首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parkinson’s disease (PD) is a chronic, progressive neurodegenerative disease, where dopaminergic cells die most prominently in the area of substantia nigra. Neurotrophic factors (NTFs) are secreted proteins, which upon binding to their target receptors trigger survival pathways to prevent neuronal loss. Recently discovered NTFs mesencephalic astrocyte-derived neurotrophic factor (MANF) and conserved dopamine neurotrophic factor (CDNF) most efficiently protect and repair the dopaminergic neurons in the animal 6-OHDA models of PD. However, the neuroprotective mechanism of MANF/CDNF is currently elusive. To this end, we have employed high-resolution NMR spectroscopy to determine three-dimensional structure of full-length human MANF in solution and characterized C-terminal domain as structural unit of MANF protein.  相似文献   

2.
Cerebral dopamine neurotrophic factor (CDNF) is a promising therapeutic agent for Parkinson disease. As such, there has been great interest in studying its mode of action, which remains unknown. The three-dimensional crystal structure of the N terminus (residues 9–107) of CDNF has been determined, but there have been no published structural studies on the full-length protein due to proteolysis of its C-terminal domain, which is considered intrinsically disordered. An improved purification protocol enabled us to obtain active full-length CDNF and to determine its three-dimensional structure in solution. CDNF contains two well folded domains (residues 10–100 and 111–157) that are linked by a loop of intermediate flexibility. We identified two surface patches on the N-terminal domain that were characterized by increased conformational dynamics that should allow them to embrace active sites. One of these patches is formed by residues Ser-33, Leu-34, Ala-66, Lys-68, Ile-69, Leu-70, Ser-71, and Glu-72. The other includes a flexibly disordered N-terminal tail (residues 1–9), followed by the N-terminal portion of α-helix 1 (residues Cys-11, Glu-12, Val-13, Lys-15, and Glu-16) and residue Glu-88. The surface of the C-terminal domain contains two conserved active sites, which have previously been identified in mesencephalic astrocyte-derived neurotrophic factor, a CDNF paralog, which corresponds to its intracellular mode of action. We also showed that CDNF was able to protect dopaminergic neurons against injury caused by α-synuclein oligomers. This advises its use against physiological damages caused by α-synuclein oligomers, as observed in Parkinson disease and several other neurodegenerative diseases.  相似文献   

3.
4.
Growth/differentiation factor 5 (GDF5) is a neurotrophic factor that promotes the survival of midbrain dopaminergic neurons in vitro and in vivo and as such is potentially useful in the treatment of Parkinson's disease (PD). This study shows that a continuous supply of GDF5, produced by transplanted GDF5-overexpressing CHO cells in vivo, has neuroprotective and neurorestorative effects on midbrain dopaminergic neurons following 6-hydroxydopamine (6-OHDA)-induced lesions of the adult rat nigrostriatal pathway. It also increases the survival and improves the function of transplanted embryonic dopaminergic neurons in the 6-OHDA-lesioned rat model of PD. This study provides the first proof-of-principle that sustained delivery of GDF5 in vivo may be useful in the treatment of PD.  相似文献   

5.
Cerebral dopamine neurotrophic factor (CDNF) is a novel evolutionary conserved protein which can protect and restore the function of dopaminergic neurons in the rat model of Parkinson's disease, suggesting that CDNF might be beneficial for the treatment of Parkinson's disease. CDNF is widely expressed in neurons in several brain regions including cerebral cortex, hippocampus, substantia nigra, striatum and cerebellum. Human CDNF is glycosylated and secreted from transiently transfected cells; however, the mechanism underlying CDNF secretion is currently unclear. In this study, we found that CDNF could be secreted primarily via the regulated secretion pathway in PC12 cells. The glycosylation of CDNF is not required for its secretion. Moreover, we identified two key subdomains in CDNF which are important for its intracellular localization and secretion. Disrupting helix-1 of CDNF significantly reduces its constitutive and regulated secretion and the helix-1 mutant is retained in the endoplasmic reticulum. Although helix-7 mutation only decreases CDNF regulated secretion and has no effect on its constitutive secretion, which is further supported by the reduction in co-localization of helix-7 mutant with secretory granules. In all, these findings will advance our understanding of the molecular mechanism of CDNF trafficking and secretion.  相似文献   

