首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The small cavy Microcavia australis, a social and fossorial rodent, inhabits a large distribution range in South American arid zones. The species is versatile in coping with the seasonal and spatial variability typical of these environments through changes in morphology, physiology, and behavior. In order to explore whether phenotypic variations are related to the evolutionary history of the species, we analyzed the levels of genetic variability and divergence among four populations that differ in climate and habitat characteristics, two belonging to highlands and the other two from lowlands. We sequenced the mitochondrial control region and used the Inter Simple Sequence Repeats technique to study variability in the noncoding nuclear genome. Results from both genetic markers were consistent. Variability levels were high for all populations, and even higher for lowland ones. Pairwise genetic differentiation varied greatly, all comparisons being statistically significant except for the two highland populations. Seventeen haplotypes were detected which displayed three clear lineages: two corresponding to each lowland population and one to those in the highlands. Levels of genetic differentiation between population pairs varied widely. Haplotypes showed a mean sequence divergence of 1.4% between lowland populations and 0.2% between highland ones, whereas divergence was around 9% when populations from different altitudes were compared. Results from BEAST analysis support extant hypotheses suggesting that lowland forms are clearly older than the highland group. The deep genetic divergence between lineages poses the need to search for new evidence for properly defining the taxonomic status of divergent populations of M. australis.  相似文献   

2.
The usefulness of GST and similar measures of genetic differentiation has been questioned repeatedly because of their dependence on the amount of heterozygosity within populations, creating problems when comparing degrees of divergence at loci with different mutation rates. Although the effect of mutation on GST is expected to be small in the early phases of divergence, it is unclear for how long after separation from a common ancestral population that GST is largely unaffected by mutation and by the resulting effect on heterozygosity. We address this question through analysis of the recursion equations for gene identity under the infinite allele model of mutation, and derive conditions describing when the effect of mutation on GST can be ignored under mutation-migration-drift equilibrium conditions and during the preceding transition phase. An important result is that during the transition phase GST is not only affected by mutation, but also by the heterozygosity in the base population from which the subpopulations diverged. The effect of mutation on GST is significant from the very start of the divergence process when initial heterozygosity is low, whereas GST is only weakly affected by mutation in the early phases of differentiation when initial heterozygosity is high. Thus, differentiation following a severe bottleneck is strongly dependent on mutation. The standardized measure of differentiation, G'ST, suggested by Hedrick (2005), may be helpful when comparing amounts of divergence at loci with different mutation rates under steady-state conditions, provided that migration is very low. In many other situations the use of G'ST might be misleading, however, and its application should be exercised with caution.  相似文献   

3.
The resilience of Symbiodinium harboured by corals is dependent on the genetic diversity and extent of connectivity among reef populations. This study presents genetic analyses of Great Barrier Reef (GBR) populations of clade C Symbiodinium hosted by the alcyonacean coral, Sinularia flexibilis. Allelic variation at four newly developed microsatellite loci demonstrated that Symbiodinium populations are genetically differentiated at all spatial scales from 16 to 1,360 km (pairwise ΦST = 0.01–0.47, mean = 0.22); the only exception being two neighbouring populations in the Cairns region separated by 17 km. This indicates that gene flow is restricted for Symbiodinium C hosted by S. flexibilis on the GBR. Patterns of population structure reflect longshore circulation patterns and limited cross-shelf mixing, suggesting that passive transport by currents is the primary mechanism of dispersal in Symbiodinium types that are acquired horizontally. There was no correlation between the genetic structure of Symbiodinium populations and their host S. flexibilis, most likely because different factors affect the dispersal and recruitment of each partner in the symbiosis. The genetic diversity of these Symbiodinium reef populations is on average 1.5 times lower on inshore reefs than on offshore reefs. Lower inshore diversity may reflect the impact of recent bleaching events on Sinularia assemblages, which have been more widespread and severe on inshore reefs, but may also have been shaped by historical sea level fluctuations or recent migration patterns. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Communicated by Biology Editor Dr. Ruth Gates.  相似文献   

