首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Farwell in Cogn Neurodyn 6:115–154, (2012) reviewed all research on brainwave-based detection of concealed information published in English, including the author’s laboratory and field research. He hypothesized that specific methods are sufficient to obtain less than 1 % error rate and high statistical confidence, and some of them are necessary. Farwell proposed 20 brain fingerprinting scientific standards embodying these methods. He documented the fact that all previous research and data are compatible with these hypotheses and standards. Farwell explained why failure to meet these standards resulted in decrements in performance of other, alternative methods. Meijer et al. criticized Farwell in Cogn Neurodyn 6:115–154, (2012) and Farwell personally. The authors stated their disagreement with Farwell’s hypotheses, but did not cite any data that contradict the three hypotheses, nor did they propose alternative hypotheses or standards. Meijer et al. made demonstrable misstatements of fact, including false ad hominem statements about Farwell, and impugned Farwell’s motives and character. We provide supporting evidence for Farwell’s three hypotheses, clarify several issues, correct Meijer et al.’s misstatements of fact, and propose that the progress of science is best served by practicing science: designing and conducting research to test and as necessary modify the proposed hypotheses and standards that explain the existing data.  相似文献   

2.
In the first of two experiments, we compared the accuracy of the P300 concealed information test protocol as a function of numbers of trials experienced by subjects and ERP averages analyzed by investigators. Contrary to Farwell et al. (Cogn Neurodyn 6(2):115–154, 2012), we found no evidence that 100 trial based averages are more accurate than 66 or 33 trial based averages (all numbers led to accuracies of 84–94 %). There was actually a trend favoring the lowest trial numbers. The second study compared numbers of irrelevant stimuli recalled and recognized in the 3-stimulus protocol versus the complex trial protocol (Rosenfeld in Memory detection: theory and application of the concealed information test, Cambridge University Press, New York, pp 63–89, 2011). Again, in contrast to expectations from Farwell et al. (Cogn Neurodyn 6(2):115–154, 2012), there were no differences between protocols, although there were more irrelevant stimuli recognized than recalled, and irrelevant 4-digit number group stimuli were neither recalled nor recognized as well as irrelevant city name stimuli. We therefore conclude that stimulus processing in the P300-based complex trial protocol—with no more than 33 sweep averages—is adequate to allow accurate detection of concealed information.  相似文献   

3.
Block (Trends Cogn Sci 7:285–286, 2003) and Prinz (PSYCHE 12:1–19, 2006) have defended the idea that SSD perception remains in the substituting modality (auditory or tactile). Hurley and Noë (Biol Philos 18:131–168, 2003) instead argued that after substantial training with the device, the perceptual experience that the SSD user enjoys undergoes a change, switching from tactile/auditory to visual. This debate has unfolded in something like a stalemate where, I will argue, it has become difficult to determine whether the perception acquired through the coupling with an SSD remains in the substituting or the substituted modality. Within this puzzling deadlock two new approaches have been recently suggested. Ward and Meijer (Conscious Cogn 19:492–500, 2010) describe SSD perception as visual-like but characterize it as a kind of artificially induced synaesthesia. Auvray et al. (Perception 36:416–430, 2007) and Auvray and Myin (Cogn Sci 33:1036–1058, 2009) suggest that SSDs let their users experience a new kind of perception. Deroy and Auvray (forthcoming) refine this position, and argue that this new kind of perception depends on pre-existing senses without entirely aligning with any of them. So, they have talked about perceptual experience in SSDs as going "beyond vision". In a similar vein, MacPherson (Oxford University Press, New York, 2011a) claims that “if the subjects (SSD users) have experiences with both vision-like and touch-like representational characteristics then perhaps they have a sense that ordinary humans do not” (MacPherson in Oxford University Press, New York, 2011a, p. 139).  相似文献   

