首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This survey reports primary results of classical allele frequencies on ten protein loci in a Basque population sample from northern Navarre, the less known from an anthropological and genetic point of view than the populations of the other Basque territories of Spain. Since ancient times this has been a zone of Basque population settlement, and the Basque language (Euskera) still remains deeply rooted among its autochthonous population. A total of 122 blood samples from unrelated northern Navarrese with autochthonous ascendants to the third generation were typed for GC, HP, PI, TF, ACP1, AK1, CA2, ESD, PGD and PGM1 genetic systems. Basque surnames and birthplaces were the criteria used to define family origins. Genetic structure was analyzed on different population hierarchical levels. Northern Navarre seems to be the most genetically deviated area in comparison with other Basque groups. The highest level of differentiation is observed between Navarrese and Alava Basques whereas Guipúzcoa province, the territory adjacent to northern Navarre, presents the lowest genetic distance from the study area. Northern Navarrese show some distinguishing genetic characteristics in relation to other Basque relative samples, which include high frequencies for PI*M1 and TF*C1 and low levels of PGD*C and PGM1*2 alleles. When the genetic data reported here are analyzed jointly with GM allotypes frequencies, the results significantly reinforce the relative position of Navarrese Basques as well as the topology of the Basque cluster on genetic maps. The analysis of relationships among the genetic structures of Basque population samples leads us to ask ourselves which of them fits in best with the ancient Basque population. Classical geographers placed the tribe of the Vascones in the geographical region currently known as Navarre, so extant Navarrese Basques might be considered firm candidates to denote the anthropological and genomic distinctiveness of the ancient Basques.  相似文献   

2.
Immunoglobulin allotypes of the GM and KM systems were determined in a sample of Micronesian subjects from Nauru. Four GM haplotypes were identified in the sample: GM*1,3 23 5, 10,11,13,14, GM*1,17 23' 21, GM*1,3 23' 5,10,11,13,14, and GM*1,2,17 23' 21, although the last of these may have been introduced by non-Micronesian admixture. The frequency of the KM*1 allele is 0.115 +/- 0.033, which is slightly lower than reported in Micronesians from the Caroline Islands. RFLPs generated by the enzymes Taq I and Pvu II and detected by a Hu gamma 4 probe were related to GM phenotypes. The haplotypes GM*1,3 +/- 23 5,10,11,13,14 were strongly associated with a Taq I 5.0-kb band. The presence and absence of the allotype G2M 23 were marked by a Pvu II 7.0 + 2.0 kb pair and a Pvu II 9.0-kb fragment, respectively. GM*1,17 23' 21 was strongly associated with a Pvu II 5.0 + 2.7 kb pair. The different relationships between GM haplotypes and Hu gamma 4 RFLPs in Micronesians and Caucasians indicate that a universal GM allogenotyping procedure cannot yet be developed; instead, population-specific procedures are necessitated by differences in GM allotype arrangements between populations.  相似文献   

3.
OBJECTIVES: To determine for the first time using PCR the distribution of Rhesus (Rh) blood group in French Basques and compare these results with those obtained by serology in the same sample and in the historical series from various Basque subgroups. METHODS: Rh polymorphism was determined in a sample of 127 autochthonous French Basques using allele-specific primers (ASP) PCR and traditional serological technique. Statistical comparisons were performed between both techniques and with the data published from various Basque subpopulations. RESULTS: No intra-sample discrepancies were detected between ASP-PCR and serology. A high frequency of RH Ddel exceeding 0.50, as typically described from several decades, was found here (0.511), as the peculiar frequency of cde (0.456) and cDE (0.073) haplotypes. This profile, obtained by molecular analysis, was within the range of previous historical studies in various Basque subpopulations using serological approach. The Rh polymorphism among the reviewed autochthonous Basque samples indicates a heterogeneous pattern of distribution, with individuals from the Alava province demonstrating the most atypical profile. CONCLUSIONS: Molecular biology approach using PCR confirms the peculiar pattern of Rh polymorphism which was previously defined by serology among Basques. Nevertheless, this distribution profile is not homogeneous within the Basque area.  相似文献   