4.
Elucidating the factors underlying the origin and maintenance of genetic variation among populations is crucial for our understanding of their ecology and evolution, and also to help identify conservation priorities. While intrinsic movement has been hypothesized as the major determinant of population genetic structuring in abundant vagile species, growing evidence indicates that vagility does not always predict genetic differentiation. However, identifying the determinants of genetic structuring can be challenging, and these are largely unknown for most vagile species. Although, in principle, levels of gene flow can be inferred from neutral allele frequency divergence among populations, underlying assumptions may be unrealistic. Moreover, molecular studies have suggested that contemporary gene flow has often not overridden historical influences on population genetic structure, which indicates potential inadequacies of any interpretations that fail to consider the influence of history in shaping that structure. This exhaustive review of the theoretical and empirical literature investigates the determinants of population genetic differentiation using seabirds as a model system for vagile taxa. Seabirds provide a tractable group within which to identify the determinants of genetic differentiation, given their widespread distribution in marine habitats and an abundance of ecological and genetic studies conducted on this group. Herein we evaluate mitochondrial DNA (mtDNA) variation in 73 seabird species. Lack of mutation–drift equilibrium observed in 19% of species coincided with lower estimates of genetic differentiation, suggesting that dynamic demographic histories can often lead to erroneous interpretations of contemporary gene flow, even in vagile species. Presence of land across the species sampling range, or sampling of breeding colonies representing ice‐free Pleistocene refuge zones, appear to be associated with genetic differentiation in Tropical and Southern Temperate species, respectively, indicating that long‐term barriers and persistence of populations are important for their genetic structuring. Conversely, biotic factors commonly considered to influence population genetic structure, such as spatial segregation during foraging, were inconsistently associated with population genetic differentiation. In light of these results, we recommend that genetic studies should consider potential historical events when identifying determinants of genetic differentiation among populations to avoid overestimating the role of contemporary factors, even for highly vagile taxa.  相似文献   

5.
Cladocora caespitosa is the only reef-forming zooxanthellate scleractinian in the Mediterranean Sea. This endemic coral has suffered severe mortality events at different Mediterranean sites owing to anomalous summer heat waves related to global climate change. In this study, we assessed genetic structure and gene flow among four populations of this species in the Western Mediterranean Sea: Cape Palos (SE Spain), Cala Galdana (Balearic Islands), Columbretes Islands, and L’Ametlla (NE Spain). The results obtained from Bayesian approaches, F ST statistics, and Bayesian analysis of migration rates suggest certain levels of genetic differentiation driven by high levels of self-recruitment, a fact that is supported by egg-retention mechanisms. Conversely, genetic connectivity among distant populations, even if generally low, seems to be related to sporadic dispersal events through regional surface currents linked to the spawning period that occurs at the end of summer-beginning of autumn. These features, together with a certain isolation of the Columbretes Islands, could explain the regional genetic differentiation found among populations. These results help to better understand population structure and connectivity of the species and will serve as an approach for further studies on different aspects of the biology and ecology of C. caespitosa.  相似文献   

6.
Migratory birds generally have higher dispersal propensity than resident species and are thus expected to show less genetic differentiation. On the other hand, specific migration patterns may promote genetic structure, such as in situations where migratory divides impede random mixing of individuals. Here we investigated population genetic structure and gene flow patterns in a polytypic passerine, the reed warbler Acrocephalus scirpaceus which shows a migratory divide in central Europe. Using ten polymorphic microsatellite loci and extensive sampling we found low but significant overall genetic differentiation (FST=0.013, G’ST=0.078, D=0.063). Hierarchical F‐statistics and barrier analyses showed low but significant genetic differentiation of Iberian populations, and also slight genetic differences across the migratory divide and between subspecies (A. s. scirpaceus and A. s. fuscus). Three individual‐based Bayesian methods, however, inferred a single genetic unit. Our study thus found low levels of genetic differentiation among reed warbler populations but this genetic differentiation was not pronounced enough to detect a clear population structure using the microsatellite data and no prior information on geographic location of the sampled individuals. This result indicates high levels of gene flow and suggests a possibly recent divergence of European populations after a rapid range expansion. Further studies are necessary to assess divergence times and to reveal the evolutionary history of the reed warbler populations.  相似文献   

