首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microvillar membranes derived from the brush border of the renal proximal tubule are very rich in peptidases. Pig kidney microvilli contain endopeptidase-24.11 associated with a battery of exopeptidases. The manner by which some neuropeptides are degraded by the combined attack of the peptidases of this membrane has been investigated. The contribution of individual peptidases was assessed by including inhibitors (phosphoramidon, captopril, amastatin and di-isopropyl fluorophosphate) with the membrane fraction when incubated with the peptides. Substance P, bradykinin and angiotensins I, II and III and insulin B-chain were rapidly hydrolysed by kidney microvilli. Oxytocin was hydrolysed much more slowly, but no products were detected from [Arg8]vasopressin or insulin under the conditions used for other peptides. The peptide bonds hydrolysed were identified and the contributions of the different peptidases were quantified. For each of the susceptible peptides, the main contribution came from endopeptidase-24.11 (inhibited by phosphoramidon). Peptidyl dipeptidase A (angiotensin-I-converting enzyme) was of less importance, even in respect of angiotensin I and bradykinin. When [2,3-Pro3,4-3H]bradykinin was also investigated at a lower concentration (20 nM), the conclusions in regard to the contributions of the two peptidases were unchanged. The possibility that endopeptidase-24.11 might attack within the six-residue disulphide-bridged rings of oxytocin and vasopressin was examined by dansyl(5-dimethylaminonaphthalene-1-sulphonyl)ation and by reduction and carboxymethylation of the products after incubation. Additional peptides were only observed after prolonged incubation, consistent with hydrolysis at the Tyr2-Ile3 and Tyr2-Phe3 bonds respectively. These results show that a range of neuropeptides are efficiently degraded by microvillar membranes and that endopeptidase-24.11 plays a key role in this process.  相似文献   

2.
The concentration of luteinizing hormone releasing hormone (LHRH) (pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2), which reaches the anterior pituitary via the hypothalamo-hypophyseal portal system, appears to be controlled in part by the rate of LHRH degradation within the hypothalamus and/or pituitary. Specific, active site-directed endopeptidase inhibitors synthesized in our laboratory were used to identify the enzyme(s) involved in LHRH degradation by hypothalamic and pituitary membrane preparations, and by an intact anterior pituitary tumor cell line (AtT20). Incubation of LHRH with pituitary and hypothalamic membrane preparations led to the formation of pGlu-His-Trp (LHRH1-3) as the main reaction product. Under the same conditions, addition to the incubation mixtures of captopril, an inhibitor of the angiotensin converting enzyme, led to accumulation of pGlu-His-Trp-Ser-Tyr (LHRH1-5) and, to a lesser extent, pGlu-His-Trp-Ser-Tyr (LHRH1-6). The degradation of LHRH and the formation of the N-terminal tri- and pentapeptides was blocked by N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Ala-Phe-p-aminobenzoate (cFP-AAF-pAB), a specific, active site directed inhibitor of endopeptidase-24.15. Some inhibition of LHRH degradation and formation of the N-terminal hexapeptide was also obtained in the presence of N-[1-carboxy-2-phenylethyl]-Phe-p-aminobenzoate (cFE-F-pAB), an inhibitor of endopeptidase-24.11. Similar results were obtained with AtT20 cell membranes and with intact AtT20 cells in monolayer culture. Following cleavage by endopeptidases the C-terminal part of LHRH was rapidly degraded by aminopeptidases. Superactive analogs of LHRH in which Gly6 was replaced by a D-amino acid are resistant to degradation by both endopeptidase-24.11 and -24.15. In vivo, when LHRH was injected directly into the third ventricle of rats, the presence of cFP-AAF-pAB inhibited LHRH degradation. It is concluded that LHRH degradation is primarily initiated by the membrane-bound form of endopeptidase-24.15 to yield pGlu-His-Trp-Ser-Tyr and to a lesser extent by endopeptidase-24.11 to yield pGlu-His-Trp-Ser-Tyr-Gly.  相似文献   