4.
This study examines the genetic variation in Basque Y chromosome lineages using data on 12 Y-short tandem repeat (STR) loci in a sample of 158 males from four Basque provinces of Spain (Alava, Vizcaya, Guipuzcoa, and Navarre). As reported in previous studies, the Basques are characterized by high frequencies of haplogroup R1b (83%). AMOVA analysis demonstrates genetic homogeneity, with a small but significant amount of genetic structure between provinces (Y-short tandem repeat loci STRs: 1.71%, p = 0.0369). Gene and haplotype diversity levels in the Basque population are on the low end of the European distribution (gene diversity: 0.4268; haplotype diversity: 0.9421). Post-Neolithic contribution to the paternal Basque gene pool was estimated by measuring the proportion of those haplogroups with a Time to Most Recent Common Ancestor (TMRCA) previously dated either prior (R1b, I2a2) or subsequent to (E1b1b, G2a, J2a) the Neolithic. Based on these estimates, the Basque provinces show varying degrees of post-Neolithic contribution in the paternal lineages (10.9% in the combined sample).  相似文献   

5.
《Comptes rendus biologies》2014,337(11):646-656
Andalusia is the most densely populated region of Spain since ancient times, and has a rich history of contacts across the Mediterranean. Earlier studies have underlined the relatively high frequency of the Sub-Saharan GM 1,17 5* haplotype in western Andalusia (Huelva province, n = 252) and neighbouring Atlantic regions. Here, we provide novel data on GM/KM markers in eastern Andalusians (n = 195) from Granada province, where African GM*1,17 5* frequency is relatively high (0.044). The most frequent GM haplotypes in Andalusia parallel the most common in Europe. Altogether, these data allow us to gain insight into the genetic diversity of southern Iberia. Additionally, we assess population structure by comparing our Iberian samples with 41 Mediterranean populations. GM haplotype variation across the Mediterranean reflects intense and complex interactions between North Africans and South Europeans along human history, highlighting that African influence over the Iberian Peninsula does not follow an isotropic pattern.  相似文献   

6.
Two Y-chromosome DNA polymorphisms, the DYS19 microsatellite and the YAP (at locus DYS287), were tested in males from two autochthonous Basque populations from France and northern Navarre (Spain). The results are compared to those obtained for the same genetic markers in 32 populations from Europe, northern Africa, and western Asia. The high predominance of the DYS19*11 (190-base-pair) allele in Basques indicates that their genetic diversity for microsatellite DYS19 is around half that observed in Europeans, North Africans, and western Asians. The Y-Alu insertion (YAP+) was not detected in the Basque samples. This study attempts to throw some light on the importance of historically recent migratory movements, the main corridors of gene flow, and demographic sizes and their variations in shaping gene frequency patterns in contemporary human populations, particularly in the Mediterranean region. Historical processes may have had more significant effects on the genetic make-up of current human populations than those of prehistoric times.  相似文献   

7.
Fifty unrelated Basque males from southwest Idaho were typed for the 17 Y-STR loci in the Yfiler multiplex kit (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635, YGATA H4.1 and DYS385a/b). In total, 42 haplotypes were identified, with no more than two individuals sharing a single haplotype. The haplotype diversity (HD) was 0.9935, and gene diversity (D) over loci was 0.457 ± 0.137. The Idaho Basque population was compared to the source population from the Basque autonomous region of Northern Spain and Southern France, as well as a United States Caucasian population. The haplotype diversity for the immigrant Basque sample is within 0.4% of the haplotype diversity of the European Basques (0.9903); thus the power of discrimination is similar for each population. The Idaho Basque population has less diversity in 9 out of 16 loci (considering DYS385a/b together) and 3% less diversity across all loci, compared to the European Basque population. A multidimensional scaling analysis (MDS) was created using pairwise R(ST) values to compare the Idaho Basques to other populations. Based upon R(ST) and F(ST) measures, no significant differentiation was found between the Idaho and source European Basque population.  相似文献   

