首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sensitivity of rice to ultraviolet-B radiation   总被引:1,自引:0,他引:1  
BACKGROUND: Depletion of the stratospheric ozone layer leads to an increase in ultraviolet-B (UVB: 280-320 nm) radiation reaching the earth's surface, and the enhanced solar UVB radiation predicted by atmospheric models will result in reduction of growth and yield of crops in the future. Over the last two decades, extensive studies of the physiological, biochemical and morphological effects of UVB in plants, as well as the mechanisms of UVB resistance, have been carried out. SCOPE: In this review, we describe recent research into the mechanisms of UVB resistance in higher plants, with an emphasis on rice (Oryza sativa), one of the world's most important staple food crops. Recent studies have brought to light the following remarkable findings. UV-absorbing compounds accumulating in the epidermal cell layers have traditionally been considered to function as UV filters, and to play an important role in countering the damaging effects of UVB radiation. Although these compounds are effective in reducing cyclobutane pyrimidine dimer (CPD) induction in plants exposed to a challenge exposure to UVB, certain levels of CPD are maintained constitutively in light conditions containing UVB, regardless of the quantity or presence of visible light. These findings imply that the systems for repairing DNA damage and scavenging reactive oxygen species (ROS) are essential for plants to grow in light conditions containing UVB. CONCLUSION: CPD photolyase activity is a crucial factor determining the differences in UVB sensitivity between rice cultivars. The substitution of one or two bases in the CPD photolyase gene can alter the activity of the enzyme, and the associated resistance of the plant to UVB radiation. These findings open up the possibility, in the near future, of increasing the resistance of rice to UVB radiation, by selective breeding or bioengineering of the genes encoding CPD photolyase.  相似文献   

2.
The cyclobutane pyrimidine dimer (CPD) is a major type of DNA damage induced by ultraviolet B (UVB) radiation. CPD photolyase, which absorbs blue/UVA light as an energy source to monomerize dimers, is a crucial factor for determining the sensitivity of rice (Oryza sativa) to UVB radiation. Here, we purified native class II CPD photolyase from rice leaves. As the final purification step, CPD photolyase was bound to CPD-containing DNA conjugated to magnetic beads and then released by blue-light irradiation. The final purified fraction contained 54- and 56-kD proteins, whereas rice CPD photolyase expressed from Escherichia coli was a single 55-kD protein. Western-blot analysis using anti-rice CPD photolyase antiserum suggested that both the 54- and 56-kD proteins were the CPD photolyase. Treatment with protein phosphatase revealed that the 56-kD native rice CPD photolyase was phosphorylated, whereas the E. coli-expressed rice CPD photolyase was not. The purified native rice CPD photolyase also had significantly higher CPD photorepair activity than the E. coli-expressed CPD photolyase. According to the absorption, emission, and excitation spectra, the purified native rice CPD photolyase possesses both a pterin-like chromophore and an FAD chromophore. The binding activity of the native rice CPD photolyase to thymine dimers was higher than that of the E. coli-expressed CPD photolyase. These results suggest that the structure of the native rice CPD photolyase differs significantly from that of the E. coli-expressed rice CPD photolyase, and the structural modification of the native CPD photolyase leads to higher activity in rice.  相似文献   

3.
We investigated the UVB-sensitivity in 12 rice strains belonging to two cultivated species (O. sativa and O. glaberrima) and three wild species (O. barthii, O. meridionalis and O. rufipogon) of rice possessing the AA genome, while focusing on the CPD photolyase activity and the genotypes of CPD photolyase. Although the UVB sensitivity, CPD photolyase activity, and CPD photolyase genotype varied widely among these rice species, the sensitivity to UVB radiation depended on the activity of the CPD photolyase, regardless of grass shape, habitat, or species. The rice strains examined here clearly divided into three groups based on the CPD photolyase activity, and the activity of the strains greatly depended on amino acid residues at positions 126 and 296, with the exception of the W1299 strain (O. meridionalis). The amino acid residues 126 and 296 of CPD photolyase in Sasanishiki strain (O. sativa), which showed higher enzymatic activity and more resistance to UVB, were glutamine (Gln) and Gln, respectively. An amino acid change at position 126 from Gln to arginine ("Nori"-type) in the photolyase led to a reduction of enzymatic activity. Additionally, an amino acid change at position 296 from Gln to histidine led to a further reduction in activity. The activity of the W1299 strain, which possesses a "Nori"-type CPD photolyase, was the highest among the strains examined here, and was similar to that of the Sasanishiki. The CPD photolyase of the W1299 contains ten amino acid substitutions, compared to Sasanishiki. The alterations in amino acid residues in the W1299 CPD photolyase compensated for the reduction in activity caused by the amino acid substitutions at positions 126. Knowledge of the activity of different CPD photolyase genotypes will be useful in developing improved rice cultivars.  相似文献   

