首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
To study the recognition by tryptophanyl-tRNA synthetase (TrpRS) of tRNA(Trp) discriminator base, mutations were introduced into the discriminator base of Bacillus subtilis, Archeoglobus fulgidus, and bovine tRNA(Trp), representing the three biological domains. When B. subtilis, A. fulgidus, and human TrpRS were used to acylate these tRNA(Trp), two distinct preference profiles regarding the discriminator base of different tRNA(Trp) substrates were found: G>A>U>C for B. subtilis TrpRS, and A>C>U>G for A. fulgidus and human TrpRS. The preference for G73 in tRNA(Trp) by bacterial TrpRS is much stronger than the modest preferences for A73 by the archaeal and eukaryotic TrpRS. Cross-species reactivities between TrpRS and tRNA(Trp) from the three domains were in accordance with the view that the evolutionary position of archaea is intermediate between those of eukarya and bacteria. NMR spectroscopy revealed that mutation of A73 to G73 in bovine tRNA(Trp) elicited a conformational alteration in the G1-C72 base pair. Mutation of G1-C72 to A1-U72 or disruption of the G1-C72 base pair also caused reduction of Trp-tRNA(Trp) formation. These observations identify a tRNA(Trp) structural region near the end of acceptor stem comprising A73 and G1-C72 as a crucial domain required for effective recognition by human TrpRS.  相似文献   

4.
 设计并完成了 3种水稻线粒体tRNATrp的突变 ,体外转录并用枯草杆菌和人色氨酰tRNA合成酶 (TrpRS)对tRNATrp及其突变体进行了活力测定 .3种突变体的氨酰化活力比野生型水稻线粒体tRNATrp分别上升了 1 8、1 5和 5倍 .说明A1 U72和G5 C68对于提高线粒体tRNATrp被细胞质TrpRS氨酰化能力的作用并不大 ,细胞质tRNATrp与细胞质TrpRS的识别方式并不适用于线粒体tRNATrp与细胞质TrpRS的相互识别 .研究结果对于了解线粒体tRNATrp和细胞质TrpRS的相互识别及药物设计有重要意义  相似文献   

5.
In the present study, modified nucleotides in the B. subtilis tRNA(Trp) cloned and hyperexpressed in E. coli have been identified by TLC and HPLC analyses. The modification patterns of the two isoacceptors of cloned B. subtilis tRNA(Trp) have been compared with those of native tRNA(Trp) from B. subtilis and from E. coli. The modifications of the A73 mutant of B. subtilis tRNA(Trp), which is inactive toward its cognate TrpRS, were also investigated. The results indicate the formation of the modified nucleotides S4U8, Gm18, D20, Cm32, i6A/ms2i6A37, T54 and psi 55 on cloned B. subtilis tRNA(Trp). This modification pattern resembles the pattern of E. coli tRNA(Trp), except that m7G is missing from the cloned tRNA(Trp), probably on account of its short extra loop. In contrast, the pattern departs substantially from that of native B. subtilis tRNA(Trp). Therefore, the cloned B. subtilis tRNA(Trp) has taken on largely the modification pattern of E. coli tRNA(Trp) despite the 26% sequence difference between the two species of tRNA, gaining in particular the Cm32 and Gm18 modifications from the E. coli host. A notable difference between the isoacceptors of the cloned tRNA(Trp) was seen in the extent of modification of A37, which occurred as either the hypomodified i6A or the hypermodified ms2i6A form. Surprisingly, base substitution of guanosine by adenosine at position 73 of the cloned tRNA(Trp) has led to the abolition of the 2'-O-methylation modification of the remote G18 residue.  相似文献   

