-inflammatory profile.  相似文献   

16.
The mechanism involved in amplification of the local inflammatory process, characteristic of asthma, was investigated through the role of human alveolar macrophages. During asthma attacks, mast cells and eosinophils are known to be activated in order to release arachidonic acid derived inflammation mediators such as sulfidopeptide leukotrienes. It is now known that these metabolites, particularly leukotriene C4, are present in bronchoalveolar lavage from asthmatic patients. Alveolar macrophages, recovered by bronchoalveolar lavage and purified by adherence, are able to transform LTC4 into LTE4. In four asthmatic patients with severe local inflammation as determined by fibrobronchoscopy, these phagocytes, incubated in the presence of LTC4, also generated LTB4 and 5-HETE, which remained within the cells. These preliminary results are discussed relative to amplification of the local process, involving cooperation between the different cells involved in airway responsiveness.  相似文献   

17.
The effects of leukotrienes (LTs) have been widely studied in the isolated perfused mammalian heart; however, little is known about the effect or metabolism of LTs in the isolated bullfrog heart. Isolated perfused bullfrog hearts were administered randomized doses of LTC4, LTD4, or LTE4. The cardiac parameters of heart rate, developed tension, and its first derivative (dT/dt) were recorded. LTC4 was the most potent of the leukotrienes tested in eliciting positive inotropic effects. LTD4 and LTE4 were equally effective but about one order of magnitude less potent than LTC4. None of the LTs showed any chronotropic effects in this preparation. A series of [3H]LTC4 metabolism experiments were carried out using whole perfused hearts and minced bullfrog heart tissue. Isolated perfused bullfrog hearts administered [3H]LTC4 converted significant amounts to [3H]LTD4, and to a lesser degree, [3H]LTE4, during the 6-min course of collection. Both minced atrial and ventricular tissue converted [3H]LTC4 to radioactive metabolites that co-migrated with authentic LTD4 and LTE4 standards. In both tissues, the major product was [3H]LTD4, with smaller amounts of [3H]LTE4 produced. The atrium converted significantly more [3H]LTC4 to its metabolites than did the ventricle. The metabolism of [3H]LTC4 to [3H]LTD4 by both tissues was virtually abolished in the presence of serine borate. Cysteine had no effect on [3H]LTE4 production. The data in this study demonstrate that leukotrienes have the opposite inotropic effect on the heart when compared with mammals. Also in contrast to mammals, frogs metabolize LTC4 to a less potent compound and may use the LTC4 to LTD4 conversion as a mechanism of LTC4 inactivation.  相似文献   

18.
The effect of naloxone on GnRH-induced LH and FSH release was measured in buffaloes in luteal phase of estrous cycle. Animals were administered intravenously, naloxone/saline (50 mg/injection) every 15 min for 3 hr followed by GnRH (100 micrograms). Peripheral plasma LH and FSH concentrations were measured in blood samples collected at 15 min intervals from 1 hr prior to beginning of naloxone/saline treatment up to 3 hr post GnRH administration and every 30 min for the subsequent 3.5 hr. Between the animals of Group I administered naloxone and those of Group II given saline, GnRH-induced peak LH and FSH concentrations, the total LH and FSH released in response to GnRH, and the time to peak LH and FSH concentrations were not significantly different. The results of the present study suggest the absence of a direct effect of naloxone on pituitary responsiveness to GnRH.  相似文献   

19.
High-performance liquid chromatography procedures were developed which separate leukotrienes (LTs), hydroxy-fatty acids (HETEs), prostaglandins (PGs), the stable metabolite of prostacyclin (6-keto-PGF1 alpha), the stable metabolite of thromboxane A2 (TXB2), 12-hydroxyheptadecatrienoic acid (HHT), and arachidonic acid (AA). Two methods employing reverse-phase columns are described. One method uses a radial compression system, the other a conventional steel column. Both systems employ methanol and buffered water as solvents. The radial compression system requires 60 min for separation of the AA metabolites, while the conventional system requires 100 min. Both methods provide good separation and recovery of 6-keto-PGF1 alpha, TXB2, PGE2, PGF2 alpha, PGD2, LTC4, LTB4, LTD4, LTE4, HHT, 15-, 12-, and 5-HETE; and AA. The 5S,12S-dihydroxy-6-trans, 8-cis, 10-trans, 14-cis-eicosatetraenoic acid (5S,12S-diHETE), a stereoisomer of LTB4, coelutes with LTB4. To determine the applicability of the methods to biologic systems, AA metabolism was studied in two models, guinea pig lung microsomes and rat alveolar macrophages. Both HPLC systems demonstrated good recovery and resolution of eicosanoids from the two biological systems. A simple evaporation technique for HPLC sample preparation, which avoids the use of chromatographic and other time-consuming methodology, is also described.  相似文献   

20.
Gonadotropin-releasing hormone (GnRH) stimulates characteristic biphasic increases in cytosolic calcium concentration ([Ca2+]i) and in luteinizing hormone (LH) release in cultured gonadotrophs, with an early peak followed by a prolonged plateau in both responses. Analysis of [Ca2+]i by dual-wavelength fluorimetric assay and of LH release at 5-sec intervals in perifused pituitary cells revealed increases in both responses within a few seconds of exposure to GnRH. The maximum elevation of [Ca2+]i occurred within 20 sec, and the peak gonadotropin release in 35 sec; the total duration of the spike phase for both [Ca2+]i and LH release was 2.5 min. Under extracellular Ca2(+)-deficient conditions, the GnRH-induced peak in [Ca2+]i was reduced by about 20% and the plateau phase was abolished. Concomitantly, the magnitude of the acute phase of LH release was reduced by 40% and that of the second phase by about 90%. Recovery of the plateau phase of LH release occurred within 25 sec after addition of 1.25 mM Ca2+ to Ca2(+)-deficient medium. In a dose-dependent manner, the non-selective Ca2+ channel blockers Co2+ and Cd2+ reduced the Ca2+ current measured by whole-cell recording in pituitary gonadotrophs and abolished the extracellular Ca2(+)-dependent component of LH release. The selective calcium channel blocker, nifedipine, decreased the magnitude of the Ca2+ current and reduced the plateau phase of LH release by 50%; conversely, the dihydropyridine agonist methyl, 1,4,dihydro-2,6-dimethyl 3-nitro-4-(2-trifluorome) (Bay K 8644) consistently enhanced the amplitudes of both Ca2+ current and GnRH-induced LH release. These data reveal a close temporal correlation between changes in [Ca2+]i and LH release during GnRH action, with Ca2+ mobilization during the spike phase and Ca2+ influx through dihydropyridine-sensitive and insensitive sets of receptor-operated calcium channels during the spike and plateau phases. In addition, analysis of the magnitudes of the [Ca2+]i and LH responses to a wide range of GnRH concentrations in the presence and absence of extracellular Ca2+ is consistent with amplification of the [Ca2+]i signal in agonist-stimulated gonadotrops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号