3.
Both endopeptidase-24.11 and peptidyl dipeptidase A have previously been shown to hydrolyse the neuropeptide substance P. The structurally related peptide neurokinin A is also shown to be hydrolysed by pig kidney endopeptidase-24.11. The identified products indicated hydrolysis at two sites, Ser5-Phe6 and Gly8-Leu9, consistent with the known specificity of the enzyme. The pattern of hydrolysis of neurokinin A by synaptic membranes prepared from pig striatum was similar to that observed with purified endopeptidase-24.11, and hydrolysis was substantially abolished by the selective inhibitor phosphoramidon. Peptidyl dipeptidase A purified from pig kidney was shown to hydrolyse substance P but not neurokinin A. It is concluded that endopeptidase-24.11 has the general capacity to hydrolyse and inactivate the family of tachykinin peptides, including substance P and neurokinin A.  相似文献   

4.
The hydrolysis of the porcine 26-residue brain natriuretic peptide (BNP-26) and its counterpart human 28-residue atrial natriuretic peptide (alpha-hANP) by pig membrane preparations and purified membrane peptidases was studied. When the two peptides were incubated with choroid plexus membranes, the products being analysed by h.p.l.c., alpha-hANP was degraded twice as fast as BNP. The h.p.l.c. profiles of alpha-hANP hydrolysis, in short incubations with choroid plexus membranes, yielded alpha hANP' as the main product, this having been previously shown to be the result of hydrolysis at the Cys7-Phe8 bond. In short incubations this cleavage was inhibited 84% by 1 microM-phosphoramidon, a specific inhibitor of endopeptidase-24.11. BNP-26 was hydrolysed by choroid plexus membranes, kidney microvillar membranes and purified endopeptidase-24.11 in a manner that yielded identical h.p.l.c. profiles. In the presence of phosphoramidon, hydrolysis by the choroid plexus membranes was 94% inhibited. Captopril had no effect and, indeed, no hydrolysis of BNP-26 by peptidyl dipeptidase A (angiotensin-converting enzyme) was observed even after prolonged incubation with the purified enzyme. The stepwise hydrolysis of BNP-26 by endopeptidase-24.11 was investigated by sequencing the peptides produced during incubation. The initial product resulted from hydrolysis at Ser14-Leu15, thereby opening the ring. This product (BNP') was short-lived; further degradation involved hydrolysis at Ile12-Gly13, Arg8-Leu9, Gly17-Leu18, Val22-Leu23, Arg11-Ile12 and Cys4-Phe5. Thus endopeptidase-24.11 is the principal enzyme in renal microvillar and choroid plexus membranes hydrolysing BNP-26 and alpha-hANP.  相似文献   

5.
Synaptic membrane preparations from human striatum and human diencephalon were shown to contain a phosphoramidon-sensitive metalloendopeptidase that appeared identical with endopeptidase-24.11. The activity of endopeptidase-24.11 was determined with an enzymic assay employing [D-Ala2,Leu5]enkephalin as substrate, and its distribution in human brain was similar to that in pig brain, with the striatum containing the highest levels. The choroid plexus and pons also contained substantial activity. A good correlation (r = 0.97) was obtained for the distribution of the endopeptidase in pig brain and pituitary by the enzymic assay and by an immunoradiometric assay specific for pig endopeptidase-24.11. Synaptic membrane preparations from human striatum and diencephalon hydrolysed substance P at the same sites as did preparations of pig striatal synaptic membranes, and hydrolysis was substantially abolished by phosphoramidon. These results suggest that endopeptidase-24.11 is the principal enzyme hydrolysing substance P in human synaptic membrane preparations.  相似文献   