6.
为研究tRNATrp 与色氨酰tRNA合成酶(TrpRS) 的相互识别及其结构、功能关系, 纯化了枯草杆菌TrpRS并用溴化氰活化的Sepharose 4B 将TrpRS固定化, 固定化TrpRS的蛋白质回收率为95 .5 % , 活力回收率为31.3% 。研究了固定化TrpRS的酶学性质, 其热稳定性和贮存稳定性方面均比液相TrpRS有了较大的提高, 最适温度、最适pH 均有一定程度的增大, 工作稳定性良好。以固定化TrpRS为亲和层析介质, 对含有20 个核苷酸随机序列、长度为56 个核苷酸的单链RNA 随机库进行了3 轮筛选,RNA 群体亲和固定化TrpRS的比例从4 .3 % 上升至14 .7 % 。筛选得到了与tRNATrp 氨基酸接受茎类似的RNA二级结构。实验结果表明固定化TrpRS可以作为SELEX 亲和层析介质, 进行模拟tRNATrp 分子的RNA 随机库的SELEX 筛选。  相似文献   

7.
Manithody C  Rezaie AR 《Biochemistry》2005,44(30):10063-10070
It has been hypothesized that two antiparallel structures comprised of residues 82-91 and 102-116 in factor Xa (fXa) may harbor a factor Va- (fVa-) dependent prothrombin recognition site in the prothrombinase complex. There are 11 charged residues in the 82-116 loop of human fXa (Glu-84, Glu-86, Lys-90, Arg-93, Lys-96, Glu-97, Asp-100, Asp-102, Arg-107, Lys-109, and Arg-115). With the exception of Glu-84, which did not express, and Asp-102, which is a catalytic residue, we expressed the Ala substitution mutants of all other residues and evaluated their proteolytic and amidolytic activities in both the absence and presence of fVa. K96A and K109A activated prothrombin with 5-10-fold impaired catalytic efficiency in the absence of fVa. All mutants, however, exhibited normal activity toward the substrate in the presence of fVa. K109A also exhibited impaired amidolytic activity and affinity for Na(+); however, both fVa and higher Na(+) restored the catalytic defect caused by the mutation. Analysis of the X-ray crystal structure of fXa indicated that Glu-84 may interact by a salt bridge with Lys-109, explaining the lack of expression of E84A and the lower activity of K109A in the absence of fVa. These results suggest that none of the residues under study is a fVa-dependent recognition site for prothrombin in the prothrombinase complex; however, Lys-96 is a recognition site for the substrate independent of the cofactor. Moreover, the 82-116 loop is energetically linked to fVa and Na(+) binding sites of the protease.  相似文献   

8.
Interleukin-18 (IL-18) is a pro-inflammatory cytokine, and IL-18-binding protein (IL-18BP) is a naturally occurring protein that binds IL-18 and neutralizes its biological activities. Computer modeling of human IL-18 identified two charged residues, Glu-42 and Lys-89, which interact with oppositely charged amino acid residues buried in a large hydrophobic pocket of IL-18BP. The cell surface IL-18 receptor alpha chain competes with IL-18BP for IL-18 binding, although the IL-18 receptor alpha chain does not share significant homology to IL-18BP. In the present study, Glu-42 was mutated to Lys and Lys-89 to Glu; Glu-42 and Lys-89 were also deleted separately. The deletion mutants (E42X and K89X) were devoid of biological activity, and the K89E mutant lost 95% of its activity. In contrast, compared with wild-type (WT) IL-18, the E42K mutant exhibited a 2-fold increase in biological activity and required a 4-fold greater concentration of IL-18BP for neutralization. The binding of WT IL-18 and its various mutants to human natural killer cells was evaluated by competition assays. The mutant E42K was more effective than WT IL-18 in inhibiting the binding of (125)I-IL-18 to natural killer cells, whereas the three inactive mutants E42X, K89E, and K89X were unable to compete with (125)I-IL-18 for binding. Similarly, WT IL-18 and the E42K mutant induced degradation of Ikappa-Balpha, whereas the three biologically inactive mutants did not induce degradation. The present study reveals that Glu-42 and Lys-89 are critical amino acid residues for the integrity of IL-18 structure and are important for binding to cell surface receptors, for signal transduction, and for neutralization by IL-18BP.  相似文献   

