首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
CdnL, a 164-residue protein essential for Myxococcus xanthus viability, is a member of a large family of bacterial proteins of unknown structure and function. Here, we report the 1H, 13C and 15N backbone and side chain assignments for the stable C-terminal domain of CdnL identified by limited proteolysis.  相似文献   

2.
3.
Staphylococcus aureus is an opportunistic pathogen that causes skin and severe infections in mammals. Critical to S. aureus growth is its ability to scavenge iron from host cells. To this effect, S. aureus has evolved a sophisticated pathway to acquire heme from hemoglobin (Hb) as a preferred iron source. The pathway is comprised of nine iron-regulated surface determinant (Isd) proteins involved in heme capture, transport, and degradation. A key protein of the heme acquisition pathway is the surface-anchored hemoglobin receptor protein IsdB, which is comprised of two NEAr transporter (NEAT) domains that act in concert to bind Hb and extract heme for subsequent transfer to downstream acquisition pathway proteins. Despite significant advances in the structural knowledge of other Isd proteins, the structural mechanisms and molecular basis of the IsdB-mediated heme acquisition process are not well understood. In order to provide more insights into the mode of function of IsdB, we have initiated NMR structural studies of the first NEAT domain of IsdB (IsdBN1). Herein, we report the near complete 1H, 13C and 15N resonance assignments of backbone and side chain atoms, and the secondary structural topology of the 148-residue IsdB NEAT 1 domain. The NMR results are consistent with the presence of eight β-strands and one α-helix characteristic of an immunoglobulin-like fold observed in other NEAT domain family proteins. This work provides a solid framework to obtain atomic-level insights toward understanding how IsdB mediates IsdB-Hb protein–protein interactions critical for heme capture and transfer.  相似文献   

4.
We recently showed that type II signal peptidase (SPaseII) encoded by lspA is the target of an antibiotic called TA (myxovirescin), which is made by Myxococcus xanthus. SPaseII cleaves the signal peptide during bacterial lipoprotein processing. Bacteria typically contain one lspA gene; however, strikingly, the M. xanthus DK1622 genome contains four (lspA1 to lspA4). Since two of these genes, lspA3 and lspA4, are located in the giant TA biosynthetic gene cluster, we hypothesized they may play a role in TA resistance. To investigate the functions of the four M. xanthus lspA (lspAMx) genes, we conducted sequence comparisons and found that they contained nearly all the conserved residues characteristic of SPaseII family members. Genetic studies found that an Escherichia coli ΔlspA mutation could be complemented by any of the lspAMx genes in an lpp mutant background, but not in an E. coli lpp+ background. Because Lpp is the most abundant E. coli lipoprotein, these results suggest the M. xanthus proteins do not function as efficiently as the host enzyme. In E. coli, overexpression of each of the LspAMx proteins conferred TA and globomycin resistance, although LspA3 conferred the highest degree of resistance. In M. xanthus, each lspAMx gene could be deleted and was therefore dispensable for growth. However, lspA3 or lspA4 deletion mutants each exhibited a tan phase variation bias, which likely accounts for their reduced-swarming and delayed-development phenotypes. In summary, we propose that all four LspAMx proteins function as SPaseIIs and that LspA3 and LspA4 might also have roles in TA resistance and regulation, respectively.  相似文献   

5.
A common obstacle to NMR studies of proteins is sample preparation. In many cases, proteins targeted for NMR studies are poorly expressed and/or expressed in insoluble forms. Here, we describe a novel approach to overcome these problems. In the protein S tag-intein (PSTI) technology, two tandem 92-residue N-terminal domains of protein S (PrS2) from Myxococcus xanthus is fused at the N-terminal end of a protein to enhance its expression and solubility. Using intein technology, the isotope-labeled PrS2-tag is replaced with non-isotope labeled PrS2-tag, silencing the NMR signals from PrS2-tag in isotope-filtered 1H-detected NMR experiments. This method was applied to the E. coli ribosome binding factor A (RbfA), which aggregates and precipitates in the absence of a solubilization tag unless the C-terminal 25-residue segment is deleted (RbfAΔ25). Using the PrS2-tag, full-length well-behaved RbfA samples could be successfully prepared for NMR studies. PrS2 (non-labeled)-tagged RbfA (isotope-labeled) was produced with the use of the intein approach. The well-resolved TROSY-HSQC spectrum of full-length PrS2-tagged RbfA superimposes with the TROSY-HSQC spectrum of RbfAΔ25, indicating that PrS2-tag does not affect the structure of the protein to which it is fused. Using a smaller PrS-tag, consisting of a single N-terminal domain of protein S, triple resonance experiments were performed, and most of the backbone 1H, 15N and 13C resonance assignments for full-length E. coli RbfA were determined. Analysis of these chemical shift data with the Chemical Shift Index and heteronuclear 1H–15N NOE measurements reveal the dynamic nature of the C-terminal segment of the full-length RbfA protein, which could not be inferred using the truncated RbfAΔ25 construct. CS-Rosetta calculations also demonstrate that the core structure of full-length RbfA is similar to that of the RbfAΔ25 construct.  相似文献   