7.
Forest fragments along the Atlantic coastland of Brazil have been highly impacted by extensive human activities for the last 400 years. Caesalpinia echinata (Leguminosae– Caesalpinioideae), brazilwood, was overexploited during this period due to its economical importance as a dye. As a result, the species has become endangered and today its total population size is very restricted. We have assessed the distribution of genetic variation between five natural populations of brazilwood by means of RAPD (random amplified polymorphic DNA) markers. Of the total genetic variability, 28.5% was attributable to differences between two geographical groups, 29.6% to population differences within groups and 42.0% to individual differences within populations. The high level of population differentiation observed is in contrast to that expected for a primarily outcrossed woody perennial plant, and suggests that there may be a degree of inbreeding. Our results are in agreement with previous studies which postulated that C. echinata has always occurred in clumps, being common in some places but rare in between. From a conservation point of view, different populations representing different regions should be protected and, yet, plants with different origins should not be synthesized into populations in a recovery process at the risk of loss and dilution of genetic information. This study demonstrates that RAPD markers were effective in establishing a clear correlation between genetic and geographical distance and in identifying areas of maximum diversity, and may be used as an initial approach to assess the partitioning of genetic variation in this endangered species.  相似文献   

8.
9.
Knowledge of genetic connectivity is useful for understanding of the recovery potential of coral populations after various disturbances, such as coral mass bleaching. Population genetic studies in corals are mostly restricted to Australian and Caribbean species; studies in the northern Pacific are relatively limited. Using microsatellite markers, the population genetics of Acropora sp. 1 was examined between two regions in Japan, the Okinawa-Aka and Bonin Islands, which are separated by approximately 1,500 km of open water in a high-latitude area. Statistically significant but small genetic differentiation in Acropora sp. 1 was detected between and within these regions. Genetic diversity was not obviously reduced in populations of the Bonin Islands, which are relatively isolated. Thus, some level of connectivity appears to be maintained between the two regions, likely because of the high dispersal ability of this broadcast spawner.  相似文献   

10.
 Alfalfa (Medicago sativa L.) is a forage legume of world-wide importance whose both allogamous and autotetraploid nature maximizes the genetic diversity within natural and cultivated populations. This genetic diversity makes difficult the discrimination between two related populations. We analyzed this genetic diversity by screening DNA from individual plants of eight cultivated and natural populations of M. sativa and M.  falcata using the RAPD method. A high level of genetic variation was found within and between populations. Using five primers, 64 intense bands were scored as present or absent across all populations. Most of the loci were revealed to be highly polymorphic whereas very few population-specific polymorphisms were identified. From these observations, we adopted a method based on the Roger’s genetic distance between populations using the observed frequency of bands to discriminate populations pairwise. Except for one case, the between-population distances were all significantly different from zero. We have also determined the minimal number of bands and individuals required to test for the significance of between-population distances. Received: 7 July 1997 / Accepted: 28 October 1997  相似文献   

11.
12.
In this paper, we analyze the genetic variability in four Tunisian natural populations of Medicago ciliaris using 19 quantitative traits and six polymorphic microsatellite loci. We investigated the amplification transferability of 30 microsatellites developed in the model legume M. truncatula to M. ciliaris. Results revealed that about 56.66% of analyzed markers are valuable genetic markers for M. ciliaris. The most genetic diversity at quantitative traits and microsatellite loci was found to occur within populations (>80%). Low differentiations among populations at quantitative traits Q ST  = 0.146 and molecular markers F ST  = 0.18 were found. The majority of measured traits exhibited no significant difference in the level of Q ST and F ST . Furthermore, significant correlations established between these traits and eco-geographical factors suggested that natural selection should be invoked to explain the level of phenotypic divergence among populations rather than drift. There was no significant correlation between population differentiation at quantitative traits and molecular markers. Significant spatial genetic structure consistent with models of isolation by distance was detected within all studied populations. The site-of-origin environmental factors explain about 9.07% of total phenotypic genetic variation among populations. The eco-geographical factors that influence more the variation of measured traits among populations are the soil texture and altitude. Nevertheless, there were no consistent pattern of associations between gene diversity (He) and environmental factors.  相似文献   