9.
An auxiliary tryptophanyl tRNA synthetase (drTrpRS II) that interacts with nitric-oxide synthase in the radiation-resistant bacterium Deinococcus radiodurans charges tRNA with tryptophan and 4-nitrotryptophan, a specific nitration product of nitric-oxide synthase. Crystal structures of drTrpRS II, empty of ligands or bound to either Trp or ATP, reveal that drTrpRS II has an overall structure similar to standard bacterial TrpRSs but undergoes smaller amplitude motions of the helical tRNA anti-codon binding (TAB) domain on binding substrates. TAB domain loop conformations that more closely resemble those of human TrpRS than those of Bacillus stearothermophilus TrpRS (bsTrpRS) indicate different modes of tRNA recognition by subclasses of bacterial TrpRSs. A compact state of drTrpRS II binds ATP, from which only minimal TAB domain movement is necessary to bring nucleotide in contact with Trp. However, the signature KMSKS loop of class I synthetases does not completely engage the ATP phosphates, and the adenine ring is not well ordered in the absence of Trp. Thus, progression of the KMSKS loop to a high energy conformation that stages acyl-adenylation requires binding of both substrates. In an asymmetric drTrpRS II dimer, the closed subunit binds ATP, whereas the open subunit binds Trp. A crystallographically symmetric dimer binds no ligands. Half-site reactivity for Trp binding is confirmed by thermodynamic measurements and explained by an asymmetric shift of the dimer interface toward the occupied active site. Upon Trp binding, Asp68 propagates structural changes between subunits by switching its hydrogen bonding partner from dimer interface residue Tyr139 to active site residue Arg30. Since TrpRS IIs are resistant to inhibitors of standard TrpRSs, and pathogens contain drTrpRS II homologs, the structure of drTrpRS II provides a framework for the design of potentially useful antibiotics.  相似文献   

10.
Sequence-specific interactions between aminoacyl-tRNA synthetases and their cognate tRNAs ensure both accurate RNA recognition and the efficient catalysis of aminoacylation. The effects of tRNA(Trp)variants on the aminoacylation reaction catalyzed by wild-type Escherichia coli tryptophanyl-tRNA synthe-tase (TrpRS) have now been investigated by stopped-flow fluorimetry, which allowed a pre-steady-state analysis to be undertaken. This showed that tRNA(Trp)identity has some effect on the ability of tRNA to bind the reaction intermediate TrpRS-tryptophanyl-adenylate, but predominantly affects the rate at which trypto-phan is transferred from TrpRS-tryptophanyl adenylate to tRNA. Use of the binding ( K (tRNA)) and rate constants ( k (4)) to determine the energetic levels of the various species in the aminoacylation reaction showed a difference of approximately 2 kcal mol(-1)in the barrier to transition state formation compared to wild-type for both tRNA(Trp)A-->C73 and. These results directly show that tRNA identity contributes to the degree of complementarity to the transition state for tRNA charging in the active site of an aminoacyl-tRNA synthetase:aminoacyl-adenylate:tRNA complex.  相似文献   