6.
N M Hooper  A J Turner 《FEBS letters》1985,190(1):133-136
The major site of hydrolysis was the Gly8-Leu9 bond. Angiotensin converting enzyme (peptidyl dipeptidase A, EC 3.4.15.1) from pig kidney hydrolysed substance P releasing the C-terminal tripeptide Gly-Leu-MetNH2 but failed to hydrolyse neurokinin B. Pig brain striatal synaptic membranes hydrolysed neurokinin B producing a similar pattern of products as did endopeptidase-24.11. Substantial inhibition of this activity was achieved with the selective inhibitor phosphoramidon. A combination of phosphoramidon and bestatin abolished the hydrolysis of neurokinin B by synaptic membranes. Thus, a bestatin-sensitive aminopeptidase may play a role in the synaptic metabolism of neurokinin B in addition to endopeptidase-24.11. This aminopeptidase appears to be distinct from aminopeptidase N (EC 3.4.11.2).  相似文献   

7.
alpha-Human atrial natriuretic peptide, a 28-amino-acid-residue peptide, was rapidly hydrolysed by pig kidney microvillar membranes in vitro, with a t1/2 of 8 min, comparable with the rate observed with angiotensins II and III. The products of hydrolysis were analysed by h.p.l.c., the pattern obtained with membranes being similar to that with purified endopeptidase-24.11 (EC 3.4.24.11). No hydrolysis by peptidyl dipeptidase A (angiotensin I converting enzyme, EC 3.4.15.1) was observed. The contribution of the various microvillar membrane peptidases was assessed by including specific inhibitors. Phosphoramidon, an inhibitor of endopeptidase-24.11, caused 80-100% suppression of the products. Captopril and amastatin (inhibitors of peptidyl dipeptidase A and aminopeptidases respectively) had no significant effect. Hydrolysis at an undefined site within the disulphide-linked ring occurred rapidly, followed by hydrolysis at other sites, including the Ser25--Phe26 bond.  相似文献   

8.
Abstract: The membrane metalloenzyme endopeptidase-24.11 has been localized by immunocytochemistry in the porcine hippocampus in the stratum oriens and stratum radiatum. Endopeptidase-24.11 was found to be ∼10-fold more abundant in a striatal than a hippocampal membrane preparation. Both somatostatin-28 and somatostatin-14 were metabolized by endopeptidase-24.11, but the kinetics of hydrolysis markedly favoured the smaller form of the neuropeptide. After phase separation with Triton X-114 of striatal and hippocampal membrane preparations, and by using selective inhibitors, the major (>80%) somatostatin-metabolizing activity was found to partition into the detergent-rich phase and was attributable predominantly to endopeptidase-24.11. The residual activity observed in the presence of the selective endopeptidase-24.11 inhibitor phosphoramidon was blocked by Pro-Ile or N -[1-( RS )-carboxy-3-phenylpropyl]-Ala-Ala-Phe- p -aminobenzoate, inhibitors of endopeptidase-24.16 and endopeptidase-24.15, respectively. However, Pro-Ile, at comparable concentrations, was shown to inhibit endopeptidase-24.11, challenging the validity of its use as a selective inhibitor of endopeptidase-24.16. The immunocytochemical and Triton X-114 phase-separation data implicate endopeptidase-24.11, rather than endopeptidase-24.16 or endopeptidase-24.15, as the major physiological somatostatin-degrading neuropeptidase in the striatum and hippocampus.  相似文献   

