首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A long-term akinesia induced by haloperidol used as an experimental model of catalepsy helped to reveal that a dicationic derivatives adamantane (IEM-1754) and phenylcyclohexyl (IEM-1925) exerted different degrees of inhibition of the haloperidol effect: the IEM-1754 proved to be not inferior to the most effective NMDA antagonist MK-801. A relatively low potency of the IEM-1925 may be due to its obvious equal effects both on the NMDA and the AMPA receptor channels. A good correlation between the anticataleptic effects of the glutamate antagonists and the NMDA receptor blocking activity, were found. The AMPA receptor blockade might negatively affect the anticataleptic potency of the drugs under study.  相似文献   

2.
The action of noncompetitive blockers of glutamate receptors has been investigated on Krushinski-Molodkina rats genetically-prone to audiogenic seizures. The selective blockers of NMDA receptor channels, memantine and IEM-1921, and their dicationic homologues, IEM-1925 and IEM-1754, capable of blocking in varying degrees both NMDA and Ca-permeable AMPA receptor channels, were studied. The drugs were injected intramuscularly to rats with the different time intervals (30 min, 1, 2 or 3 hours) before sound signal. The effects of the drugs on latent period of initial locomotor activity provoked by audio stimulation (8 kHz sine-wave tone, 90 dB volume), the appearance of clonic convulsions of different intensities, and, finally, tonic convulsions with limb and tail extension were evaluated. Within 30 min after injection IEM-1921 at a dose of 5 mg/kg, 33% of rats manifested a complete absence of convulsive reactions to sound, and in 59% of rats audiogenic seizures occured only in the form of motor excitation without a generalized clonic-tonic convulsions. Memantine at a dose of 5 mg/kg did not cause a complete blockade of seizures, but after 1 h of injection in 50% of the rats and after 2 h in 70% of rats a weakening of the audiogenic seizures to the level of motor excitation only was observed. After 3 hrs after administration of blockers its anticonvulsive action weakened significantly (p < 0.01). Dicationic blockers that block both NMDA and AMPA/kainate receptors, IEM-1925 (in doses of 0.001-20.0 mg/kg) and IEM-1754 (0.025-50.0 mg/kg), did not affect audiogenic clonic-tonic convulsive reactions. The involvement of activation of NMDA and calcium permeable AMPA/kainate receptors in the pathogenesis of audiogenic seizures is discussed.  相似文献   

3.
The mechanism of blocking effect of phenylcyclohexyl derivative, IEM-1925, on ionotropic glutamate receptors of the NMDA and AMPA types has been studied on the rat isolated brain neurons. The whole-cell configuration of patck clanp recording technique was used equilibrium conditions and -80 mV holding potential, the IEM-1925 manifests nonselective action on open channels of both receptors. However, the prominent differences in the mechanism of the blocking effect were revealed. Although IEM-1925 can not enter the closed channels of both types, its molecule are able to leave closed channels of the AMPA but not the NMDA receptors. Hyperpolarization reduces removal of blocker from the open channels of the NMDA receptors. Contrary to that, hyperpolarization facilitates going out of the IEM-1925 to cytozol from both open and closed channels. Evidently, the bloker can pass through the AMPA receptor channels into the cell, and the gating mechanism of these channels is located above the binding site for the blocker. The blocking action of the IEM-1925 on the NMDA and AMPA receptors was compared with its potency to weaken the tremor evoked by subcutaneous injection of arecoline to mice. The observed differences in the mechanisms of action help to explain the ambiguous effects of channel blocking drugs on experimental models of pathological processes.  相似文献   