11.
Mitogen-activated protein (MAP) kinases control gene expression in response to extracellular stimuli and exhibit exquisite specificity for their cognate regulators and substrates. We performed a structure-based mutational analysis of ERK2 to identify surface areas that are important for recognition of its interacting proteins. We show that binding and activation of MKP3 by ERK2 involve two distinct protein-protein interaction sites in ERK2. Thus, the common docking (CD) site composed of Glu-79, Tyr-126, Arg-133, Asp-160, Tyr-314, Asp-316, and Asp-319 are important for high affinity MKP3 binding but not essential for ERK2-induced MKP3 activation. MKP3 activation requires residues Tyr-111, Thr-116, Leu-119, Lys-149, Arg-189, Trp-190, Glu-218, Arg-223, Lys-229, and His-230 in the ERK2 substrate-binding region, located distal to the common docking site. Interestingly, many of the residues important for MKP3 recognition are also used for Elk1 binding and phosphorylation. In addition to the shared residues, there are also residues that are unique to each target recognition. There is evidence indicating that the CD site and the substrate-binding region defined here are also utilized for MEK1 recognition, and indeed, we demonstrate that the binding of MKP3, Elk1, and MEK1 to ERK2 is mutually exclusive. Taken together, our data suggest that the efficiency and fidelity of ERK2 signaling is achieved by a bipartite recognition process. In this model, one part of the ERK2-binding proteins (e.g. the kinase interaction motif sequence) docks to the CD site located on the back side of the ERK2 catalytic pocket for high affinity association, whereas the interaction of the substrate-binding region with another structural element (e.g. the FXFP motif in MKP3 and Elk1) may not only stabilize binding but also provide contacts crucial for modulating the activity and/or specificity of ERK2 target molecules.  相似文献   

12.
Acetyl-CoA synthetase (ACS) catalyses the activation of acetate to acetyl-CoA in the presence of ATP and CoA. The gene encoding Bradyrhyzobium japonicum ACS has been cloned, sequenced, and expressed in Escherichia coli. The enzyme comprises 648 amino acid residues with a calculated molecular mass of 71,996 Da. The recombinant enzyme was also purified from the transformed E. coli. The enzyme was essentially indistinguishable from the ACS of B. japonicum bacteroids as to the criteria of polyacrylamide gel electrophoresis and biochemical properties. Based on the results of database analysis, Gly-263, Gly-266, Lys-269, and Glu-414 were selected for site-directed mutagenesis in order to identify amino acid residues essential for substrate binding and/or catalysis. Four different mutant enzymes (G263I, G266I, K269G, and E414Q) were prepared and then subjected to steady-state kinetic studies. The kinetic data obtained for the mutants suggest that Gly-266 and Lys-269 participate in the formation of acetyl-AMP, whereas Glu-414 may play a role in acetate binding.  相似文献   

13.
The amino acid binding domains of the tryptophanyl (TrpRS)- and tyrosyl-tRNA synthetases (TyrRS) of Bacillus stearothermophilus are highly homologous. These similarities suggest that conserved residues in TrpRS may be responsible for both determining tryptophan recognition and discrimination against tyrosine. This was investigated by the systematic mutation of TrpRS residues based upon the identity of homologous positions in TyrRS. Of the four residues which interact directly with the aromatic side chain of tryptophan (Phe5, Met129, Asp132, and Val141) replacements of Asp132 led to significant changes in the catalytic efficiency of Trp aminoacylation (200-1250-fold reduction in k(cat)/K(M)) and substitution of Val141 by the larger Glu side chain reduced k(cat)/K(M) by 300-fold. Mutation of Pro127, which determines the position of active-site residues, did not significantly effect Trp binding. Of the mutants tested, D132N TrpRS also showed a significant reduction in discrimination against Tyr, with Tyr acting as a competitive inhibitor but not a substrate. The analogous residue in B. stearothermophilusTyrRS (Asp176) has also been implicated as a determinant of amino acid specificity in earlier studies [de Prat Gay, G., Duckworth, H. W., and Fersht, A. R. (1993) FEBS Lett. 318, 167-171]. This striking similarity in the function of a highly conserved residue found in both TrpRS and TyrRS provides mechanistic support for a common origin of the two enzymes.  相似文献   