6.
Protein tyrosine kinases in bacteria are structurally and functionally distinct from their eukaryotic counterparts. The largest family of bacterial tyrosine kinases, the BY-kinase family, is highly conserved in Gram-negative and Gram-positive species, and plays a central role in biofilm and capsule formation. In Escherichia coli the BY-kinase, Wzc, is a critical component of the machinery responsible for the synthesis and export of the exo-polysaccharide colanic acid, a key constituent of biofilms. Here we present the main-chain 1HN, 15N, 13C′ and 13Cα, side-chain 13Cβ resonance assignments for a construct that encodes the entire 274-residue cytosolic catalytic domain of Wzc.  相似文献   

7.
We report almost complete sequence specific 1H, 13C and 15N NMR assignments of a 150-residue long calmodulin-like calcium-binding protein from Entamoeba histolytica (EhCaBP6), as a prelude to its structural and functional characterization.  相似文献   

8.
The CarS antirepressor activates a photo-inducible promoter in Myxococcus xanthus by physically interacting with the CarA repressor and eliminating the latter’s binding to operator DNA. Interestingly, interactions with both CarS and operator are crucially dependent on the DNA recognition helix of the CarA winged-helix DNA-binding domain. The CarA–CarS and the CarA-operator interfaces therefore overlap, and CarS may have structural features that mimic operator DNA. CarS has no known sequence homologues and its Gly and Pro contents are unusually high. Here, we report 1H, 13C and 15N backbone and side chain assignments of CarS1, an 86-residue truncated yet fully functional variant of CarS. Secondary structural elements inferred from these data differ from those predicted from sequence.  相似文献   

9.
For several of the proteins in the BioMagResBank larger than 200 residues, 60 % or fewer of the backbone resonances were assigned. But how reliable are those assignments? In contrast to complete assignments, where it is possible to check whether every triple-resonance Generalized Spin System (GSS) is assigned once and only once, with incomplete data one should compare all possible assignments and pick the best one. But that is not feasible: For example, for 200 residues and an incomplete set of 100 GSS, there are 1.6 × 10260 possible assignments. In “EZ-ASSIGN”, the protein sequence is divided in smaller unique fragments. Combined with intelligent search approaches, an exhaustive comparison of all possible assignments is now feasible using a laptop computer. The program was tested with experimental data of a 388-residue domain of the Hsp70 chaperone protein DnaK and for a 351-residue domain of a type III secretion ATPase. EZ-ASSIGN reproduced the hand assignments. It did slightly better than the computer program PINE (Bahrami et al. in PLoS Comput Biol 5(3):e1000307, 2009) and significantly outperformed SAGA (Crippen et al. in J Biomol NMR 46:281–298, 2010), AUTOASSIGN (Zimmerman et al. in J Mol Biol 269:592–610, 1997), and IBIS (Hyberts and Wagner in J Biomol NMR 26:335–344, 2003). Next, EZ-ASSIGN was used to investigate how well NMR data of decreasing completeness can be assigned. We found that the program could confidently assign fragments in very incomplete data. Here, EZ-ASSIGN dramatically outperformed all the other assignment programs tested.  相似文献   

10.
The nuclear transport factor 2 (NTF2) like superfamily includes members of the NTF2 family, delta-5-3-ketosteroid isomerases, and the beta subunit of ring hydroxygenases. This family plays important roles in both eukaryotic and prokaryotic cells, and is taken as a classic example of divergent evolution because proteins in this family exhibit diverse biological functions, although share common structural features. We cloned the gene RHE_RS02845 encoding a predicted NTF2-like domain-containing protein in Rhizobium etli, and prepared U-13C/15N-labeled protein samples for its three-dimensional NMR structural determination. Here, chemical shift assignments for both backbone and side-chain atoms are reported, which is prerequisite for further structural calculation and functional research using NMR spectroscopy.  相似文献   

11.
Human interferon-stimulated gene 15 protein (ISG15), also called ubiquitin cross-reactive protein (UCRP), is the first identified ubiquitin-like protein containing two ubiquitin-like domains fused in tandem. The active form of ISG15 is conjugated to target proteins via the C-terminal glycine residue through an isopeptide bond in a manner similar to ubiquitin. The biological role of ISG15 is strongly associated with the modulation of cell immune function, and there is mounting evidence suggesting that many viral pathogens evade the host innate immune response by interfering with ISG15 conjugation to both host and viral proteins in a variety of ways. Here we report nearly complete backbone 1HN, 15N, 13C′, and 13Cα, as well as side chain 13Cβ, methyl (Ile-δ1, Leu, Val), amide (Asn, Gln), and indole N–H (Trp) NMR resonance assignments for the 157-residue human ISG15 protein. These resonance assignments provide the basis for future structural and functional solution NMR studies of the biologically important human ISG15 protein.  相似文献   