8.
Autochthonous Basques are thought to be a trace from the human population contraction that occurred during the Last Glacial Maximum, based mainly on the salient frequencies and coalescence ages registered for haplogroups V, H1, and H3 of mitochondrial DNA in current Basque populations. However, variability of the maternal lineages still remains relatively unexplored in an important fraction of the Iberian Basque community. In this study, mitochondrial DNA diversity in Navarre (North Spain) was addressed for the first time. To that end, HVS-I and HVS-II sequences from 110 individuals were examined to identify the most relevant lineages, including analysis of coding region SNPs for the refinement of haplogroup assignment. We found a prominent frequency of subhaplogroup J1c (11.8%) in Navarre, coinciding with previous studies on Basques. Subhaplogroup H2a5, a putative autochthonous Basque lineage, was also observed in Navarre, pointing to a common origin of current Basque geographical groups. In contrast to other Basque subpopulations, comparative analyses at Iberian and European scales revealed a relevant frequency of subhaplogroup H3 (10.9%) and a frequency peak for U5b (15.5%) in Navarre. Furthermore, we observed low frequencies for maternal lineages HV0 and H1 in Navarre relative to other northern Iberian populations. All these findings might be indicative of intense genetic drift episodes generated by population fragmentation in the area of the Franco-Cantabrian refuge until recent times, which could have promoted genetic microdifferentiation between the different Basque subpopulations.  相似文献   

9.
The genetic and linguistic peculiarity of the Basque population is well known. Analysis of the studies published to date on the Basque population reveals that these studies refer basically to the provinces of Vizcaya and Labourd, both in the Northern part of the Basque Country. Multidisciplinary information indicates that the landscape differences of the Basque Country could have conditioned differential population biodynamics in the Atlantic and Mediterranean parts of the Basque area. In order to evaluate this possibility, this study focuses on the genetic constitution of the Basque population of Alava (in the South of the Basque Country) through the analysis of several red-cell systems. The data obtained in this genetic study and those from archaeology, linguistics, ethnography, and skeletal biology suggest that within the “Basque population” there may be at least two distinct groups: an “Atlantic” group and a “Mediterranean” one, divided mainly by the watershed. This geographical feature could have led to a greater genetic isolation of the Northern slopes, with the South more open to population contact. This is reflected nowadays in the different cline distribution detected for most systems in the Alava Basques in comparison with other Basque and Iberian Peninsula series studied to date. © 1996 Wiley-Liss, Inc.  相似文献   

10.
We have characterized 68 unrelated Basque individuals from Vizcaya, Spain, for 13 tetrameric short tandem repeat (STR) loci: CSF1PO, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, FGA, TH01, TPOX, and VWA. Interpopulational analyses were also performed for 21 European and North African population data sets for nine of the STRs typed in the Basque sample. Heterozygosity values for the Vizcayan Basques were found to be high, ranging from 0.662 to 0.882, and none of the STR loci significantly deviated from Hardy-Weinberg equilibrium. Based on the comparative population data set, the average G(ST) score is 0.7%, indicating a low degree of genetic differentiation. However, neighbor-joining trees and multidimensional-scaling plots of D(A) genetic distances indicate that the Vizcayan Basques are an outlier relative to both neighboring Iberians and North African populations.  相似文献   