6.
Epidermal growth factor (EGF) is a member of a structurally related family containing heparin-binding EGF-like growth factor (HB-EGF) and transforming growth factor alpha (TGFalpha) that exerts neurotrophic activity on midbrain dopaminergic neurons. To examine neurotrophic abnormality in Parkinson's disease (PD), we measured the protein content of EGF, TGFalpha, and HB-EGF in post-mortem brains of patients with Parkinson's disease and age-matched control subjects. Protein levels of EGF and tyrosine hydroxylase were decreased in the prefrontal cortex and the striatum of patients. In contrast, HB-EGF and TGFalpha levels were not significantly altered in either region. The expression of EGF receptors (ErbB1 and ErbB2, but not ErbB3 or ErbB4) was down-regulated significantly in the same forebrain regions. The same phenomenon was mimicked in rats by dopaminergic lesions induced by nigral 6-hydroxydopamine infusion. EGF and ErbB1 levels in the striatum of the PD model were markedly reduced on the lesioned side, compared with the control hemisphere. Subchronic supplement of EGF in the striatum of the PD model locally prevented the dopaminergic neurodegeration as measured by tyrosine hydroxylase immunoreactivity. These findings suggest that the neurotrophic activity of EGF is maintained by afferent signals of midbrain dopaminergic neurons and is impaired in patients with Parkinson's disease.  相似文献   

7.
8.
The adult midbrain contains 75 % of all dopaminergic neurons in the CNS. Within the midbrain, these neurons are divided into three anatomically and functionally distinct clusters termed A8, A9 and A10. The A9 group plays a functionally non-redundant role in the control of voluntary movement, which is highlighted by the motor syndrome that results from their progressive degeneration in the neurodegenerative disorder, Parkinson’s disease. Despite 50 years of investigation, treatment for Parkinson’s disease remains symptomatic, but an intensive research effort has proposed delivering neurotrophic factors to the brain to protect the remaining dopaminergic neurons, or using these neurotrophic factors to differentiate dopaminergic neurons from stem cell sources for cell transplantation. Most neurotrophic factors studied in this context have been members of the transforming growth factor β (TGFβ) superfamily. In recent years, an intensive research effort has focused on understanding the function of these proteins in midbrain dopaminergic neuron development and their role in the molecular architecture that regulates the development of this brain region, with the goal of applying this knowledge to develop novel therapies for Parkinson’s disease. In this review, the current evidence showing that TGFβ superfamily members play critical roles in the regulation of midbrain dopaminergic neuron induction, differentiation, target innervation and survival during embryonic and postnatal development is analysed, and the implications of these findings are discussed.  相似文献   

9.
10.
Neuregulin-1 (Nrg1) is genetically linked to schizophrenia, a disease caused by neurodevelopmental imbalance in dopaminergic function. The Nrg1 receptor ErbB4 is abundantly expressed on midbrain dopaminergic neurons. Nrg1 has been shown to penetrate blood-brain barrier, and peripherally administered Nrg1 activates ErbB4 and leads to a persistent hyperdopaminergic state in neonatal mice. These data prompted us to study the effect of peripheral administration of Nrg1 in the context of Parkinson's disease, a neurodegenerative disorder affecting the dopaminergic system in the adult brain. We observed that systemic injections of the extracellular domain of Nrg1β(1) (Nrg1β(1)-ECD) increased dopamine levels in the substantia nigra and striatum of adult mice. Nrg1β(1)-ECD injections also significantly protected the mouse nigrostriatal dopaminergic system morphologically and functionally against 6-hydroxydopamine-induced toxicity in vivo. Moreover, Nrg1β(1)-ECD also protected human dopaminergic neurons in vitro against 6-hydroxydopamine. In conclusion, we have identified Nrg1β(1)-ECD as a neurotrophic factor for adult mouse and human midbrain dopaminergic neurons with peripheral administratability, warranting further investigation as therapeutic option for Parkinson's disease patients.  相似文献   

11.
Cerebral dopamine neurotrophic factor (CDNF) belongs to a newly discovered family of evolutionarily conserved neurotrophic factors. We demonstrate for the first time a therapeutic effect of CDNF in a unilateral 6-hydroxydopamine (6-OHDA) lesion model of Parkinson’s disease in marmoset monkeys. Furthermore, we tested the impact of high chronic doses of human recombinant CDNF on unlesioned monkeys and analyzed the amino acid sequence of marmoset CDNF. The severity of 6-OHDA lesions and treatment effects were monitored in vivo using 123I-FP-CIT (DaTSCAN) SPECT. Quantitative analysis of 123I-FP-CIT SPECT showed a significant increase of dopamine transporter binding activity in lesioned animals treated with CDNF. Glial cell line-derived neurotrophic factor (GDNF), a well-characterized and potent neurotrophic factor for dopamine neurons, served as a control in a parallel comparison with CDNF. By contrast with CDNF, only single animals responded to the treatment with GDNF, but no statistical difference was observed in the GDNF group. However, increased numbers of tyrosine hydroxylase immunoreactive neurons, observed within the lesioned caudate nucleus of GDNF-treated animals, indicate a strong bioactive potential of GDNF.  相似文献   