12.
We describe an efficient NMR triple resonance approach for fast assignment of backbone amide resonance peaks in the 15N-HSQC spectrum. The exceptionally high resolutions achieved in the 3D HncocaNH and hNcocaNH experiments together with non-uniform sampling facilitate error-free sequential connection of backbone amides. Data required for the complete backbone amide assignment of the 56-residue protein GB1 domain were obtained in 14 h. Data analysis was vastly streamlined using a ‘backbone NH walk’ method to determine sequential connectivities without the need for 13C chemical shifts comparison. Amino acid residues in the sequentially connected NH chains are classified into two groups by a simple variation of the NMR pulse sequence, and the resulting ‘ZeBra’ stripe patterns are useful for mapping these chains to the protein sequence. In addition to resolving ambiguous assignments derived from conventional backbone experiments, this approach can be employed to rapidly assign small proteins or flexible regions in larger proteins, and to transfer assignments to mutant proteins or proteins in different ligand-binding states.  相似文献   

13.
Burkholderia pseudomallei is a NIAID Category B microorganism responsible for melioidosis. Here we report backbone and side chain NMR assignments for the 139-residue, homodimeric, organic hydroperoxide resistance protein (Ohr) from this organism.  相似文献   

14.
We report almost complete sequence specific 1H, 13C and 15N NMR assignments of a 151-residue long calmodulin-like calcium-binding protein from Entamoeba histolytica (EhCaM).  相似文献   

15.
Human C7 is one of four homologous complement proteins that self-assemble on the nascent activation-specific fragment, C5b, thus forming the cytolytic membrane attack complex (MAC). In addition to the conserved modular core of the MAC/perforin protein family, C7 has four C-terminal domains comprising a pair of complement control protein modules (CCPs) preceding two Factor-I like modules (FIMs). It is proposed that the C7-CCPs might serve as a molecular arm for delivery of C7-FIMs to their binding site on C5b. Here we present the NMR chemical shift assignments for the C7-CCPs produced as a 14-kDa recombinant protein. Based upon triple-resonance experiments, 98 and 94 % of the backbone and side-chain (1H, 13C and 15N) assignments, respectively, have been completed. The chemical shifts and assignments have been deposited in the BioMagResBank database under accession number 18530.  相似文献   

16.
The hemoglobin from the cyanobacterium Synechococcus sp. PCC 7002 is a monomeric 123-residue Group I 2/2 hemoglobin. Here, we report 1H, 15N, and 13C assignments for the ferric (low-spin, S = ½) protein with a b heme cofactor and after post-translational modification leading to a c-like heme.  相似文献   

17.
18.
Human Tubulin Binding Cofactor C (hTBCC) is a 346 amino acid protein composed of two domains, which is involved in the folding pathway of newly synthesized α and β-tubulins. The 3D structure of the 111-residue hTBCC N-terminal domain of the protein has not yet been determined. As a previous step to that end, here we report the NMR 1H, 15N, and 13C chemical shift assignments at pH 6.0 and 25°C, based on a uniformly doubly labelled 13C/15N sample of the domain.  相似文献   

19.
Hsc70 is the constitutively expressed mammalian heat shock 70 kDa (Hsp70) cytosolic chaperone. It plays a central role in cellular proteostasis and protein trafficking. Here, we present the backbone and methyl group assignments for the 386-residue nucleotide binding domain of the human protein. This domain controls the chaperone’s allostery, binds multiple co-chaperones and is the target of several classes of known chemical Hsp70 inhibitors. The NMR assignments are based on common triple resonance experiments with triple labeled protein, and on several 15N and 13C-resolved 3D NOE experiments with methyl-reprotonated samples. A combination of computer and manual data interpretation was used.  相似文献   

20.
High-resolution structural determination and dynamic characterization of membrane proteins by nuclear magnetic resonance (NMR) require their isotopic labeling. Although a number of labeled eukaryotic membrane proteins have been successfully expressed in bacteria, they lack post-translational modifications and usually need to be refolded from inclusion bodies. This shortcoming of bacterial expression systems is particularly detrimental for the functional expression of G protein-coupled receptors (GPCRs), the largest family of drug targets, due to their inherent instability. In this work, we show that proteins expressed by a eukaryotic organism can be isotopically labeled and produced with a quality and quantity suitable for NMR characterization. Using our previously described expression system in Caenorhabditis elegans, we showed the feasibility of labeling proteins produced by these worms with 15N,13C by providing them with isotopically labeled bacteria. 2H labeling also was achieved by growing C. elegans in the presence of 70% heavy water. Bovine rhodopsin, simultaneously expressed in muscular and neuronal worm tissues, was employed as the “test” GPCR to demonstrate the viability of this approach. Although the worms’ cell cycle was slightly affected by the presence of heavy isotopes, the final protein yield and quality was appropriate for NMR structural characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号