4.
Following a strategy similar to that used in baker’s yeast (Herrgård et al. Nat Biotechnol 26:1155–1160, 2008). A consensus yeast metabolic network obtained from a community approach to systems biology (Herrgård et al. 2008; Dobson et al. BMC Syst Biol 4:145, 2010). Further developments towards a genome-scale metabolic model of yeast (Dobson et al. 2010; Heavner et al. BMC Syst Biol 6:55, 2012). Yeast 5—an expanded reconstruction of the Saccharomyces cerevisiae metabolic network (Heavner et al. 2012) and in Salmonella typhimurium (Thiele et al. BMC Syst Biol 5:8, 2011). A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella typhimurium LT2 (Thiele et al. 2011), a recent paper (Thiele et al. Nat Biotechnol 31:419–425, 2013). A community-driven global reconstruction of human metabolism (Thiele et al. 2013) described a much improved ‘community consensus’ reconstruction of the human metabolic network, called Recon 2, and the authors (that include the present ones) have made it freely available via a database at http://humanmetabolism.org/ and in SBML format at Biomodels (http://identifiers.org/biomodels.db/MODEL1109130000). This short analysis summarises the main findings, and suggests some approaches that will be able to exploit the availability of this model to advantage.  相似文献   

5.
It has been claimed that connectionist (artificial neural network) models of language processing, which do not appear to employ “rules”, are doing something different in kind from classical symbol processing models, which treat “rules” as atoms (e.g., McClelland and Patterson in Trends Cogn Sci 6(11):465–472, 2002). This claim is hard to assess in the absence of careful, formal comparisons between the two approaches. This paper formally investigates the symbol-processing properties of simple dynamical systems called affine dynamical automata, which are close relatives of several recurrent connectionist models of language processing (e.g., Elman in Cogn Sci 14:179–211, 1990). In line with related work (Moore in Theor Comput Sci 201:99–136, 1998; Siegelmann in Neural networks and analog computation: beyond the Turing limit. Birkhäuser, Boston, 1999), the analysis shows that affine dynamical automata exhibit a range of symbol processing behaviors, some of which can be mirrored by various Turing machine devices, and others of which cannot be. On the assumption that the Turing machine framework is a good way to formalize the “computation” part of our understanding of classical symbol processing, this finding supports the view that there is a fundamental “incompatibility” between connectionist and classical models (see Fodor and Pylyshyn 1988; Smolensky in Behav Brain Sci 11(1):1–74, 1988; beim Graben in Mind Matter 2(2):29--51,2004b). Given the empirical successes of connectionist models, the more general, super-Turing framework is a preferable vantage point from which to consider cognitive phenomena. This vantage may give us insight into ill-formed as well as well-formed language behavior and shed light on important structural properties of learning processes.  相似文献   

6.
Since the publication of our first paper on the microwave-accelerated metal-enhanced fluorescence (MAMEF) bioassay platform technology in 2005 (Aslan and Geddes, Anal Chem 77:8057–8067, 2005), we have been repeatedly asked to comment on the advantages of “microwave heating” with plasmonic nanostructures over conventional heating for bioassays by many of our colleagues in the community. We note that one can find a couple of review articles, one by Mingos (Gabriel et al., Chem Soc Rev 27:213–223, 1998) and another by Thostenson and Chou (Manufacturing 30:1055–1071, 1999), summarizing the fundamentals and several applications of microwave processing of chemical compounds and composite materials, respectively. These review articles also present a direct comparison of microwave heating with conventional heating with respect to the processing of materials and microwave-assisted synthesis of chemical compounds. In this review article, we seek to remind the reader of the fundamentals of microwave heating and the interactions of microwaves with chemical and biological materials relevant to our recent work on bioassays, rather than repeating the information provided in the above-mentioned very informative reviews. We also summarize our work on MAMEF-based bioassays where we use plasmonic nanostructures to additionally plasmon-enhance fluorescence signatures.  相似文献   