4.
Ueda T  Sato T  Hidema J  Hirouchi T  Yamamoto K  Kumagai T  Yano M 《Genetics》2005,171(4):1941-1950
Rice qUVR-10, a quantitative trait locus (QTL) for ultraviolet-B (UVB) resistance on chromosome 10, was cloned by map-based strategy. It was detected in backcross inbred lines (BILs) derived from a cross between the japonica variety Nipponbare (UV resistant) and the indica variety Kasalath (UV sensitive). Plants homozygous for the Nipponbare allele at the qUVR-10 locus were more resistant to UVB compared with the Kasalath allele. High-resolution mapping using 1850 F(2) plants enabled us to delimit qUVR-10 to a <27-kb genomic region. We identified a gene encoding the cyclobutane pyrimidine dimer (CPD) photolyase in this region. Activity of CPD photorepair in Nipponbare was higher than that of Kasalath and nearly isogenic with qUVR-10 [NIL(qUVR-10)], suggesting that the CPD photolyase of Kasalath was defective. We introduced a genomic fragment containing the CPD photolyase gene of Nipponbare to NIL(qUVR-10). Transgenic plants showed the same level of resistance as Nipponbare did, indicating that the qUVR-10 encoded the CPD photolyase. Comparison of the qUVR-10 sequence in the Nipponbare and Kasalath alleles revealed one probable candidate for the functional nucleotide polymorphism. It was indicated that single-base substitution in the CPD photolyase gene caused the alteration of activity of CPD photorepair and UVB resistance. Furthermore, we were able to develop a UV-hyperresistant plant by overexpression of the photolyase gene.  相似文献   

5.
There is a cultivar difference in the response to ultraviolet-B(UVB: 280–320 nm) in rice (Oryza sativa L.). AmongJapanese lowland rice cultivars, Sasanishiki, a leading Japaneserice cultivar, is resistant to the damaging effects of UVB whileNorin 1, a close relative, is less resistant. We found previouslythat Norin 1 was deficient in cyclobutane pyrimidine dimer (CPD)photorepair ability and suggested that the UVB sensitivity inrice depends largely on CPD photorepair ability. In order toverify that suggestion, we examined the correlation betweenUVB sensitivity and CPD photolyase activity in 17 rice cultivarsof progenitors and relatives in breeding of UV-resistant Sasanishikiand UV-sensitive Norin 1. The amino acid at position 126 ofthe deduced amino acid sequence of CPD photolyase in cultivarsincluding such as Norin 1 was found to be arginine, the CPDphotolyase activities of which were lower. The amino acid atthat position in cultivars including such as Sasanishiki wasglutamine. Furthermore, cultivars more resistant to UVB werefound to exhibit higher photolyase activities than less resistantcultivars. These results emphasize that single amino acid alterationfrom glutamine to arginine leads to a deficit of CPD photolyaseactivity and that CPD photolyase activity is one of the mainfactors determining UVB sensitivity in rice. 1 These authors contributed equally to the paper. 2 Corresponding author: E-mail, kumagai{at}ige.tohoku.ac.jp; Fax,+81-22-217-5691.  相似文献   

6.
Sensitivity to ultraviolet-B (UVB) radiation (280-320 nm) varies widely among rice cultivars. We previously indicated that UV-resistant rice cultivars are better able to repair cyclobutane pyrimidine dimers (CPDs) through photorepair than are UV-sensitive cultivars. In this paper, we report that UVB sensitivity in rice, in part, is the result of defective CPD photolyase alleles. Surjamkhi (indica) exhibited greater sensitivity to UVB radiation and was more deficient in CPD photorepair ability compared with UV-resistant Sasanishiki (japonica). The deficiency in CPD photorepair in Surjamkhi resulted from changes in two nucleotides at positions 377 and 888 in the photolyase gene, causing alterations of two deduced amino acids at positions 126 and 296 in the photolyase enzyme. A linkage analysis in populations derived from Surjamkhi and Sasanishiki showed that UVB sensitivity is a quantitative inherited trait and that the CPD photolyase locus is tightly linked with a quantitative trait locus that explains a major portion of the genetic variation for this trait. These results suggest that spontaneously occurring mutations in the CPD photolyase gene cause different degrees of sensitivity to UVB in rice, and that the resistance of rice to UVB radiation could be increased by increasing the photolyase function through conventional breeding or bioengineering.  相似文献   