12.
Support of ageing neurons by endogenous neurotrophic factors such as glial cell line–derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) may determine whether the neurons resist or succumb to neurodegeneration. GDNF has been tested in clinical trials for the treatment of Parkinson disease (PD), a common neurodegenerative disorder characterized by the loss of midbrain dopaminergic (DA) neurons. BDNF modulates nigrostriatal functions and rescues DA neurons in PD animal models. The physiological roles of GDNF and BDNF signaling in the adult nigrostriatal DA system are unknown. We generated mice with regionally selective ablations of the genes encoding the receptors for GDNF (Ret) and BDNF (TrkB). We find that Ret, but not TrkB, ablation causes progressive and adult-onset loss of DA neurons specifically in the substantia nigra pars compacta, degeneration of DA nerve terminals in striatum, and pronounced glial activation. These findings establish Ret as a critical regulator of long-term maintenance of the nigrostriatal DA system and suggest conditional Ret mutants as useful tools for gaining insights into the molecular mechanisms involved in the development of PD.  相似文献   

13.
Ghrelin plays a neuroprotective role in the process of dopaminergic (DAergic) neurons degeneration in Parkinson's disease (PD). However, it still largely unknown whether ghrelin could affect the midbrain neural stem cells (mbNSCs) from which DAergic neurons are originated. In the present study, we observed that ghrelin enhanced mbNSCs proliferation, and promoted neuronal differentiation especially DAergic neuron differentiation both in vitro and ex vivo. The messenger RNA levels of Wnt1, Wnt3a, and glial cell line-derived neurotrophic factor were increased in response to the ghrelin treatment. Results showed that Wnt/β-catenin pathway was relevant to this DAergic neuron differentiation induced by ghrelin. Our finding gave a new evidence that ghrelin may enable clinical therapies for PD by its neurogenesis role.  相似文献   

14.
研究神经营养因子Neurturin(NTN)在由于神经元损伤而造成的神经退行性疾病中对神经元的保护和修复作用。利用重组腺病毒载体将NTN基因转入恒河猴骨髓间充质干细胞(rMSC),通过RT-PCR、IF及Western blot方法检测NTN的转录和表达,并采用鸡胚背根神经节体外培养实验和胚胎大鼠中脑多巴胺能神经元存活实验对NTN进行体外活性检测。结果表明NTN在rMSC中稳定表达和分泌,并具有体外生物学活性,为由于神经元损伤造成的神经退行性疾病的干细胞移植治疗奠定了一定的基础。  相似文献   

15.
Yang J  Wang X  Wang Y  Guo ZX  Luo DZ  Jia J  Wang XM 《Neurochemical research》2012,37(9):1982-1992
Muscle-derived stem cells reside in the skeletal muscle tissues and are known for their multipotency to differentiate toward the mesodermal lineage. Recent studies have demonstrated their capacity of neuroectodermal differentiation, including neurons and astrocytes. In this study, we investigated the possibility of dopaminergic neuronal conversion from adult rat skeletal muscle-derived stem cells. Using a neurosphere protocol, muscle-derived stem cells form neurosphere-like cell clusters after cultivation as a suspension, displaying an obvious expression of nestin and a remarkable down-regulation of myogenic associated factors desmin, MyoD, Myf5 and myogenin. Subsequently, these neurosphere-like cell clusters were further directed to dopaminergic differentiation through two major induction steps, patterning to midbrain progenitors with sonic hedgehog and fibroblast growth factor 8, followed by the differentiation to dopaminergic neurons with neurotrophic factors (glial cell line-derived neurotrophic factor) and chemicals (ascorbic acid, forskolin). After the differentiation, these cells expressed tyrosine hydroxylase, dopamine transporter, dopamine D1 receptor and synapse-associated protein synapsin I. Several genes, Nurr1, Lmx1b, and En1, which are critically related with the development of dopaminergic neurons, were also significantly up-regulated. The present results indicate that adult skeletal muscle-derived stem cells could provide a promising cell source for autologous transplantation for neurodegenerative diseases in the future, especially the Parkinson's disease.  相似文献   

16.
Abstract A small organic molecule (CUR-162590) that selectively enhances survival of midbrain dopaminergic neurons was identified by screening small molecule compound libraries. In embryonic midbrain cultures, CUR-162590 increased dopamine uptake and the number of dopaminergic neurons without altering the number of total neurons or astroglia or the uptake of GABA or serotonin. CUR-162590 reduced apoptosis of cultured dopaminergic neurons and protected against death induced by toxins such as MPP(+). Several synthetic analogs of CUR-162590 also had similar bioactivities. CUR-162590 thus represents a new class of neurotrophic small molecules that may have utility in the treatment of Parkinson's disease, which is marked by degeneration of midbrain dopaminergic neurons.  相似文献   