9.
A comprehensive survey of 11 peptidases, all of which are markers for renal microvillar membranes, has been made in membrane fractions prepared from pig choroid plexus. Two fractionation schemes were explored, both depending on a MgCl2-precipitation step, the preferred one having advantages in speed and yield of the activities. The specific activities of the peptidases in the choroid-plexus membranes were, with the exception of carboxypeptidase M, lower than in renal microvillar membranes: those of aminopeptidase N, peptidyl dipeptidase A ('angiotensin-converting enzyme') and gamma-glutamyltransferase were 3-5-fold lower, those of aminopeptidase A and endopeptidase-24.11 were 12-15 fold lower, and those of dipeptidyl peptidase IV and aminopeptidase W were 50-70-fold lower. Carboxypeptidase M had a similar activity in both membranes. Alkaline phosphatase and (Na+ + K+)-activated ATPase were more active in the choroid-plexus membranes. No activity for microsomal dipeptidase, aminopeptidase P and carboxypeptidase P could be detected. Six of the peptidases and (Na+ + K+)-activated ATPase were also studied by immunoperoxidase histochemistry at light- and electron-microscopic levels. Endopeptidase-24.11 and (Na+ + K+)-activated ATPase were uniquely located on the brush border, and the other two peptidases appeared to be much more abundant on the endothelial lining of microvessels. Dipeptidyl peptidase IV and aminopeptidase W were also detected in microvasculature. Pial membranes associated with the brain and spinal cord also stained positively for endopeptidase-24.11, aminopeptidase N and peptidyl dipeptidase A. The immunohistochemical studies indicated the subcellular fractionation did not discriminate between membranes derived from epithelial cells (i.e. microvilli) and those from endothelial cells. The possible significance of these studies in relation to neuropeptide metabolism and the control of cerebrospinal fluid production is discussed.  相似文献   

10.
Atrial natriuretic peptide (ANP), a 28-residue peptide with cardiovascular and renal effects, is rapidly cleared from the circulation. Beside renal clearance, an extra-renal metabolism by the enzyme neutral endopeptidase-24.11 (NEP-24.11) has been proposed, since specific NEP-24.11-inhibitors increase endogenous plasma-ANP. NEP-24.11 is present in rat lung but its significance for ANP hydrolysis within the lung is unclear. The aim of this study was to investigate a possible degradation of rat ANP in a membrane preparation from rat lung. Hydrolysis products of ANP were separated by HPLC and further characterized by a pulmonary artery bioassay, by radioimmunoassay with different antisera, by peptide sequencing and by masspectrometry. Rat pulmonary membranes degraded ANP to one main metabolite lacking biological activity and with poor cross-reactivity to an antiserum recognising the central ring-structure of the peptide. Formation of the hydrolysis product was prevented by the NEP-24.11-inhibitor phosphoramidon (1 microM). Peptide sequencing of the metabolite revealed a cleavage between Cys7 and Phe8, which was confirmed by mass-spectrometry. The metabolite had an HPLC elution time identical to that of the product formed by purified porcine NEP-24.11. These findings suggest that ANP is metabolized and inactivated by endopeptidase-24.11 in rat lungs, the first organ exposed to ANP released from the heart.  相似文献   

11.
The catabolism of two gastric neuropeptides, the C-terminal decapeptide of gastrin releasing peptide-27 (GRP10) and substance P (SP), by membrane-bound peptidases of the porcine gastric corpus and by porcine endopeptidase-24.11 ("enkephalinase") has been investigated. GRP10 was catabolized by gastric muscle peptidases (specific activity 1.8 nmol min-1 mg-1 protein) by hydrolysis of the His8-Leu9 bond and catabolism was inhibited by phosphoramidon (I50 approx. 10(-8) M), a specific inhibitor of endopeptidase-24.11. The same bond in GRP10 was cleaved by purified endopeptidase-24.11, and hydrolysis was equally sensitive to inhibition by phosphoramidon. SP was catabolized by gastric muscle peptidases (specific activity 1.7 nmol min-1 mg-1 protein) by hydrolysis of the Gln6-Phe7, Phe7-Phe8 and Gly9-Leu10 bonds, which is identical to the cleavage of SP by purified endopeptidase-24.11. The C-terminal cleavage of GRP10 and SP would inactivate the peptides. It is concluded that a membrane-bound peptidase in the stomach wall catabolizes and inactivates GRP10 and SP and that, in its specificity and sensitivity to phosphoramidon, this peptidase resembles endopeptidase-24.11.  相似文献   