7.
Plants use sunlight as energy for photosynthesis; however, plant DNA is exposed to the harmful effects of ultraviolet‐B (UV‐B) radiation (280–320 nm) in the process. UV‐B radiation damages nuclear, chloroplast and mitochondrial DNA by the formation of cyclobutane pyrimidine dimers (CPDs), which are the primary UV‐B‐induced DNA lesions, and are a principal cause of UV‐B‐induced growth inhibition in plants. Repair of CPDs is therefore essential for plant survival while exposed to UV‐B‐containing sunlight. Nuclear repair of the UV‐B‐induced CPDs involves the photoreversal of CPDs, photoreactivation, which is mediated by CPD photolyase that monomerizes the CPDs in DNA by using the energy of near‐UV and visible light (300–500 nm). To date, the CPD repair processes in plant chloroplasts and mitochondria remain poorly understood. Here, we report the photoreactivation of CPDs in chloroplast and mitochondrial DNA in rice. Biochemical and subcellular localization analyses using rice strains with different levels of CPD photolyase activity and transgenic rice strains showed that full‐length CPD photolyase is encoded by a single gene, not a splice variant, and is expressed and targeted not only to nuclei but also to chloroplasts and mitochondria. The results indicate that rice may have evolved a CPD photolyase that functions in chloroplasts, mitochondria and nuclei, and that contains DNA to protect cells from the harmful effects of UV‐B radiation.  相似文献   

8.
9.
10.
11.
Growth of a near‐isogenic line (NIL) for the purple leaf gene Pl of rice with a genetic background of Taichung 65 (T‐65) rice was significantly retarded by supplementary ultraviolet‐B radiation (UV‐B), despite the fact that the amounts of UV‐absorbing compounds and anthocyanins in NIL were significantly higher than those in T‐65. In order to understand the role of flavonoids in UV‐B induced damage protection in T‐65 and the NIL, both the (1) relationships between changes in the steady state of cyclobutane pyrimidine dimer (CPD) levels and changes in accumulation of anthocyanins and UV‐absorbing compounds in leaves with leaf age, and (2) the susceptibility to CPD induction by UV‐B radiation and the ability to photorepair CPD were examined. Although supplementary UV‐B elevated the steady state of CPD levels in leaves in both strains, the level in the leaf of the NIL was higher than that in T‐65 at any time. The susceptibility to CPD induction by short‐term (challenge) UV‐B exposure was lower in the NIL than in T‐65. On the other hand, the CPD photorepair was also lower in the leaves of the NIL than in those of T‐65. The decrease in CPD‐photorepair in the NIL was due to a lowering of the leaf‐penetrating blue/UV‐A radiation, which is effective for photoreactivation by photolyase, by anthocyanins. Thus, accumulation of anthocyanins and UV‐absorbing compounds did not effectively function as screening against damage caused by elevated UV‐B radiation in the NIL, and the retardation of growth in the NIL resulted from its lower ability to photorepair CPD by higher amounts of anthocyanins.  相似文献   

12.
Ozone depletion increases terrestrial solar ultraviolet B (UV-B; 280–315 nm) radiation, intensifying the risks plants face from DNA damage, especially covalent cyclobutane pyrimidine dimers (CPD). Without efficient repair, UV-B destroys genetic integrity, but plant breeding creates rice cultivars with more robust photolyase (PHR) DNA repair activity as an environmental adaptation. So improved strains of Oryza sativa (rice), the staple food for Asia, have expanded rice cultivation worldwide. Efficient light-driven PHR enzymes restore normal pyrimidines to UV-damaged DNA by using blue light via flavin adenine dinucleotide to break pyrimidine dimers. Eukaryotes duplicated the photolyase gene, producing PHRs that gained functions and adopted activities that are distinct from those of prokaryotic PHRs yet are incompletely understood. Many multicellular organisms have two types of PHR: (6-4) PHR, which structurally resembles bacterial CPD PHRs but recognizes different substrates, and Class II CPD PHR, which is remarkably dissimilar in sequence from bacterial PHRs despite their common substrate. To understand the enigmatic DNA repair mechanisms of PHRs in eukaryotic cells, we determined the first crystal structure of a eukaryotic Class II CPD PHR from the rice cultivar Sasanishiki. Our 1.7 Å resolution PHR structure reveals structure-activity relationships in Class II PHRs and tuning for enhanced UV tolerance in plants. Structural comparisons with prokaryotic Class I CPD PHRs identified differences in the binding site for UV-damaged DNA substrate. Convergent evolution of both flavin hydrogen bonding and a Trp electron transfer pathway establish these as critical functional features for PHRs. These results provide a paradigm for light-dependent DNA repair in higher organisms.  相似文献   