4.
Effects of mono- and dicationic derivatives of adamantane and phenylcyclohexyl on the petyleneterazole-induced (35 mg/kg i. p.) kindling were studied in the experiments on mice. Monocationic derivative of phenylcyclohexyl IEM-1921, effectively retarded the development of kindling beginning the dose 0.0001 microM/kg. Memantine: derivative of adamantane (derivative of adamatane) produced the same effect with 100-fold increased dose. Dicationic derivative ofphenylcyclohexyl: IEM-1925, is able to block equally the open channels of both NMDA and subtype of Ca-permeable AMPA receptors. Its effect on kindling differed markedly from selective NMDA antagonists (IEM-1921 and memantine) in more complicated dose-dependence. The retardation of kindling IEM-1925 was induced at 0.001 microM/kg. On the contrary, a 10-time lower dose: 0.0001 microM/kg, facilitated the development of kindling. The observed difference in the activity of selective NMDA antagonists and the drugs combining anti-NMDA and anti-AMPA potency indicates that both types of ionotropic glutamate receptors are involved in the mechanism of petyleneterazole-induced kindling. The integral effect of channel blockade evoked by drugs seems to be dependent not only upon the ratio of the receptor types but on the kinetics of drug action, too.  相似文献   

5.
The action of three dicationic drugs, derivatives of adamantane (IEM-1460 and IEM-1754) and phencyclidine (IEM-1925), on glutamate receptors (GluRs) at the insect neuromuscular junction (Calliphora vicina larva) and on neurons of the freshwater gastropodian molluscPlanorbarius corneus has been studied using the voltage clamp technique. In the presence of concanavalin A complex glutamate-induced currents recorded from molluscan neurons reflected mainly the opening of cationic channels as a result of decreased desensitisation and inhibition of a chloride component. Under these conditions all drugs studied inhibited the stationary component of glutamate-gated cationic currents in a dose-dependent manner (IC50s were 0.1 μM, 1.0 μM and 19.2 μM for the action of IEM-1925, IEM-1460 and IEM-1754 respectively). The same rank order of potency: IEM-1925 > IEM-1460 > IEM-1754 was observed in both the insect and mollusc. The results of these experiments are compared with those obtained earlier on vertebrate GluRs. Open-channel blocking drugs may help to identify and classify GluRs of invertebrates, and could be used as tools to elucidate the involvement of GluRs in the transmission at certain synapses.  相似文献   

6.
The potency of mono- and dikationic derivatives of adamantane and phenylcyclohexyl to prevent seizures induced in mice by intraperitoneal administration of 80 mg/kg pentylenetetrazol (corazol), was studied. Monocationic derivatives of phenylcyclohexyl, being the selective channel blockers of NMDA glutamate receptors, as well memantine and MK-801 in micromolar concentrations, prevented both clonic and tonic components of corazol-induced convulsions. Their dicatonic derivatives which are channel blockers of NMDA and AMPA types of glutamate receptors, failed to prevent clonic seizures but at submicromolar concentrations prevented the tonic extensions provoked by corazol. Evidently, convulsive action of corazol originating from suppression of GABA-ergic inhibition is realized through activation of glutamergic synaptic transmission, and NMDA receptors are mainly involved in genesis of clonic seizures whereas activation of AMPA receptors is important for the tonic component of the corazol-induced syndrome.  相似文献   

7.
Subunit composition and abundance of flip version of different AMPA receptor subunits were studied in neurons acutely isolated from hippocampal area CA1 and dentate gyrus. Whole cell recordings were made to record kainate unduced currents. Presence of GluR2 in the receptor complex led to significant decrease of selective channel blocker IEM-1460 potency. Flip versions of AMPA receptor subunits were discriminated on the basis of their sensitivity to cyclothiazide. Principal cell AMPA receptors in both areas were characterized by low sensitivity to IEM-1460 while AMPA receptors of nonprinciple cells exhibited high or intermediate sensitivity to IEM-1460. We observed significantly larger potentiating effect of cyclothiazide on principal cells. Our data indicate that there is a correlation between low sensitivity to IEM-1460 and high sensitivity to cyclothiazide among AMPA receptors of different cells. Principal cells in both regions possess more GluR2 subunits in their AMPA receptor complexes and more abundant flip versions of their subunits in comparison with nonprincipal cells. This correlation is obviously related to functional pecularities of different neurons.  相似文献   