11.
African and Levantine origins of Pakistani YAP+ Y chromosomes.   总被引:2,自引:0,他引:2  
We surveyed 9 Pakistani subpopulations for variation on the nonrecombining portion of the Y chromosome. The polymorphic systems examined were the Y-chromosome Alu insertion polymorphism (YAP) at DYS287, 5 single nucleotide polymorphisms, and the tetranucleotide microsatellite DYS19. Y chromosomes carrying the YAP element (YAP+) were found in populations from southwestern Pakistan at frequencies ranging from 2% to 8%, whereas northeastern populations appeared to lack YAP+ chromosomes. In contrast to other South Asian populations, several Pakistani subpopulations had a high frequency of the DYS19*B allele, the most frequent allele in West Asian, North African, and European populations. The combination of alleles at all polymorphic sites gave rise to 9 YAP-DYS19 combination haplotypes in Pakistani populations, including YAP+ haplotypes 4-A, 4-B, 5-C, and 5-E. We hypothesize that the geographic distributions of YAP+ haplotypes 4 and 5 trace separate migratory routes to Pakistan: YAP+ haplotype 5 may have entered Pakistan from the Arabian Peninsula by means of migrations across the Gulf of Oman, whereas males possessing YAP+ haplotype 4 may have traveled over land from the Middle East. These inferences are consistent with ethnohistorical data suggesting that Pakistan's ethnic groups have been influenced by migrations from both African and Levantine source populations.  相似文献   

12.
Gm immunoglobulin allotypes have been studied in 1157 individuals of seven Northern Selkup populations, which account for 80% of the entire population of this west Siberian tribe. This study confirms that the northern Selkup populations are a Caucasoid-Mongoloid hybrid. Restriction fragment length polymorphism (RFLP) analysis of the IGHG genes using double BamHI-SacI digests, performed on 475 DNA samples, allowed us to describe nine new BamHI-SacI haplotypes (BS47 to BS55), eight of them being characterized by IGHG gene deletion or duplication: G1 (BS49) or G4 (BS55) deletion, G4 duplication (BS51), GP-G2-G4 multigene deletion (BS50), duplication (BS48, BS53 and BS54) or triplication (BS52). A new rare Gm haplotype 15,16*;1,17;23 has been found associated with BS52. The BS51 haplotype characterized by a duplicated G4 gene (additional 7.85 kb G4 band identifying a new G4*C5 allele) was always found associated with the Gm 5*;3;23 haplotype. A high RFLP diversity has been observed for the Northern-Mongoloid haplotype Gm 15,16*;1,17;.. which was found (1) with the BS27 haplotype characterized by a 3-exon hinge G3 gene, (2) with two different GP-G2-G4 multigene duplications, BS53 and BS54 haplotypes, which differ by the size of the duplicated G4 genes, and (3) with the BS55 haplotype characterized by a G4 deletion. In the Northern Selkups, haplotypes with duplicated genes were observed at a higher frequency (24%) than haplotypes with deleted genes (6%).  相似文献   

13.
The populations of India are genetically diverse, both within and between geographic regions; immunoglobulin (GM) allotypes provide important information on genetic differences between populations, since the frequencies of combinations of allotypes (termed "haplotypes") vary dramatically among ethnic groups. As part of a project to assess genetic diversity among defined Indian populations, we have examined eight GM allotypes in a sample of 101 unrelated Sikhs who have migrated to Toronto, Canada: Glm(1, 2, 3, 17) and G3m (5, 15, 16, 21). Sikhs are a religious group that arose in the Punjab about 1500 A.D.; most of the original converts are believed to have been middle to upper-middle caste Hindus. Gm allotyping showed that six Gm haplotypes occurred at polymorphic frequencies (greater than 0.01) in Sikhs: Gm3;5, Gm1,17;21, Gm1,2,17;21, Gm1,17;5, Gm1,17;15,16, and Gm1,3;5. These haplotypes have all been previously reported in Indian populations. The frequencies of the first four haplotypes resembled the published frequencies for lower-caste Hindus of NW India more than upper-caste Hindus. However, the last two haplotypes have been found only in upper-caste Hindus. The frequency of one of these, Gm1,17;15,16 was higher in Sikhs (0.09) than has been reported in any Indian population with the exception of Parsis (who are descended from Iranians). We speculate that the high frequency of this haplotype may have been characteristic of some of the Hindu castes in the Punjab from which Sikhs are descended.  相似文献   