12.
Hybridoma methodology has been used to produce a monoclonal antibody, GK 7C2, that binds specifically to microvillar endopeptidase-24.11 (EC 3.4.24.11). The antibody (an immunoglobulin G) was generated by fusion of mouse plasmacytoma cells with splenocytes from a Balb/c mouse immunized with pig kidney microvillar membranes. The identity of the antigen recognized by GK 7C2 was established by immuno-precipitation from detergent-solubilized pig kidney microvilli. The protein had an apparent Mr of 90 000 and contained endopeptidase activity sensitive to phosphoramidon. The identity was confirmed by immunoadsorbent purification of endopeptidase-24.11 by a column to which GK 7C2 had been attached. The endopeptidase, purified in a yield of 40%, was electrophoretically homogeneous and of specific activity comparable with that purified by other means. Fluorescence microscopy established that GK 7C2 bound specifically to the luminal membranes of kidney tubules and the intestinal mucosa. Thus endopeptidase-24.11 is located in the brush-border membranes of both cell types.  相似文献   

13.
Endopeptidase-2, the second endopeptidase in rat kidney brush border [Kenny & Ingram (1987) Biochem. J. 245, 515-524] has been further characterized in regard to its specificity and its contribution to the hydrolysis of peptides by microvillar membrane preparations. The peptide products were identified, after incubating luliberin, substance P, bradykinin and angiotensins I, II and III with the purified enzyme. The bonds hydrolysed were those involving a hydrophobic amino acid residue, but this residue could be located at either the P1 or P1' site. Luliberin was hydrolysed faster than other peptides tested, followed by substance P and bradykinin. Human alpha-atrial natriuretic peptide and the angiotensins were only slowly attacked. Oxytocin and [Arg8]vasopressin were not hydrolysed. No peptide fragments were detected on prolonged incubation with insulin, cytochrome c, ovalbumin and serum albumin. In comparison with pig endopeptidase-24.11 the rates for the susceptible peptides were, with the exception of luliberin, much lower for endopeptidase-2. Indeed, for bradykinin and substance P the ratio kcat./Km was two orders of magnitude lower. Since both endopeptidases are present in rat kidney microvilli, an assessment was made of the relative contributions to the hydrolysis of luliberin, bradykinin and substance P. Only for the first named was endopeptidase-2 the dominant enzyme; for bradykinin it made an equal, and for substance P a minor, contribution.  相似文献   

14.
K Barnes  A J Kenny 《Peptides》1988,9(1):55-63
Endopeptidase-24.11, an ectoenzyme with a key role in metabolizing peptides at cell surfaces, is present in the adenohypophysis. A specific polyclonal antibody to the endopeptidase has been used to explore its localization in cryostat sections of pig pituitary glands by an immunoperoxidase method. Immunoreactivity was symmetrically but not uniformly distributed over the anterior lobe, with the highest intensity a zone just beneath the capsule along the anterior surface. In detail, the staining was observed to be in the cell membrane, but in some cells a small area of intense paranuclear staining was also observed. Serial 5 micron sections were immunostained alternately for endopeptidase-24.11 and for pituitary proteohormone. Luteinizing hormone (LH), follicular stimulating hormone (FSH), thyrotropin, adrenocorticotropin, prolactin and growth hormone were studied in this way. It was possible to identify groups of cells in adjacent sections and a good correlation was observed for endopeptidase-24.11-immunoreactivity with that for LH and FSH. The association of the endopeptidase with gonadotrophs was confirmed by double labelling. No evidence of colocalization was observed with the other proteohormone antibodies. We conclude that among the cells of the adenohypophysis only the gonadotrophs express endopeptidase-24.11 and discuss the possible significance of this observation in regard to the termination of peptide signals, such as that of luteinizing hormone-releasing hormone (LHRH) acting at this site.  相似文献   

