首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
WithinEpilobium sect.Epilobium, a cytological analysis of 121 experimental hybrids, involving 40 species, indicates the presence of a widespread BB chromosome arrangement in Eurasia, Africa, and Australasia, as well as in North and South America less commonly. The AA chromosome arrangement, which differs from BB by one reciprocal translocation, occurs in North America, South America, and in at least three European species. The CC arrangement, which differs from AA by two reciprocal translocations, characterizes theAlpinae, a circumboreal group. Distinctive or only partly worked out chromosome arrangements occur in the EuropeanE. duriaei andE. nutans and in the North AmericanE. luteum, E. obcordatum, E. oregonense, andE. rigidum. With earlier results, the chromosome arrangements of some 65 of the estimated 185 species of the section have been established fully or partly.  相似文献   

2.
Thomas F. Daniel 《Brittonia》2006,58(4):291-300
Meiotic chromosome numbers are reported for 12 species in eight genera of Acanthaceae from Madagascar. Chromosome numbers of 11 species are reported for the first time. Counts inMendoncia (n=19) andNeuracanthus (n=20) are the first for these genera. A new chromosome number (n=30) is reported inJusticia. Systematic implications of the chromosome counts are addressed and basic chromosome numbers for these eight genera of Malagasy Acanthaceae are discussed.  相似文献   

3.
为探究凤仙花近缘种植物的细胞学和微形态学方面的亲缘关系,该文选取荔波凤仙花(Impatiens liboensis)及近缘种赤水凤仙花(I.chishuiensis)和管茎凤仙花(I.tubulosa)的根尖和叶表皮为实验材料,采用体细胞染色体常规压片法和叶表皮光学显微镜观察法对凤仙花近缘种植物进行染色体及叶表皮特征研...  相似文献   

4.
Photographic polytene chromosome maps from pupal trichogen cells of four tsetse species, Glossina austeni, G. pallidipes, G. morsitans morsitans and G. m. submorsitans were constructed and compared. The homology of chromosomal elements between the species was achieved by comparing banding patterns. The telomeric and subtelomeric chromosome regions were found to be identical in all species. The pericentromeric regions were found to be similar in the X chromosome and the left arm of L1 chromosome (L1L) but different in L2 chromosome and the right arm of L1 chromosome (L1R). The L2 chromosome differs by a pericentric inversion that is fixed in the three species, G. pallidipes, G. morsitans morsitans and G. m. submorsitans. Moreover, the two morsitans subspecies appeared to be homosequential and differ only by two paracentric inversions on XL and L2L arm. Although a degree of similarity was observed across the homologous chromosomes in the four species, the relative position of specific chromosome regions was different due to chromosome inversions established during their phylogeny. However, there are regions that show no apparent homology between the species, an observation that may be attributed to the considerable intra—chromosomal rearrangements that have occurred following the species divergence. The results of this comparative analysis support the current phylogenetic relationships of the genus Glossina.  相似文献   

5.
Karyotype analyses were conducted onCunninghamia konishii, Cunninghamia lanceolata, andTaiwania cryptomerioides, all members ofTaxodiaceae. The somatic chromosome number was found to be 2n = 2x = 22 in all species which concurrs with previous reports. The karyotypes are generally asymmetrical with the smaller chromosomes being more submedian than the larger ones. Chromosomes with unusual or specific structures, thought to be associated with the nucleolar organizing region, were found in each species.Cunninghamia species have a marker chromosome pair with an unusually long secondary constriction.Taiwania has an unusually long kinetochore region present in a submedian chromosome pair.  相似文献   

6.
The satellite DNA Msat-160 has been previously characterized in several species of the genus Microtus. Here we present the characterization of Msat-160 from Chionomys nivalis, a species with a very primitive karyotype. As in other Microtus species analyzed, C. nivalis Msat-160 is AT rich, has a monomer length of 160 bp, is undermethylated and is mainly located in all the pericentromeric heterochromatin of all autosomes and the X chromosome, but is completely absent from the Y chromosome. Hence, our results support the hypothesis that Msat-160 was initially distributed in the pericentromeric heterochromatin of all autosomes and the X chromosome. The taxonomic status of the genus Chionomys in relation to the genus Microtus is a very interesting issue, so we constructed phylogenetic dendrograms using Msat-160 sequences from several Microtus species. Although the results were not informative about this issue, the presence of Msat-160 in C. nivalis and Microtus species suggested that both genera are closely related and that this satellite DNA was present in the common ancestor. Studies of Msat-160 in different arvicoline species could help to determine the origin of this satellite and, perhaps, to establish the phylogenetic relationships of some arvicoline groups.  相似文献   