7.
8.
9.
Joseph G. Meert 《Evolution》2012,5(4):547-554
During the voyage of the H.M.S. Beagle, Charles Darwin quickly realized that geographic isolation led to significant changes in the adaptation of local flora and fauna (Darwin 1859). Genetic isolation is one of the well-known mechanisms by which adaptation (allopatric speciation) can occur (Palumbi, Annu Rev Ecol Syst 25:547?C72, 1994; Ricklefs, J Avian Biol 33:207?C11, 2002; Burns et al., Evolution 56:1240?C52, 2002; Hendry et al., Science 290:516?C8, 2009). Evolutionary changes can also occur when landmasses converge or are ??bridged.?? An important and relatively recent (Pliocene Epoch) example known as the ??Great American Biotic Interchange?? allowed for the migration of previously isolated species into new ecological niches between North and South America (Webb 1985, Ann Mo Bot Gard 93:245?C57, 2006; Kirby and MacFadden, Palaeogeogr Palaeoclimatol Palaeoecol 228:193?C202, 2005). Geographic isolation (vicariance) or geographic merging (geodispersal) can occur for a variety of reasons (sea level rise, splitting of continents, mountain building). In addition, the growth of a large supercontinent (or breakup) may change the climatic zonation on the globe and form a different type of barrier for species migration. This short review paper focuses on changing paleogeography throughout the Phanerozoic and the close ties between paleogeography and the evolutionary history of life on Earth.  相似文献   

10.
Since decades, the main goal of tumor immunologists has been to increase the capacity of the immune system to mediate tumor regression. In this regard, one of the major focuses of cancer immunotherapy has been the design of vaccines promoting strong tumor-specific cytotoxic T lymphocyte responses in cancer patients. Here, dendritic cells (DCs) play a pivotal role as they are regarded as nature’s adjuvant and as such have become the natural agents for antigen delivery in order to finally elicit strong T cell responses (Villadangos and Schnorrer in Nat Rev Immunol 7:543–555, 2007; Melief in Immunity 29:372–383, 2008; Palucka and Banchereau in Nat Rev Cancer 12:265–277, 2012; Vacchelli et al. in Oncoimmunology 2:e25771, 2013; Galluzzi et al. in Oncoimmunology 1:1111–1134, 2012). Therefore, many investigators are actively pursuing the use of DCs as an efficient way of inducing anticancer immune responses. Nowadays, DCs can be generated at a large scale in closed systems, yielding sufficient numbers of cells for clinical application. In addition, with the identification of tumor-associated antigens, which are either selectively or preferentially expressed by tumors, a whole range of strategies using DCs for immunotherapy have been designed and tested in clinical studies. Despite the evidence that DCs loaded with tumor-associated antigens can elicit immune responses in vivo, clinical responses remained disappointingly low. Therefore, optimization of the cellular product and route of administration was urgently needed. Here, we review the path we have followed in the development of TriMixDC-MEL, a potent DC-based cellular therapy, discussing its development as well as further modifications and applications.  相似文献   

11.
Eukaryotic cells respond to stress caused by the accumulation of unfolded/misfolded proteins in the endoplasmic reticulum by activating the intracellular signaling pathways referred to as the unfolded protein response (UPR). In metazoans, UPR consists of three parallel branches, each characterized by its stress sensor protein, IRE1, ATF6, and PERK, respectively. In Drosophila, IRE1/XBP1 pathway is considered to function as a major branch of UPR; however, its physiological roles during the normal development and homeostasis remain poorly understood. To visualize IRE1/XBP1 activity in fly tissues under normal physiological conditions, we modified previously reported XBP1 stress sensing systems (Souid et al., Dev Genes Evol 217: 159–167, 2007; Ryoo et al., EMBO J 26: 242-252, 2007), based on the recent reports regarding the unconventional splicing of XBP1/HAC1 mRNA (Aragon et al., Nature 457: 736–740, 2009; Yanagitani et al., Mol Cell 34: 191–200, 2009; Science 331: 586–589, 2011). The improved XBP1 stress sensing system allowed us to detect new IRE1/XBP1 activities in the brain, gut, Malpighian tubules, and trachea of third instar larvae and in the adult male reproductive organ. Specifically, in the larval brain, IRE1/XBP1 activity was detected exclusively in glia, although previous reports have largely focused on IRE1/XBP1 activity in neurons. Unexpected glial IRE1/XBP1 activity may provide us with novel insights into the brain homeostasis regulated by the UPR.  相似文献   