13.
Substantial genetic differentiation is frequently observed among populations of cyclically parthenogenetic zooplankton despite their high dispersal capabilities and potential for gene flow. Local adaptation has been invoked to explain population genetic differentiation despite high dispersal, but several neutral models that account for basic life history features also predict high genetic differentiation. Here, we study genetic differentiation among four populations of Daphnia pulex in east central Illinois. As with other studies of Daphnia, we demonstrate substantial population genetic differentiation despite close geographic proximity (<50 km; mean θ = 0.22). However, we explicitly tested and failed to find evidence for, the hypothesis that local adaptation to food resources occurs in these populations. Recognizing that local adaptation can occur in traits unrelated to resources, we estimated contemporary migration rates (m) and tested for admixture to evaluate the hypothesis that observed genetic differentiation is consistent with local adaptation to other untested ecological factors. Using Bayesian assignment methods, we detected migrants in three of the four study populations including substantial evidence for successful reproduction by immigrants in one pond, allowing us to reject the hypothesis that local adaptation limits gene flow for at least this population. Thus, we suggest that local adaptation does not explain genetic differentiation among these Daphnia populations and that other factors related to extinction/colonization dynamics, a long approach to equilibrium FST or substantial genetic drift due to a low number of individuals hatching from the egg bank each season may explain genetic differentiation.  相似文献   

14.
We examined genetic variation on the nonrecombining portion of the Y chromosome (NRY) to investigate the paternal population structure of indigenous Siberian groups and to reconstruct the historical events leading to the peopling of Siberia. A set of 62 biallelic markers on the NRY were genotyped in 1432 males representing 18 Siberian populations, as well as nine populations from Central and East Asia and one from European Russia. A subset of these markers defines the 18 major NRY haplogroups (A-R) recently described by the Y Chromosome Consortium (YCC 2002). While only four of these 18 major NRY haplogroups accounted for -95% of Siberian Y-chromosome variation, native Siberian populations differed greatly in their haplogroup composition and exhibited the highest phiST value for any region of the world. When we divided our Siberian sample into four geographic regions versus five major linguistic groupings, analyses of molecular variance (AMOVA) indicated higher phiST and phiCT values for linguistic groups than for geographic groups. Mantel tests also supported the existence of NRY genetic patterns that were correlated with language, indicating that language affiliation might be a better predictor of the genetic affinity among Siberians than their present geographic position. The combined results, including those from a nested cladistic analysis, underscored the important role of directed dispersals, range expansions, and long-distance colonizations bound by common ethnic and linguistic affiliation in shaping the genetic landscape of Siberia. The Siberian pattern of reduced haplogroup diversity within populations combined with high levels of differentiation among populations may be a general feature characteristic of indigenous groups that have small effective population sizes and that have been isolated for long periods of time.  相似文献   

15.
Diversity analyses in alfalfa have mainly evaluated genetic relationships of cultivated germplasm, with little known about variation in diploid germplasm in the M. sativafalcata complex. A collection of 374 individual genotypes derived from 120 unimproved diploid accessions from the National Plant Germplasm System, including M. sativa subsp. caerulea, falcata, and hemicycla, were evaluated with 89 polymorphic SSR loci in order to estimate genetic diversity, infer the genetic bases of current morphology-based taxonomy, and determine population structure. Diploid alfalfa is highly variable. A model-based clustering analysis of the genomic data identified two clearly discrete subpopulations, corresponding to the morphologically defined subspecies falcata and caerulea, with evidence of the hybrid nature of the subspecies hemicycla based on genome composition. Two distinct subpopulations exist within each subsp. caerulea and subsp. falcata. The distinction of caerulea was based on geographical distribution. The two falcata groups were separated based on ecogeography. The results show that taxonomic relationships based on morphology are reflected in the genetic marker data with some exceptions, and that clear distinctions among subspecies are evident at the diploid level. This research provides a baseline from which to systematically evaluate variability in tetraploid alfalfa and serves as a starting point for exploring diploid alfalfa for genetic and breeding experiments.  相似文献   