14.
15.
This study investigated polymorphisms of genes in two regions of the T-cell antigen receptor beta-subunit (TCRB) locus, including BV9S2P, and BV6S7 in a 5' linkage group, and BV8S3, BV24S1, BV25S1, BV18S1, BV2S1, BV15S1 and BV3S1 in a 3' linkage group. These loci have been genotyped in individuals from five regions in Africa, including The Gambia, Nigeria, Cameroon, Tanzania, and Zambia, and in individuals from northern Britain, northern India, and Papua New Guinea (PNG). In the 3' linkage group, 11 unique haplotypes were identified in the combined African populations; two equally frequent haplotypes represent the majority of African chromosomes. One haplotype was found in all four regions studied. This is the most frequent haplotype in the northern British, northern Indian and PNG populations. Although present, it is infrequent in the African populations. A North-South gradient in the frequency of a common African haplotype was observed. The distribution did not represent that of a known disease. Evidence suggests that malaria is not responsible for selection of these haplotypes. Overall, this study highlights large differences in the genetic constitution of the TCRB locus between Africans and other populations.  相似文献   

16.
An understanding of population relationships in the Mediterranean region is crucial to the reconstruction of recent human evolution. Andalusia, the most southern region of Spain, has been continuously and densely occupied since ancient times and has a rich history of contacts with many different Mediterranean populations. Thus, to understand the Mediterranean peopling process, investigators should analyze the population relationships between the Iberian peninsula and northern Africa based on an assessment of genetic diversity that takes Andalusia into consideration. The aim of this study was to address the extent of genetic variation in the Iberian peninsula between its geographic extremes (Huelva and the Basque area) and to explain the intensity of the phylogenetic relationships between Andalusians and other neighboring populations, such as those from North Africa. We present, for the first time, results on allotype markers (GM and KM) of human immunoglobulins in the Andalusian population from Huelva. The most frequent GM haplotypes in Andalusia correspond to those that are also the most common in Europe. A sub-Saharan haplotype was found at a relatively high frequency compared to other Iberian samples, and a North Asian marker did not reach polymorphic frequencies in the study sample. A hierarchical cluster analysis based on the first two principal components (94.1% of the total genetic variance) revealed an interesting geographic structure for the 49 populations selected from the literature. The Huelva sample showed a central position in the multivariate space--despite being geographically located at one of the extremes of the Mediterranean basin--and clustered with most Western European populations. Western Europe and Eastern Europe (the latter group paradoxically including Italy and the major islands of the western Mediterranean) were differentiated. North African populations were grouped in two clusters that did not separate either Arabs and Berbers or their present-day countries. Analysis of immunoglobulin allotype markers shows that gene flow among human populations should generally be interpreted in terms of complex patterns, with the observed frequencies being the consequence of the entire genetic and demographic history of the population. Single historical events rarely determine gene frequencies in large human populations. Analysis of the GM system has shown that the Andalusian population from Huelva, as a result of its complex history, is not simply an outstanding part of the Mediterranean world but rather the genetic center of gravity of that world.  相似文献   

17.
On the basis of GM and KM typing and language, approximately 28,000 Amerindians were divided into 4 groups of populations: non-Nadene South American (8 groups), non-Nadene North American (7 groups), Nadene (4 groups), and Eskaleuts (6 groups). These groups were compared to four groups of Asian populations. The distribution of GM haplotypes differed significantly among and within these groups as measured by chi-square analysis. Furthermore, as reflected in a maximum linkage cluster analysis, Amerindian populations in general cluster along geographic divisions, with Eskaleuts and Nadenes clustering with the Asian populations and non-Nadene North American and non-Nadene South American populations forming two additional clusters. Based on GM haplotype data and other genetic polymorphisms, the divisions appear to reflect populations that entered the New World at different times. It appears that the South American non-Nadene populations are the oldest, characterized by the haplotypes GM*A G and GM*X G, whereas later North American non-Nadene populations are characterized by high frequencies of GM*A G and low frequencies of GM*X G and GM*A T. In contrast, Eskaleuts appear to have only GM*A G and GM*A T. The Nadene speakers have GM*X G and GM*A T in higher and approximately equal frequencies. Maximum linkage cluster analysis places the Alaskan Athapaskans closest to northwestern Siberian populations and the Eskaleuts closest to the Chukchi, their closest Asian neighbor. These analyses, when combined with other data, suggest that, in the peopling of the New World, at least four separate migrant groups crossed Beringia at various times. It appears likely that the South American non-Nadene entered the New World before 17,000 years B.P. and that the North American non-Nadene entered in the immediate postglacial period, with the Eskaleut and Nadene arriving at a later date.  相似文献   