12.
The view that mirror self-recognition (MSR) is a definitive demonstration of self-awareness is far from universally accepted, and those who do support the view need a more robust argument than the mere assumption that self-recognition implies a self-concept (e.g. Gallup in Socioecology and Psychology of Primates, Mouton, Hague, 1975; Gallup and Suarez in Psychological Perspectives on the Self, vol 3, Erlbaum, Hillsdale, 1986). In this paper I offer a new argument in favour of the view that MSR shows self-awareness by examining the nature of the mirror image itself. I argue, using the results of ‘symbol-mindedness’ experiments by Deloache (Trends Cogn Sci 8(2):66–70, 2004), that where self-recognition exists, the mirror image must be functioning as a symbol from the perspective of the subject and the subject must therefore be ‘symbol-minded’ and hence concept possessing. Further to this, according to the Concept Possession Hypothesis of Self-Consciousness (Savanah in Conscious Cogn 2011), concept possession alone is sufficient to demonstrate the existence of self-awareness. Thus MSR as a demonstration of symbol-mindedness implies the existence of self-awareness. I begin by defending the ‘mark test’ protocol as a robust methodology for determining self-recognition. Then follows a critical examination of the extreme views both for and against the interpretation of MSR as an indication of self-awareness: although the non-mentalistic interpretation of MSR is unconvincing, the argument presented by Gallup is also inadequate. I then present the symbol-mindedness argument to fill in the gaps in the Gallup approach.  相似文献   

13.
Sensory neurons in vertebrates are derived from two embryonic transient cell sources: neural crest (NC) and ectodermal placodes. The placodes are thickenings of ectodermal tissue that are responsible for the formation of cranial ganglia as well as complex sensory organs that include the lens, inner ear, and olfactory epithelium. The NC cells have been indicated to arise at the edges of the neural plate/dorsal neural tube, from both the neural plate and the epidermis in response to reciprocal interactions Moury and Jacobson (Dev Biol 141:243?C253, 1990). NC cells migrate throughout the organism and give rise to a multitude of cell types that include melanocytes, cartilage and connective tissue of the head, components of the cranial nerves, the dorsal root ganglia, and Schwann cells. The embryonic definition of these two transient populations and their relative contribution to the formation of sensory organs has been investigated and debated for several decades (Basch and Bronner-Fraser, Adv Exp Med Biol 589:24?C31, 2006; Basch et al., Nature 441:218?C222, 2006) review (Baker and Bronner-Fraser, Dev Biol 232:1?C61, 2001). Historically, all placodes have been described as exclusively derived from non-neural ectodermal progenitors. Recent genetic fate-mapping studies suggested a NC contribution to the olfactory placodes (OP) as well as the otic (auditory) placodes in rodents (Murdoch and Roskams, J Neurosci Off J Soc Neurosci 28:4271?C4282, 2008; Murdoch et al., J Neurosci 30:9523?C9532, 2010; Forni et al., J Neurosci Off J Soc Neurosci 31:6915?C6927, 2011b; Freyer et al., Development 138:5403?C5414, 2011; Katoh et al., Mol Brain 4:34, 2011). This review analyzes and discusses some recent developmental studies on the OP, placodal derivatives, and olfactory system.  相似文献   

14.
Displaced starburst amacrine cells (SACs) are retinal interneurons that exhibit GABA A receptor-mediated and Cl ? cotransporter-mediated, directionally selective (DS) light responses in the rabbit retina. They depolarize to stimuli that move centrifugally through the receptive field surround and hyperpolarize to stimuli that move centripetally through the surround (Gavrikov et al, PNAS 100(26):16047–16052, 2003, PNAS 103(49):18793–18798, 2006). They also play a key role in the activity of DS ganglion cells (DS GC; Amthor et al, Vis Neurosci 19:495–509 2002; Euler et al, Nature 418:845–852, 2002; Fried et al, Nature 420:411– 414, 2002; Gavrikov et al, PNAS 100(26):16047–16052, 2003, PNAS 103(49):18793–18798, 2006; Lee and Zhou, Neuron 51:787–799 2006; Yoshida et al, Neuron 30:771–780, 2001). In this paper we present a model of strong DS behavior of SACs which relies on the GABA-mediated communication within a tightly interconnected network of these cells and on the glutamate signal that the SACs receive from bipolar cells (a presynaptic cell that receives input from cones). We describe how a moving light stimulus can produce a large, sustained depolarization of the SAC dendritic tips that point in the direction that the stimulus moves (i.e., centrifugal motion), but produce a minimal depolarization of the dendritic tips that point in the opposite direction (i.e., centripetal motion). This DS behavior, which is quantified based on the relative size and duration of the depolarizations evoked by stimulus motion at dendritic tips pointing in opposite directions, is robust to changes of many different parameter values and consistent with experimental data. In addition, the DS behavior is strengthened under the assumptions that the Cl? cotransporters Na?+?-K?+?-Cl?? and K?+?-Cl?? are located in different regions of the SAC dendritic tree (Gavrikov et al, PNAS 103(49):18793–18798, 2006) and that GABA evokes a long-lasting response (Gavrikov et al, PNAS 100(26):16047–16052, 2003, PNAS 103(49):18793–18798, 2006; Lee and Zhou, Neuron 51:787–799, 2006). A possible mechanism is discussed based on the generation of waves of local glutamate and GABA secretion, and their postsynaptic interplay as the waves travel between cell compartments.  相似文献   