15.
The properties of the various brain membrane peptidases capable of hydrolysing released neuropeptides are reviewed, with particular emphasis on endopeptidase-24.11 and angiotensin converting enzyme. The substrate specificities of both enzymes are defined and their relative contribution to the degradation of tachykinins in vitro are considered. One approach to assessing the physiological roles of identified peptidases involves examining the protective effect of selective peptidase inhibitors on the degradation of peptides released from brain slices. This procedure has been applied to study the release of substance P-like immunoreactivity from slices of rat substantia nigra. Inhibition of endopeptidase-24.11, but not of angiotensin converting enzyme, produces a significant increase in recovery of substance P. The specificity and distribution of endopeptidase-24.11 would therefore not be inconsistent with a role in the physiological inactivation of tachykinins, as well as enkephalins. At peripheral sites, LHRH and atrial natriuretic peptide may be important substrates of the enzyme. The endogenous neuropeptide substrate(s) for striatal angiotensin converting enzyme remain unclear.  相似文献   

16.
Membrane preparations from striatum of pig brain contain endopeptidase activity towards iodoinsulin B-chain. Only 50% of the hydrolysis of insulin B-chain is inhibitable by phosphoramidon, and DEAE-cellulose chromatography can resolve the phosphoramidon-sensitive and -insensitive activities. The former activity (now designated 'endopeptidase-24.11') is responsible for hydrolysis of [D-Ala2,Leu5]enkephalin and is identical with an enzyme in brain that has previously been referred to as 'enkephalinase'. Pig striatal endopeptidase-24.11 has now been purified to homogeneity in a single step by immunoadsorbent chromatography using a monoclonal antibody. The overall purification was 23 000-fold, with a yield of 30%. The brain enzyme appears to be identical with kidney endopeptidase-24.11 in amino acid composition as well as by immunological and kinetic criteria. However, it differs slightly in apparent subunit size (Mr = 87 000), attributable to differences in glycosylation.  相似文献   

17.
alpha-Human atrial natriuretic peptide (hANP) is secreted by the heart and acts on the kidney to promote a strong diuresis and natriuresis. In vivo it has been shown to be catabolized partly by the kidney. Crude microvillar membranes of human kidney degrade 125I-ANP at several internal bonds generating metabolites among which the C-terminal fragments were identified. Formation of the C-terminal tripeptide was blocked by phosphoramidon, indicating the involvement of endopeptidase-24.11 in this cleavage. Subsequent cleavages by aminopeptidase(s) yielded the C-terminal dipeptide and free tyrosine. Using purified endopeptidase 24.11, we identified seven sites of hydrolysis in unlabelled alpha-hANP: the bonds Arg-4-Ser-5, Cys-7-Phe-8, Arg-11-Met-12, Arg-14-Ile-15, Gly-16-Ala-17, Gly-20-Leu-21 and Ser-25-Phe-26. However, the bonds Gly-16-Ala-17 and Arg-4-Ser-5 did not fulfil the known specificity requirements of the enzyme. Cleavage at the Gly-16-Ala-17 bond was previously observed by Stephenson & Kenny [(1987) Biochem. J. 243, 183-187], but this is the first report of an Arg-Ser bond cleavage by this enzyme. Initial attack of alpha-hANP by endopeptidase-24.11 took place at a bond within the disulphide-linked loop and produced a peptide having the same amino acid composition as intact ANP. The bond cleaved in this metabolite was determined as the Cys-7-Phe-8 bond. Determination of all the bonds cleaved in alpha-hANP by endopeptidase-24.11 should prove useful for the design of more stable analogues, which could have therapeutic uses in hypertension.  相似文献   