14.
Saccharomyces cerevisiae Cet1p is the prototype of a family of metal-dependent RNA 5'-triphosphatases/NTPases encoded by fungi and DNA viruses; the family is defined by conserved sequence motifs A, B, and C. We tested the effects of 12 alanine substitutions and 16 conservative modifications at 18 positions of the motifs. Eight residues were identified as important for triphosphatase activity. These were Glu-305, Glu-307, and Phe-310 in motif A (IELEMKF); Arg-454 and Lys-456 in motif B (RTK); Glu-492, Glu-494, and Glu-496 in motif C (EVELE). Four acidic residues, Glu-305, Glu-307, Glu-494, and Glu-496, may comprise the metal-binding site(s), insofar as their replacement by glutamine inactivated Cet1p. E492Q retained triphosphatase activity. Basic residues Arg-454 and Lys-456 in motif B are implicated in binding to the 5'-triphosphate. Changing Arg-454 to alanine or glutamine resulted in a 30-fold increase in the K(m) for ATP, whereas substitution with lysine increased K(m) 6-fold. Changing Lys-456 to alanine or glutamine increased K(m) an order of magnitude; ATP binding was restored when arginine was introduced. Alanine in lieu of Phe-310 inactivated Cet1p, whereas Tyr or Leu restored function. Alanine mutations at aliphatic residues Leu-306, Val-493, and Leu-495 resulted in thermal instability in vivo and in vitro. A second S. cerevisiae RNA triphosphatase/NTPase (named Cth1p) containing motifs A, B, and C was identified and characterized. Cth1p activity was abolished by E87A and E89A mutations in motif A. Cth1p is nonessential for yeast growth and, by itself, cannot fulfill the essential role played by Cet1p in vivo. Yet, fusion of Cth1p in cis to the guanylyltransferase domain of mammalian capping enzyme allowed Cth1p to complement growth of cet1Delta yeast cells. This finding illustrates that mammalian guanylyltransferase can be used as a vehicle to deliver enzymes to nascent pre-mRNAs in vivo, most likely through its binding to the phosphorylated CTD of RNA polymerase II.  相似文献   

15.
A semi-conserved tryptophan residue ofBacillus subtilistryptophanyl-tRNA synthetase (TrpRS) was previously asserted to be an essential residue and directly involved in tRNATrpbinding and recognition. The crystal structure of theBacillus stearothermophilusTrpRS tryptophanyl-5′-adenylate complex (Trp-AMP) shows that the corresponding Trp91 is buried and in the dimer interface, contrary to the expectations of the earlier assertation. Here we examine the role of this semi-conserved tryptophan residue using fluorescence spectroscopy.B. subtilisTrpRS has a single tryptophan residue, Trp92. 4-Fluorotryptophan (4FW) is used as a non-fluorescent substrate analog, allowing characterization of Trp92 fluorescence in the 4-fluorotryptophanyl-5′-adenylate (4FW-AMP) TrpRS complex. Complexation causes the Trp92 fluorescence to become quenched by 70%. Titrations, forming this complex under irreversible conditions, show that this quenching is essentially complete after half of the sites are filled. This indicates that a substrate-dependent mechanism exists for the inter-subunit communication of conformational changes. Trp92 fluorescence is not efficiently quenched by small solutes in either the apo- or complexed form. From this we conclude that this tryptophan residue is not solvent exposed and that binding of the Trp92 to tRNATrpis unlikely.Time-resolved fluorescence indicates conformational heterogeneity ofB. subtilisTrp92 with the fluorescence decay being best described by three discrete exponential decay times. The decay-associated spectra (DAS) of the apo- and complexed- TrpRS show large variations of the concentration of individual fluorescence decay components. Based on recent correlations of these data with changes in the local secondary structure of the backbone containing the fluorescent tryptophan residue, we conclude that changes observed in Trp92 time-resolved fluorescence originate primarily from large perturbations of its local secondary structure.The quenching of Trp92 in the 4FW-AMP complex is best explained by the crystal structure conformation, in which the tryptophan residue is found in an α-helix. The amino acid residue cysteine is observed clearly within the quenching radius (3.6 Å) of the conserved tryptophan residue. These tryptophan and cysteine residues are neighbors, one helical turn apart. If this local α-helix was disrupted in the apo-TrpRS, this disruption would concomitantly relieve the putative cysteine quenching by separating the two residues. Hence we propose a substrate-dependent local helix-coil transition to explain both the observed time-resolved and steady-state fluorescence of Trp92. A mechanism can be further inferred for the inter-subunit communication involving the substrate ligand Asp132 and a small α-helix bridging the substrate tryptophan residue and the conserved tryptophan residue of the opposite subunit. This putative mechanism is also consistent with the observed pH dependence of TrpRS crystal growth and substrate binding. We observe that the mechanism of TrpRS has a dynamic component, and contend that conformational dynamics of aminoacyl-tRNA synthetases must be considered as part of the molecular basis for the recognition of cognate tRNA.  相似文献   