15.
The dynamics inherent to the life activity of all living systems presents itself in the form of regular patterns viewed by the observer as taking place in an extended timeline. Routines, rituals and celebrations, each in their own way, are defined by the typical cyclical behavioural patterns exhibited by individuals embedded in specific semiospheres. The particular nature of these semiospheres will determine the distinct patterns of behaviour to be adopted in different life contexts so that existential functions are fulfilled. The restricted and protected family circle normally provides the initial learning environment where the definition of the individual’s Umwelt (von Uexküll 1909, 1934; Ferreira, Biosemiotics 3(1):107–130, 2010, 2011) his/her meaningful world, starts to take shape. This learning process comprehends the progressive identification of distinct physical entities, the development of basic patterns of physical and social behaviour- the incorporation of basic routines and the assignment of meaning to particular events.  相似文献   

16.
The taxonomy of the Atlantic and Eastern Pacific species of Kyphosus is reviewed with K. bosquii (Lacepède 1802), K. incisor (Cuvier 1831), K. analogus (Gill 1862) and K. elegans (Peters 1869) considered valid, and K. atlanticus sp. nov. newly described. Kyphosus bosquii and K. atlanticus are both characterized by 12 dorsal- and 11 anal-fin soft rays, but differ in the number of longitudinal scale rows along the midbody (61–66, mode 63 vs. 50–56, mode 54). Kyphosus incisor and K. analogus, characterized by 14 dorsal- and 13 anal-fin soft rays, similarly differ from each other in midbody longitudinal scale row counts (57–64, mode 60 vs. 68–74, mode 70 or 72). Kyphosus elegans is characterized by 13 dorsal- and 12 anal-fin soft rays, and 51–57 midbody longitudinal scale rows. Kyphosus bosquii, K. atlanticus and K. incisor are distributed in the Atlantic Ocean, K. analogus and K. elegans occurring in the Eastern Pacific. The holotype of Pimelepterus flavolineatus Poey 1866, here regarded as a junior synonym of K. incisor, was located within a collection of Cuban fishes donated to the Smithsonian Institution by Poey in 1873. A neotype is designated here for K. analogus. Pimelepterus gallveii Cunningham 1910, Kyphosus palpebrosus Miranda-Ribeiro 1919 and K. metzelaari Jordan and Evermann 1927 are recognized as junior synonyms of K. bosquii. Pimelepterus sandwicensis Sauvage 1880 is a junior synonym of K. elegans. Perca saltatrix Linnaeus 1758, together with the replacement name Perca sectatrix Linnaeus 1766, is regarded as nomina dubia.  相似文献   

17.
18.
19.
20.
We investigate several versions of a simple game of sexual selection, to explore the role of secondary sexual characters (the “handicap paradox”) with the tools of signaling theory. Our models admit closed form solutions. They are very much inspired by Grafen’s (J Theor Biol 144:517–546, 1990a; J Theor Biol 144:473–516, 1990b) seminal companion papers. By merging and simplifying his two approaches, we identify a not so minor artifact in the seminal study. We propose an alternative model to start with Grafen’s sexual selection theory, with several similarities with Getty (Anim Behav 56:127–130, 1998).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号