13.
14.
DNA photolyases are enzymes which mediate the light-dependent repair (photoreactivation) of UV-induced damage products in DNA by direct reversal of base damage rather than via excision repair pathways. Arabidopsis thaliana contains two photolyases specific for photoreactivation of either cyclobutane pyrimidine dimers (CPDs) or pyrimidine (6-4)pyrimidones (6-4PPs), the two major UV-B-induced photoproducts in DNA. Reduced FADH and a reduced pterin were identified as cofactors of the native Arabidopsis CPD photolyase protein. This is the first report of the chromophore composition of any native class II CPD photolyase protein to our knowledge. CPD photolyase protein levels vary between tissues and with leaf age and are highest in flowers and leaves of 3-5-week-old Arabidopsis plants. White light or UV-B irradiation induces CPD photolyase expression in Arabidopsis tissues. This contrasts with the 6-4PP photolyase protein which is constitutively expressed and not regulated by either white or UV-B light. Arabidopsis CPD and 6-4PP photolyase enzymes can remove UV-B-induced photoproducts from DNA in planta even when plants are grown under enhanced levels of UV-B irradiation and at elevated temperatures although the rate of removal of CPDs is slower at high growth temperatures. These studies indicate that Arabidopsis possesses the photorepair capacity to respond effectively to increased UV-B-induced DNA damage under conditions predicted to be representative of increases in UV-B irradiation levels at the Earth's surface and global warming in the twenty-first century.  相似文献   

15.
Elevated ultraviolet‐B (UVB) radiation has been reported to have few effects on plants but to alter the soil microbial community composition. However, the effects on soil microorganisms have to be mediated via plants, because direct radiation effects are only plausible on the uppermost millimeters of soil. Here, we assessed secondary effects of UVB on soil microbes. The responses in the dominant plant Eriophorum russeolum, peat pore water and microbial communities in the peat were recorded at a subarctic mire in the middle of the third growing season under field exposure simulating 20% depletion in the ozone layer. The UVB treatment significantly reduced the sucrose and the total soluble sugar (sucrose+glucose+fructose) concentration of the plant leaves while increasing the sucrose concentration in the belowground storage organ rhizome. The starch concentration of the leaves was also slightly reduced by elevated UVB. In the plant roots, carbohydrate concentrations remained unaffected but the total phenolics concentration increased under elevated UVB. We suggest that the simultaneously observed decrease in bacterial growth rate and the altered bacterial community composition are due to UVB‐induced changes in the plant photosynthate allocation and potential changes in root exudation. There were no effects of elevated UVB on microbial biomass, peat pore water or nutrient concentrations in the peat. The observed responses are in line with the previously reported lower ecosystem dark respiration under elevated UVB, and they signify that the changed plant tissue quality and lower bacterial activity are likely to reduce decomposition.  相似文献   

16.
17.
高等植物UV-B效应研究进展   总被引:9,自引:0,他引:9  
本文概述了植物UV-B效应近年来的研究进展,UV-B对植物生理过程的影响表现为抑制细胞伸长,降低光合作用,引起植物细胞内活性氧代谢的紊乱,膜脂过氧化作用增强。植物种间、种内都存在UV-B敏感性差异。UV-B对植物DNA的损伤主要是形成嘧啶二聚体。UV-B可诱导紫外吸收化合物的合成,积累,并对植物基因表达有重要调节作用。  相似文献   