16.
Analysis of sequence alignments of alkaline phosphatases revealed a correlation between metal specificity and certain amino acid side chains in the active site that are metal-binding ligands. The Zn(2+)-requiring Escherichia coli alkaline phosphatase has an Asp at position 153 and a Lys at position 328. Co(2+)-requiring alkaline phosphatases from Thermotoga maritima and Bacillus subtilis have a His and a Trp at these positions, respectively. The mutations D153H, K328W, and D153H/K328W were induced in E. coli alkaline phosphatase to determine whether these residues dictate the metal dependence of the enzyme. The wild-type and D153H enzymes showed very little activity in the presence of Co(2+), but the K328W and especially the D153H/K328W enzymes effectively use Co(2+) for catalysis. Isothermal titration calorimetry experiments showed that in all cases except for the D153H/K328W enzyme, a possible conformation change occurs upon binding Co(2+). These data together indicate that the active site of the D153H/K328W enzyme has been altered significantly enough to allow the enzyme to utilize Co(2+) for catalysis. These studies suggest that the active site residues His and Trp at the E. coli enzyme positions 153 and 328, respectively, at least partially dictate the metal specificity of alkaline phosphatase.  相似文献   

17.
为研究 t RNATrp与色氨酰 - t RNA合成酶 ( Trp RS)的相互识别及其结构与功能的关系 ,纯化了枯草杆菌 Trp RS,并用溴化氰活化的 Sepharose4B将 Trp RS固定化 ,固定化 Trp RS的蛋白回收率为 95.5% ,活力回收率为 31 .3% .研究了固定化 Trp RS的酶学性质 ,其热稳定性和贮存稳定性方面均比液相 Trp RS有了较大的提高 ,最适温度、最适 p H均有一定程度的增大 ,工作稳定性良好 .以固定化 Trp RS为亲和层析介质 ,对含有 2 0个核苷酸随机序列 ,长度为 56个核苷酸的单链RNA随机库进行了三轮筛选 .实验结果表明 ,固定化 Trp RS可以作为 SELEX亲和层析介质 ,进行模拟 t RNATrp分子的 RNA随机库的 SELEX筛选 .  相似文献   

18.
Malany S  Osaka H  Sine SM  Taylor P 《Biochemistry》2000,39(50):15388-15398
The alpha-neurotoxins are three-fingered peptide toxins that bind selectively at interfaces formed by the alpha subunit and its associating subunit partner, gamma, delta, or epsilon of the nicotinic acetylcholine receptor. Because the alpha-neurotoxin from Naja mossambica mossambica I shows an unusual selectivity for the alpha gamma and alpha delta over the alpha epsilon subunit interface, residue replacement and mutant cycle analysis of paired residues enabled us to identify the determinants in the gamma and delta sequences governing alpha-toxin recognition. To complement this approach, we have similarly analyzed residues on the alpha subunit face of the binding site dictating specificity for alpha-toxin. Analysis of the alpha gamma interface shows unique pairwise interactions between the charged residues on the alpha-toxin and three regions on the alpha subunit located around residue Asp(99), between residues Trp(149) and Val(153), and between residues Trp(187) and Asp(200). Substitutions of cationic residues at positions between Trp(149) and Val(153) markedly reduce the rate of alpha-toxin binding, and these cationic residues appear to be determinants in preventing alpha-toxin binding to alpha 2, alpha 3, and alpha 4 subunit containing receptors. Replacement of selected residues in the alpha-toxin shows that Ser(8) on loop I and Arg(33) and Arg(36) on the face of loop II, in apposition to loop I, are critical to the alpha-toxin for association with the alpha subunit. Pairwise mutant cycle analysis has enabled us to position residues on the concave face of the three alpha-toxin loops with respect to alpha and gamma subunit residues in the alpha-toxin binding site. Binding of NmmI alpha-toxin to the alpha gamma interface appears to have dominant electrostatic interactions not seen at the alpha delta interface.  相似文献   