16.
Kohn MH  Pelz HJ  Wayne RK 《Genetics》2003,164(3):1055-1070
Populations may diverge at fitness-related genes as a result of adaptation to local conditions. The ability to detect this divergence by marker-based genomic scans depends on the relative magnitudes of selection, recombination, and migration. We survey rat (Rattus norvegicus) populations to assess the effect that local selection with anticoagulant rodenticides has had on microsatellite marker variation and differentiation at the warfarin resistance gene (Rw) relative to the effect on the genomic background. Initially, using a small sample of 16 rats, we demonstrate tight linkage of microsatellite D1Rat219 to Rw by association mapping of genotypes expressing an anticoagulant-rodenticide-insensitive vitamin K 2,3-epoxide reductase (VKOR). Then, using allele frequencies at D1Rat219, we show that predicted and observed resistance levels in 27 populations correspond, suggesting intense and recent selection for resistance. A contrast of F(ST) values between D1Rat219 and the genomic background revealed that rodenticide selection has overwhelmed drift-mediated population structure only at Rw. A case-controlled design distinguished these locus-specific effects of selection at Rw from background levels of differentiation more effectively than a population-controlled approach. Our results support the notion that an analysis of locus-specific population genetic structure may assist the discovery and mapping of novel candidate loci that are the object of selection or may provide supporting evidence for previously identified loci.  相似文献   

17.
18.
We introduce a Bayesian method for estimating hidden population substructure using multilocus molecular markers and geographical information provided by the sampling design. The joint posterior distribution of the substructure and allele frequencies of the respective populations is available in an analytical form when the number of populations is small, whereas an approximation based on a Markov chain Monte Carlo simulation approach can be obtained for a moderate or large number of populations. Using the joint posterior distribution, posteriors can also be derived for any evolutionary population parameters, such as the traditional fixation indices. A major advantage compared to most earlier methods is that the number of populations is treated here as an unknown parameter. What is traditionally considered as two genetically distinct populations, either recently founded or connected by considerable gene flow, is here considered as one panmictic population with a certain probability based on marker data and prior information. Analyses of previously published data on the Moroccan argan tree (Argania spinosa) and of simulated data sets suggest that our method is capable of estimating a population substructure, while not artificially enforcing a substructure when it does not exist. The software (BAPS) used for the computations is freely available from http://www.rni.helsinki.fi/~mjs.  相似文献   

19.
Many common environmental pollutants, together with nuclear radiation, are recognized as genotoxic. There is, however, very little information on pollution-related genetic effects on free-living animal populations, especially in terrestrial ecosystems. We investigated whether genetic diversity in two small insectivorous passerines, the great tit (Parus major) and the pied flycatcher (Ficedula hypoleuca), was changed near point sources of heavy metals (two copper smelters) or radioactive isotopes (nuclear material reprocessing plant). We measured concentration of heavy metals and nucleotide diversity in mitochondrial DNA in feather samples taken from nestlings in multiple polluted areas and at control sites. In both species, heavy metal concentrations - especially of arsenic - were increased in feathers collected at smelter sites. The P. major population living near a smelter showed significantly higher nucleotide diversity than a control population in an unpolluted site, suggesting increased mutation rates in a polluted environment. On the contrary, F. hypoleuca showed reduced nucleotide diversity at both smelter sites but increased nucleotide diversity near the source of radioactivity. Our results show that heavy metal pollution and low level nuclear radiation affect the nucleotide diversity in two free-living insectivorous passerines. We suggest that the different response in these two species may be due to their different ability to handle toxic compounds in the body.  相似文献   

20.
Timing of maturation is an important life‐history trait that is likely to be subjected to strong natural selection. Although population differences in timing of maturation have been frequently reported in studies of wild animal populations, little is known about the genetic basis of this differentiation. Here, we investigated population and sex differences in timing of maturation within and between two nine‐spined stickleback (Pungitius pungitius) populations in a laboratory breeding experiment. We found that fish from the high‐predation marine population matured earlier than fish from the low‐predation pond population and males matured earlier than females. Timing of maturation in both reciprocal hybrid crosses between the two populations was similar to that in the marine population, suggesting that early timing of maturation is a dominant trait, whereas delayed timing of maturation in the pond is a recessive trait. Thus, the observed population divergence is suggestive of strong natural selection against early maturation in the piscine‐predator‐free pond population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号