17.
Glial cell line-derived neurotrophic factor (GDNF) was originally recognized for its ability to promote survival of midbrain dopaminergic neurons, but it has since been demonstrated to be crucial for the survival and differentiation of many neuronal subpopulations, including motor neurons, sympathetic neurons, sensory neurons and enteric neurons. To identify possible effectors or regulators of GDNF signaling, we performed a yeast two-hybrid screen using the intracellular domain of RET, the common signaling receptor of the GDNF family, as bait. Using this approach, we identified Rap1GAP, a GTPase-activating protein (GAP) for Rap1, as a novel RET-binding protein. Endogenous Rap1GAP co-immunoprecipitated with RET in neural tissues, and RET and Rap1GAP were co-expressed in dopaminergic neurons of the mesencephalon. In addition, overexpression of Rap1GAP attenuated GDNF-induced neurite outgrowth, whereas suppressing the expression of endogenous Rap1GAP by RNAi enhanced neurite outgrowth. Furthermore, using co-immunoprecipitation analyses, we found that the interaction between RET and Rap1GAP was enhanced following GDNF treatment. Mutagenesis analysis revealed that Tyr981 in the intracellular domain of RET was crucial for the interaction with Rap1GAP. Moreover, we found that Rap1GAP negatively regulated GNDF-induced ERK activation and neurite outgrowth. Taken together, our results suggest the involvement of a novel interaction of RET with Rap1GAP in the regulation of GDNF-mediated neurite outgrowth.  相似文献   

18.
中脑星形胶质细胞源性神经营养因子(mesencephalic astrocyte-derived neurotrophic factor, MANF)是一种新型保守的神经营养因子,其结构和作用形式与传统的神经营养因子存在差异。MANF具有独特的三维结构,包含N端saposin样结构域和C端SAP(SAF-A/B, Acinus and PIAS, SAP)结构域,决定其特殊的作用形式。表达MANF的组织在哺乳动物体内分布广泛。在细胞内,MANF主要位于内质网腔,对于维持内质网稳态具有重要意义。在细胞外,MANF作为一种分泌蛋白质,不仅具有保护和促进多巴胺能神经元修复的功能,对包括胰岛β细胞、心肌细胞、视网膜神经节细胞等其他细胞类型也具有保护作用。此外,MANF还可通过调节炎症相关通路抑制炎症反应。研究显示,MANF在多种疾病中呈现出潜在的临床价值。本文将对MANF的结构、生理功能及其研究进展进行综述。  相似文献   

19.
Cerebral dopamine neurotrophic factor (CDNF) is a paralogous protein of mesencephalic astrocyte-derived neurotrophic factor (MANF). Both proteins have been reported to show a common cytoprotective effect on dopaminergic neurons as a secretory protein containing the KDEL-like motif of the ER retrieval signal at the C-terminus, RTDL in MANF and [Q/K]TEL in CDNF among many species, although functions of paralogous proteins tend to differ from each other. In this study, we focused on post-translational regulations of their retention in the endoplasmic reticulum (ER) and secretion and performed comparative experiments on characterization of mouse MANF and mouse CDNF according to our previous report about biosynthesis and secretion of mouse MANF using a NanoLuc system. In this study, co-expression of glucose-regulated protein 78 kDa (GRP78), KDEL receptor 1 or mutant Sar1 into HEK293 cells similarly decreased MANF and CDNF secretion with some degree of variation. Next, we investigated whether CDNF affects the secretion of mouse cysteine-rich with EGF-like domains 2 (CRELD2) because mouse wild-type (wt) MANF but not its KDEL-like motif deleted mutant (ΔCMANF) was found to promote the CRELD2 release from the transfected cells. Co-expressing CRELD2 with wt or ΔC CDNF, we found that CDNF and ΔCMANF hardly elevated the CRELD2 secretion. We then investigated effects of the four or six C-terminal amino acids of MANF and CDNF on the CRELD2 secretion. As a result, co-transfection of mouse CDNF having the mouse MANF-type C-terminal amino acids (CDNFRTDL and CDNFSARTDL) increased the CRELD2 secretion to a small extent, but mouse CDNF having human CDNF-type ones (CDNFKTEL and CDNFHPKTEL) well increased the CRELD2 secretion. On the other hand, the replacement of C-terminal motifs of mouse MANF with those of mouse CDNF (MANFQTEL and MANFYPQTEL) enhanced the CRELD2 secretion, and the mouse MANF having human CDNF-type ones (MANFKTEL and MANFHPKTEL) dramatically potentiated the CRELD2 secretion. These results indicate that the secretion of mouse MANF and mouse CDNF is fundamentally regulated in the same manner and that the variation of four C-terminal amino acids in the MANF and CDNF among species might influence their intracellular functions. This finding could be a hint to identify physiological functions of MANF and CDNF.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号