18.
An underlying complex genetic susceptibility exists in multiple sclerosis (MS), and an association with the HLA-DRB1*1501-DQB1*0602 haplotype has been repeatedly demonstrated in high-risk (northern European) populations. It is unknown whether the effect is explained by the HLA-DRB1 or the HLA-DQB1 gene within the susceptibility haplotype, which are in strong linkage disequilibrium (LD). African populations are characterized by greater haplotypic diversity and distinct patterns of LD compared with northern Europeans. To better localize the HLA gene responsible for MS susceptibility, case-control and family-based association studies were performed for DRB1 and DQB1 loci in a large and well-characterized African American data set. A selective association with HLA-DRB1*15 was revealed, indicating a primary role for the DRB1 locus in MS independent of DQB1*0602. This finding is unlikely to be solely explained by admixture, since a substantial proportion of the susceptibility chromosomes from African American patients with MS displayed haplotypes consistent with an African origin.  相似文献   

19.
The aim of this study was to evaluate the intra- and inter-population variability of the Gm/Km system in the Madonie Mountains, one of the main geographical barriers in north-central Sicily. We analysed 392 samples: 145 from Alia, 128 from Valledolmo, 25 from Cerda and 94 from Palermo. Serum samples were tested for G1m (1,2,3,17), G2m (23), G3m (5,6,10,11,13,14,15,16,21,24,28) and Km (1) allotypes by the standard agglutination-inhibition method. We found the typical genetic patterns of populations in peripheral areas of the Mediterranean basin, with a high frequency of haplotypes Gm5*;3;23 and Gm5*;3;... The frequency of Gm21,28;1,17;... (about 16%) is rather high compared with other southern areas. Of great importance is the presence of the common African haplotype Gm 5*;1,17;..., ranging in frequency from 1.56% at Valledolmo to 5.5% at Alia. The presence of this haplotype suggests past contacts with peoples from North Africa. The introduction of African markers could be due to the Phoenician colonization at the end of the 2nd millennium b.c. or to the more recent Arab conquest (8th–9th centuries a.d.).  相似文献   

20.
The genetic peculiarity of the Basque population has long been noted. We aim to describe Basque distinctiveness in space and assess the internal Basque heterogeneity. All these aspects are relevant to the question of the origin of Basques. After a thorough literature search, a data base was created containing all the available data on gene frequencies in the Iberian Peninsula and France. Twenty-nine systems, comprising 71 alleles, were used to carry out a principal component (PC) analysis. The results show a sharp peak in the first PC in the Basque area, which remains even when the geographic scope is widened to include western Europe. As demonstrated by “wombling” analysis, the steeper slope in the first PC is found to the east of the Basque area, along the Pyrenees. Measures of genetic heterogeneity (such as FST values) within the Basque country, as compared to those for non-Basques, do not show a particular internal substructuration in the Basque population. The genetic results support a scenario in which the Basques are the product of in situ differentiation around the time of the Last Glacial Maximum (18,000 B .P .), in agreement with archaeological and linguistic data. Isolation from the surrounding populations has allowed the differentiation to last for millennia, but has erased the differences existing among Basques. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号