8.
Administration of MK-801 or IEM-1754 prevented akinesia in mice induced by reversing rotation, not less effectively than scopolamine. Quaternary adamantane derivative IEM-1857 was ineffective. IEM-1925 enhanced the locomotor disturbance induced by reversing rotation due, probably, to different spectrum of its antiglutamate action. The data obtained suggest involvement of glutamate synaptic transmission in development of locomotor disturbances of a vestibular origin.  相似文献   

9.
Expression of N-methyl d-aspartate (NMDA) receptor-dependent homosynaptic long term depression at synapses in the hippocampus and neocortex requires the persistent dephosphorylation of postsynaptic protein kinase A substrates. An attractive mechanism for expression of long term depression is the loss of surface AMPA (alpha-amino-3-hydroxy-5-methylisoxazale-4-propionate) receptors at synapses. Here we show that a threshold level of NMDA receptor activation must be exceeded to trigger a stable loss of AMPA receptors from the surface of cultured hippocampal neurons. NMDA also causes displacement of protein kinase A from the synapse, and inhibiting protein kinase A (PKA) activity mimics the NMDA-induced loss of surface AMPA receptors. PKA is targeted to the synapse by an interaction with the A kinase-anchoring protein, AKAP79/150. Disruption of the PKA-AKAP interaction is sufficient to cause a long-lasting reduction in synaptic AMPA receptors in cultured neurons. In addition, we demonstrate in hippocampal slices that displacement of PKA from AKADs occludes synaptically induced long term depression. These data indicate that synaptic anchoring of PKA through association with AKAPs plays an important role in the regulation of AMPA receptor surface expression and synaptic plasticity.  相似文献   

10.
Glutamatergic neurotransmission, particularly of the NMDA receptor type, has been implicated in the excitotoxic response to several external and internal stimuli. In the present investigation, we report that S-methyl-N,N-diethylthiocarbamate sulfoxide (DETC-MeSO) selectively and specifically blocks the NMDA receptor subtype of the glutamate receptors, and attenuates glutamate-induced neurotoxicity in rat-cultured primary neurons. Other major ionotropic glutamate receptor subtypes, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate, were insensitive to DETC-MeSO both in vitro and in vivo. Disulfiram, the parent compound of DETC-MeSO, also inhibits glutamate receptors partially in vivo; however, it fails to inhibit glutamate receptors in mice pretreated with N-butyl imidazole, a cytochrome P450 enzyme inhibitor, implicating the need for bioactivation of disulfiram to be an effective antagonist. We showed that glutamate-induced increase in (45)Ca2+ was attenuated in rat-cultured primary neurons following pretreatment with DETC-MeSO. The Ca2+ influx into primary neurons, studied by confocal microscopy of the fluorescent Ca2+ dye fura-2, demonstrated a complete attenuation of NMDA-induced Ca2+ influx. Similarly, DETC-MeSO attenuated NMDA-induced (45)Ca2+ uptake. Glutamate-induced (45)Ca2+ uptake and Ca2+ influx, however, were partially blocked by DETC-MeSO, and this is consistent with both in vitro and in vivo studies in which DETC-MeSO partially blocked mouse brain glutamate receptors. In addition, DETC-MeSO pretreatment effectively prevented seizures in mice induced either by NMDA, ammonium acetate, or ethanol-induced kindling seizures, all of which are believed to be mediated by NMDA receptors. These data demonstrate that DETC-MeSO produces the neuroprotective effect through antagonism of NMDA receptors in vivo.  相似文献   