18.
Endopeptidase-24.11 (EC 3.4.24.11), purified to homogeneity from pig kidney, was shown to hydrolyse a wide range of neuropeptides, including enkephalins, tachykinins, bradykinin, neurotensin, luliberin and cholecystokinin. The sites of hydrolysis of peptides were identified, indicating that the primary specificity is consistent with hydrolysis occurring at bonds involving the amino group of hydrophobic amino acid residues. Of the substrates tested, the amidated peptide substance P is hydrolysed the most efficiently (Km = 31.9 microM; kcat. = 5062 min-1). A free alpha-carboxy group at the C-terminus of a peptide substrate is therefore not essential for efficient hydrolysis by the endopeptidase. A large variation in kcat./Km values was observed among the peptide substrates studied, a finding that reflects a significant influence of amino acid residues, remote from the scissile bond, on the efficiency of hydrolysis. These subsite interactions between peptide substrate and enzyme thus confer some degree of functional specificity on the endopeptidase. The inhibition of endopeptidase-24.11 by several compounds was compared with that of pig kidney peptidyldipeptidase A (EC 3.4.15.1). Of the inhibitors examined, only N-[1(R,S)-carboxy-2-phenylethyl]-Phe-p-aminobenzoate inhibited endopeptidase-24.11 but not peptidyldipeptidase. Captopril (D-3-mercapto-2-methylpropanoyl-L-proline), Teprotide (pGlu-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro) and MK422 [N-[(S)-1-carboxy-3-phenylpropyl]-L-Ala-L-Pro] were highly selective as inhibitors of peptidyldipeptidase. Although not wholly specific, phosphoramidon was a more potent inhibitor of endopeptidase-24.11 than were any of the synthetic compounds tested.  相似文献   

19.
Brains from piglets were dissected and a block of tissue including the substantia nigra, globus pallidus, and entopeduncular nucleus was homogenized and then fractionated on discontinuous Percoll gradients. Ligand-binding assays using (-)-[3H]nicotine and [3H]quinuclidinyl benzilate served to delineate fractions containing nicotinic and muscarinic acetylcholine receptors. In this system endopeptidase-24.11 exhibited a biphasic distribution, consistent with its presence on both pre- and postsynaptic membranes. Peptidyl dipeptidase A (angiotensin converting enzyme; ACE) was associated with membrane fractions containing muscarinic receptors. An immunoblot of these fractions with an affinity-purified polyclonal antibody to ACE revealed only the neuronal form of ACE (Mr 170,000), the endothelial form (Mr 180,000) being undetectable. Electron microscopic immunoperoxidase staining of the substantia nigra, with an affinity-purified antibody to endopeptidase-24.11 at the preembedding stage, showed this antigen to be confined to the plasma membranes of boutons, axons, and some dendrites. Both pre- and postsynaptic membranes were stained, and occasionally other regions of the dendritic membrane were positive. No staining of synaptic vesicles within the boutons was observed. Thus, two independent approaches indicate that endopeptidase-24.11 is present on both pre- and postsynaptic membranes in the pig substantia nigra. The subcellular fractionation suggests that neuronal ACE is confined to dendritic membranes.  相似文献   

20.
Neuropeptide Y is one of the most abundant neuropeptides in the central and peripheral nervous systems and its sequence is highly conserved among species. A number of key physiological roles for NPY are now emerging, especially in the control of feeding and energy homeostasis. Other physiological actions of NPY are also reviewed. The metabolism of NPY has been examined by employing certain purified ectopeptidases and by using different membrane preparations. These approaches reveal that NPY is processed at its N-terminus by two proline-preferring aminopeptidases: aminopeptidase P and dipeptidyl peptidase IV. The action of the latter enzyme generates NPY (3−36) which has previously been shown to be a selective agonist at the Y2 class of NPY receptor. Thus, post-secretory processing of NPY can modify receptor selectivity. NPY is found to be resistant to the action of two other membrane aminopeptidases (N and W), and to the action of angiotensin converting enzyme. However, it is a substrate for endopeptidase-24.11 (K m=15.4 μM) which can cleave the Tyr20−Tyr21 and Leu30−Ile31 bonds consistent with the known specificity of the enzyme. In striatal synaptic and renal brush border membranes, NEP is shown to be the major NPY hydrolysing activity but plays a lesser role in intestinal brush border membranes. Knowledge of the proteolytic processing of NPY should aid in the design of stable analogues of this neuropeptide. Special issue dedicated to Dr. Herman Bachelard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号