18.
The effects of UVB radiation on the growth of two cultivarsof Japanese lowland rice (Oryza sativa L.), Sasanishiki andNorin 1, were examined in a phytotron. Supplementation of visibleradiation with UVB radiation reduced plant length, tiller number,the fresh and dry weights of the aboveground parts of plants,and the amounts of total leaf nitrogen, chlorophyll, solubleprotein and ribulose-1,5-bisphosphate carboxylase/oxygenase(Rubisco) in the eighth leaf, the youngest fully expanded leaf.By contrast, UVB radiation significantly increased the accumulationof UV-absorbing compounds. There was a difference between thetwo cultivars in the resistance to the effects of UVB radiation.The reduction in the amounts of Rubisco was smaller in Sasanishiki,while the increase in the accumulation of UV-absorbing compoundswas greater in Sasanishiki. Parameters of plant growth, withthe exception of the amount of Rubisco, decreased in directproportion to decreases in total leaf nitrogen in plants grownunder lower or higher doses of UVB radiation. However, the decreasein the Rubisco content of Norin 1 grown under a high dose ofUVB radiation was exceptionally marked, and was not observedsimilarly in Sasanishiki. These results suggest that the remarkablereduction in Rubisco content in Norin 1 might have been dueto the specific effects of UVB radiation. It is also suggestedthat the difference between cultivars in the resistance to UVBradiation might be due to the differences in the levels of Rubiscoand in UV-absorbing compounds that are induced by UVB radiation. (Received January 29, 1996; Accepted May 31, 1996)  相似文献   

19.
Ultraviolet-B (UVB, wavelength 280-320 nm) radiation has beendemonstrated to affect growth and development of many plants.This study was conducted to determine the effect of UVB radiationon stomatal density and opening of Oryza sativa and to testif the stomatal response to UVB was associated with differentsensitivity of growth to UVB in four cultivars. Ten-day-oldseedlings of IR45 and IR74 (UVB sensitive), and IR64 and IR30(UVB less sensitive), were subjected to UVB radiation in a glasshousefor 6 h d-1 for 4 weeks. The unweighted UVB radiation was 1·94W m-2 for UVB treatment and 0·15 W m-2 for control. Leafarea and plant dry mass were determined every 2 weeks whilestomatal density and opening were recorded weekly. Results showedthat a 2-week UVB treatment had no effect on the leaf area orplant dry mass of any test cultivar, but significantly reducedstomatal density and opening in IR45 and IR74. Under 4-weekUVB exposure, leaf area and plant dry mass of IR45 and IR74were significantly reduced. Stomatal density decreased in allcultivars, except in IR64. Greater reduction of stomata on theadaxial surface than on the abaxial surface under 3 and 4 weeksof UVB exposure suggests a direct effect of UVB radiation onstomata. IR45 and IR74 showed significant reductions in stomatalopening after 2 weeks of exposure to UVB, while stomatal openingin IR30 and IR64 decreased significantly after only 4 weeksof UVB treatment. Difference in plant dry mass between UVB treatedand control plants was significantly correlated with the reductionsin stomatal opening and density on adaxial surface under UVBtreatment. Thus, reduction in dry mass of rice plants underUVB in the glasshouse could be attributed to decrease in stomataldensity and opening.Copyright 1995, 1999 Academic Press Oryza sativa, UVB radiation, stomatal density, stomatal opening  相似文献   

20.
Ultraviolet radiation induces the formation of two classes of photoproducts in DNA-the cyclobutane pyrimidine dimer (CPD) and the pyrimidine [6-4] pyrimidone photoproduct (6-4 product). Many organisms produce enzymes, termed photolyases, which specifically bind to these lesions and split them via a UV-A/blue light-dependent mechanism, thereby reversing the damage. These photolyases are specific for either CPDs or 6-4 products. Two classes of photolyases (class I and class II) repair CPDs. A gene that encodes a protein with class II CPD photolyase activity in vitro has been cloned from several plants including Arabidopsis thaliana, Cucumis sativus and Chlamydomonas reinhardtii. We report here the isolation of a homolog of this gene from rice (Oryza sativa), which was cloned on the basis of sequence similarity and PCR-based dilution-amplification. The cDNA comprises a very GC-rich (75%) 5; region, while the 3; portion has a GC content of 50%. This gene encodes a protein with CPD photolyase activity when expressed in E. coli. The CPD photolyase gene encodes at least two types of mRNA, formed by alternative splicing of exon 5. One of the mRNAs encodes an ORF for 506 amino acid residues, while the other is predicted to code for 364 amino acid residues. The two RNAs occur in about equal amounts in O. sativa cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号