11.
The topography of the channel binding site in glutamate receptors (AMPA and NMDA types of rat brain neurons, receptors of molluscan neurons and insect muscle), and in two subtypes of nicotinic cholinoreceptors (in frog muscle and cat sympathetic ganglion), has been investigated by comparison of the blocking effects of mono- and dicationic derivatives of adamantane and phenylcyclohexyl. The channels studied can be divided into two groups. The first one includes AMPA receptor and glutamate receptors of mollusc and insect, and is characterised by the absence of activity of monocationic drugs and the strong dependence of dicationic once on the internitrogen distance in the drug molecule. The second group includes NMDA receptor and both nicotinic cholinoreceptors. Contrary, here the blocking potency of monocations and dications are practically equal irrespective of molecule length. The data obtained suggest that hydrophobic and nucleophilic components of the binding site are located close to each other in the channels of the NMDA receptor type but are separated by approximately 10 A in the AMPA receptor channel.  相似文献   

12.
The dynamics of alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA)-type glutamate receptors, as represented by their exocytosis, endocytosis and cytoskeletal linkage, has often been implicated in N-methyl-d-aspartate (NMDA)-dependent synaptic plasticity. To explore the molecular mechanisms underlying the AMPA receptor dynamics, cultured hippocampal neurons were stimulated with 100 microm NMDA, and the biochemical and pharmacological changes in the ligand binding activity of AMPA receptor complexes and its subunits, GluR1 and GluR2/3, were investigated. The NMDA treatment reduced the total amount of bound [(3)H]AMPA on the surface of the neurons but not in their total membrane fraction. This process was mimicked by a protein kinase C activator, phorbol ester, but blocked by an inhibitor of the same kinase, calphostin C. The NMDA-induced down-regulation of the ligand binding activity was also reflected by the decreased AMPA-triggered channel activity as well as by the cells' reduced immunoreactivity for GluR1. In parallel, the NMDA treatment markedly altered the interaction between the AMPA receptor subunits and their associating molecule(s); the association of PDZ molecules, including Pick1, with GluR2/3 was enhanced in a protein-kinase-C-dependent manner. Viral expression vectors carrying GluR1 and GluR2 C-terminal decoys, both fused to enhanced green fluorescent protein, were transfected into hippocampal neurons to disrupt their interactions. The overexpression of the C-terminal decoy for GluR2 specifically and significantly blocked the NMDA-triggered reduction in [(3)H]AMPA binding, whereas that for GluR1 had no effects. Co-immunoprecipitation using anti-Pick1 antibodies revealed that the overexpressed GluR2 C-terminal decoy indeed prevented Pick1 from interacting with the endogenous GluR2/3. Therefore, these observations suggest that the NMDA-induced down-regulation of the functional AMPA receptors involves the interaction between GluR2/3 subunits and Pick1.  相似文献   

13.
Tricyclic mono- and dicationic compounds (derivatives of 9-aminoacridine) antagonize AMPA and NMDA glutamate receptors. The aim of the present study was to compare mechanisms of the 9-aminoacridine action on AMPA and NMDA receptors. Experiments were carried out by whole-cell patch-clamp technique on native receptors from rat brain neurons. An important peculiarity of the 9-aminoacridine action on NMDA receptors is the large slope of the concentration dependence, which suggests the binding of two molecules in the channel. AMPA receptors blockade also demonstrated interesting features. In contrast to the NMDA receptor channel block, inhibition of AMPA receptors is voltage-independent. 9-Aminoacridine and its dicationic analog demonstrated similar anti-AMPA activity. For classical AMPA-receptor channel blockers (derivatives of adamantane and phenylcyclohexyl) it was demonstrated that dicationic analogs are much more potent than monocationic analogs. We conclude that 9-aminoacridine binds to a specific site in AMPA receptors. This finding opens a possibility to develop a new family of non-competitive antagonists of AMPA receptors.  相似文献   