19.
Binding ATP to tryptophanyl-tRNA synthetase (TrpRS) in a catalytically competent configuration for amino acid activation destabilizes the enzyme structure prior to forming the transition state. This conclusion follows from monitoring the titration of TrpRS with ATP by small angle solution X-ray scattering, enzyme activity, and crystal structures. ATP induces a significantly smaller radius of gyration at pH=7 with a transition midpoint at approximately 8mM. A non-reciprocal dependence of Trp and ATP dissociation constants on concentrations of the second substrate show that Trp binding enhances affinity for ATP, while the affinity for Trp falls with the square of the [ATP] over the same concentration range ( approximately 5mM) that induces the more compact conformation. Two distinct TrpRS:ATP structures have been solved, a high-affinity complex grown with 1mM ATP and a low-affinity complex grown at 10mM ATP. The former is isomorphous with unliganded TrpRS and the Trp complex from monoclinic crystals. Reacting groups of the two individually-bound substrates are separated by 6.7A. Although it lacks tryptophan, the low-affinity complex has a closed conformation similar to that observed in the presence of both ATP and Trp analogs such as indolmycin, and resembles a complex previously postulated to form in the closely-related TyrRS upon induced-fit active-site assembly, just prior to catalysis. Titration of TrpRS with ATP therefore successively produces structurally distinct high- and low-affinity ATP-bound states. The higher quality X-ray data for the closed ATP complex (2.2A) provide new structural details likely related to catalysis, including an extension of the KMSKS loop that engages the second lysine and serine residues, K195 and S196, with the alpha and gamma-phosphates; interactions of the K111 side-chain with the gamma-phosphate; and a water molecule bridging the consensus sequence residue T15 to the beta-phosphate. Induced-fit therefore strengthens active-site interactions with ATP, substantially intensifying the interaction of the KMSKS loop with the leaving PP(i) group. Formation of this conformation in the absence of a Trp analog implies that ATP is a key allosteric effector for TrpRS. The paradoxical requirement for high [ATP] implies that Gibbs binding free energy is stored in an unfavorable protein conformation and can then be recovered for useful purposes, including catalysis in the case of TrpRS.  相似文献   

20.
The activation domain of class I aminoacyl-tRNA synthetases, which contains the Rossmann fold and the signature sequences HIGH and KMSKS, is generally split into two halves by the connective peptides (CP1, CP2) whose amino acid sequences are idiosyncratic. CP1 has been shown to participate in the binding of tRNA as well as the editing of the reaction intermediate aminoacyl-AMP or the aminoacyl-tRNA. No function has been assigned to CP2. The amino acid sequence of Acidithiobacillus ferrooxidans TrpRS was predicted from the genome sequence. Protein sequence alignments revealed that A. ferrooxidans TrpRS contains a 70 amino acids long CP2 that is not found in any other bacterial TrpRS. However, a CP2 in the same relative position was found in the predicted sequence of several archaeal TrpRSs. A. ferrooxidans TrpRS is functional in vivo in Escherichia coli. A deletion mutant of A. ferrooxidans trpS lacking the coding region of CP2 was constructed. The in vivo activity of the mutant TrpRS in E. coli, as well as the kinetic parameters of the in vitro activation of tryptophan by ATP, were not altered by the deletion. However, the K(m) value for tRNA was seven-fold higher upon deletion, reducing the efficiency of aminoacylation. Structural modeling suggests that CP2 binds to the inner corner of the L shape of tRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号