14.
Our laboratory has previously shown that the synthetic neuroactive steroid 3alpha-hydroxy-5beta-pregnan-20-one hemisuccinate (3alpha5betaHS) is a negative modulator of NMDA receptors in vitro. Similarly, 3alpha5betaHS exhibits rapid sedative, analgesic, anticonvulsive, and neuroprotective effects in vivo. Here we report a study designed to investigate whether a negatively charged neuroactive steroid, 3alpha5betaHS, modulates the action of NMDA receptors in vivo. Our results indicate that peripherally administered 3alpha5betaHS enters the CNS and inhibits NMDA-mediated motor activity and dopamine release in the rat striatum. The increase in motor activity induced by intrastriatal microinjection of NMDA was blocked by the systemic administration of 3alpha5betaHS and the NMDA-induced increase in extracellular dopamine in the striatum was also attenuated by both systemically administered and intrastriatally administered (by in vivo microdialysis) 3alpha5betaHS. These data indicate that 3alpha5betaHS acts through striatal NMDA receptors in vivo. When taken together, these results suggest that neuroactive steroids may prove to be effective in the treatment of neurological and psychiatric disorders involving over-stimulation of NMDA receptors in the mesotelencephalic dopamine system.  相似文献   

15.
Ye B  Liao D  Zhang X  Zhang P  Dong H  Huganir RL 《Neuron》2000,26(3):603-617
The PDZ domain-containing proteins, such as PSD-95 and GRIP, have been suggested to be involved in the targeting of glutamate receptors, a process that plays a critical role in the efficiency of synaptic transmission and plasticity. To address the molecular mechanisms underlying AMPA receptor synaptic localization, we have identified several GRIP-associated proteins (GRASPs) that bind to distinct PDZ domains within GRIP. GRASP-1 is a neuronal rasGEF associated with GRIP and AMPA receptors in vivo. Overexpression of GRASP-1 in cultured neurons specifically reduced the synaptic targeting of AMPA receptors. In addition, the subcellular distribution of both AMPA receptors and GRASP-1 was rapidly regulated by the activation of NMDA receptors. These results suggest that GRASP-1 may regulate neuronal ras signaling and contribute to the regulation of AMPA receptor distribution by NMDA receptor activity.  相似文献   

16.
Ibogaine, a putative antiaddictive drug, is remarkable in its apparent ability to downgrade withdrawal symptoms and drug craving for extended periods of time after a single dose. Ibogaine acts as a non-competitive NMDA receptor antagonist, while NMDA has been implicated in long lasting changes in neuronal function and in the physiological basis of drug addiction. The purpose of this study was to verify if persistent changes in NMDA receptors could be shown in vivo and in vitro after a single administration of ibogaine. The time course of ibogaine effects were examined on NMDA-induced seizures and [3H] MK-801 binding to cortical membranes in mice 30min, 24, 48, and 72h post treatment. Ibogaine (80 mg/kg, ip) was effective in inhibiting convulsions induced by NMDA at 24 and 72 hours post administration. Likewise, [3H] MK-801 binding was significantly decreased at 24 and 72 h post ibogaine. No significant differences from controls were found at 30min or 48h post ibogaine. This long lasting and complex pattern of modulation of NMDA receptors prompted by a single dose of ibogaine may be associated to its antiaddictive properties.  相似文献   

17.
PSD-95 is a major scaffolding protein of the postsynaptic density, tethering NMDA- and AMPA-type glutamate receptors to signaling proteins and the neuronal cytoskeleton. Here we show that PSD-95 is regulated by the ubiquitin-proteasome pathway. PSD-95 interacts with and is ubiquitinated by the E3 ligase Mdm2. In response to NMDA receptor activation, PSD-95 is ubiquitinated and rapidly removed from synaptic sites by proteasome-dependent degradation. Mutations that block PSD-95 ubiquitination prevent NMDA-induced AMPA receptor endocytosis. Likewise, proteasome inhibitors prevent NMDA-induced AMPA receptor internalization and synaptically induced long-term depression. This is consistent with the notion that PSD-95 levels are an important determinant of AMPA receptor number at the synapse. These data suggest that ubiquitination of PSD-95 through an Mdm2-mediated pathway is critical in regulating AMPA receptor surface expression during synaptic plasticity.  相似文献   

18.
NMDA receptor activation leads to clathrin-dependent endocytosis of postsynaptic AMPA receptors. Although this process controls long-term depression (LTD) induction in the hippocampus, how it is regulated by neuronal activities is not completely clear. Here, we show that Ca2? influx through the NMDA receptor activates calcineurin and protein phosphatase 1 to dephosphorylate phosphatidylinositol 4-phosphate 5-kinaseγ661 (PIP5Kγ661), the major phosphatidylinositol 4,5-bisphosphate (PI(4,5)P?)-producing enzyme in the brain. Bimolecular fluorescence complementation analysis revealed that the dephosphorylated PIP5Kγ661 became associated with the clathrin adaptor protein complex AP-2 at postsynapses in situ. NMDA-induced AMPA receptor endocytosis and low-frequency stimulation-induced LTD were completely blocked by inhibiting the association between dephosphorylated PIP5Kγ661 and AP-2 and by overexpression of a kinase-dead PIP5Kγ661 mutant in hippocampal neurons. Furthermore, knockdown of PIP5Kγ661 inhibited the NMDA-induced AMPA receptor endocytosis. Therefore, NMDA receptor activation controls AMPA receptor endocytosis during hippocampal LTD by regulating PIP5Kγ661 activity at postsynapses.  相似文献   

19.
Witkin JM  Baez M  Yu J  Eiler WJ 《Life sciences》2008,83(9-10):377-380
Metabotropic glutamate mGlu5 receptors have been implicated in the regulation of seizures and have been suggested as a target against which discovery of novel anticonvulsants may be possible. However, the experimental literature is not consistent in reporting anticonvulsant efficacy of mGlu5 receptor antagonists. Additional assessment of this target was approached in the present study by comparing convulsions in wild-type (WT) and mGlu5 receptor null (knockout or KO) mice. Chemically induced seizures induced by a variety of mechanisms including pentylenetetrazole, N-methyl-d-aspartic acid (NMDA), cocaine, kainic acid, aminophylline, 4-aminopyridine, strychnine, and nicotine did not differentially increase clonic, clonic/tonic, or lethality in WT vs. mGlu5 receptor KO mice. The mGlu5 receptor antagonist 3-[(2-Methyl-1,3-thiazol-4-yl) ethynyl]-pyridine (MTEP) did not significantly prevent seizures induced by NMDA; in contrast, the uncompetitive NMDA receptor antagonist, dizocilpine, significantly prevented NMDA-induced seizures and lethality in both WT and KO mice. The present findings do not support the idea that mGlu5 receptors play as important a role in seizure control as previously speculated.  相似文献   

20.
Activation of NMDA receptors leads to activation of cAMP-dependent protein kinase (PKA). The main substrates phosphorylated by PKA following NMDA receptor activation remain unidentified. The aim of this work was to identify a major substrate phosphorylated by PKA following NMDA receptor activation in cerebellar neurones in culture, and to assess whether this phosphorylation may be involved in neuronal death induced by excessive NMDA receptor activation. The main PKA substrate following NMDA receptor activation was identified by MALDI-TOFF fingerprinting as the nuclear protein, matrin 3. PKA-mediated phosphorylation of matrin 3 is followed by its degradation. NMDA receptor activation in rat brain in vivo by ammonia injection also induced PKA-mediated matrin 3 phosphorylation and degradation in brain cell nuclei. Blocking NMDA receptors in brain in vivo with MK-801 reduced basal phosphorylation of matrin 3, suggesting that it is modulated by NMDA receptors. Inhibition of PKA with H-89 prevents NMDA-induced phosphorylation and degradation of matrin 3 as well as neuronal death. These results suggest that PKA-mediated phosphorylation of matrin 3 may serve as a rapid way of transferring information from synapses containing NMDA receptors to neuronal nuclei under physiological conditions, and may contribute to neuronal death under pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号