7.
Summary Nine different monosomic additions in Beta vulgaris from Beta webbiana were characterized through morphological characters and isozyme markers. The effect of the alien chromosome on the morphology of the recipient species is chromosome specific, and nine morphotypes could be distinguished. The added chromosome caused a growth reduction in the recipient plants. Eleven isozyme systems were used as marker systems. A 6PGDH band was found as a marker for chromosome 7, which contains a resistance gene for the beet cyst nematode in monosomic additions from Beta procumbens and Beta webbiana. A difference in the 6PGDH zymogram pattern between the two species with respect to this chromosome has been noted.  相似文献   

8.
The Indian muntjac (Muntiacus muntjak vaginalis) has a karyotype of 2n = 6 in the female and 2n = 7 in the male. The karyotypic evolution of Indian muntjac via extensive tandem fusions and several centric fusions are well documented by molecular cytogenetic studies mainly utilizing chromosome paints. To achieve higher resolution mapping, a set of 42 different genomic clones coding for 37 genes and the nucleolar organizer region were used to examine homologies between the cattle (2n = 60), human (2n = 46), Indian muntjac (2n = 6/7) and Chinese muntjac (2n = 46) karyotypes. These genomic clones were mapped by fluorescence in situ hybridization (FISH). Localization of genes on all three pairs of M. m. vaginalis chromosomes and on the acrocentric chromosomes of M. reevesi allowed not only the analysis of the evolution of syntenic regions within the muntjac genus but also allowed a broader comparison of synteny with more distantly related species, such as cattle and human, to shed more light onto the evolving genome organization. For convenience and to avoid confusion we added for each species a three letter abbreviation prior to the chromosomal band location discussed in this paper: BTA, Cattle chromosome; HSA, Human chromosome; MMV, M. m. vaginalis chromosome; MRE, M. reevesi chromosome.  相似文献   

9.
The sequences of the Internal Transcribed Spacer regions (ITS1 and ITS2) within the genes coding for cytoplasmic ribosomal (r) RNAs on the A chromosome complement of 34 members of the higher plant genus Brachycome (synonym Brachyscome) have been compared. The ITS1 sequence of species within the B. lineariloba complex contains a 56 bp tract that is absent from at least 12 Brachycome species but is present in other species within Brachycome as well as other Asteraceae. Phylogenetic data support the suggestion that the number of chromosomes reduced in several independent Brachycome lineages during speciation. Comparisons with the B chromosome ITS2 of B. dichromosomatica cytodeme A1 suggests an origin of the B chromosome at a time prior to the divergence of the four cytodemes of B. dichromosomatica.  相似文献   

10.
Morphometric karyotype characters were studied in 25Angelica spp. (Umbelliferae, Apioideae) and in one species of the related genusTommasinia. For three species the chromosome numbers are new. In our study the majority of the species investigated are diploids with 2n = 22, some are tetraploids with 2n = 44 (for these tetraploids also diploid cytotypes are reported in the literature). Among the diploid species,A. miqueliana has a distinct karyotype consisting of submetacentric and acrocentric chromosomes only, the remaining diploids with 2n = 22 as well as tetraploids with 2n = 44 have rather symmetrical karyotypes, consisting of metacentric and submetacentric chromosomes. The very different chromosome number 2n = 28 has been found inA. gmelinii. Its karyotype includes two distinct groups of chromosomes: 8 pairs of rather large metacentrics and submetacentrics and 6 pairs of very short and asymmetrical chromosomes. Chromosome numbers and structures appear to be useful in the taxonomy of some intrageneric taxa inAngelica.  相似文献   

11.
C-banding patterns and polymorphisms were analyzed in several accessions of the diploidAegilops speciesAe. uniaristata, Ae. mutica, andAe. comosa subsp.comosa and subsp.heldreichii, and standard karyotypes of these species were established. Variation in C-band size and location was observed between different accessions, but did not prevent chromosome identification. One accession ofAe. uniaristata was homozygous for whole-arm translocations involving chromosomes 1N and 5N. The homoeologous relationships of these chromosomes were established by comparison of chromosome morphologies and C-banding patterns to other diploidAegilops species with known chromosome homoeology. In addition, in situ hybridization analysis with a 5S rDNA probe was used to identify homoeologous groups 1 and 5 chromosomes. The present analysis permitted the assignment of allAe. mutica, comosa subsp.comosa, andAe. comosa subsp.heldreichii chromosomes, and three of the sevenAe. uniaristata chromosomes according to their homoeologous groups. The data presented will be useful analyzing genome differentiation in polyploidAegilops species.  相似文献   

12.
The chromosome numbers of five species ofOrobanche sect.Orobanche (O. alsatica, O. laserpitii-sileris, O. loricata, O. salviae, O. teucrii) are reported for the first time and previous counts could be verified in ten other species. Now the chromosome numbers of all species of sect.Orobanche occurring in Central Europe are known: they are diploid (2n = 38) with the exception ofO. gracilis (tetra- and hexaploid, aneusomatic).
  相似文献   

13.
The dimensions of metaphase chromosomes and nuclear DNA contents were measured in eight species ofLuzula. The 2 C DNA contents ranged from 8.51 pg inL. purpurea to 0.55 pg inL. pilosa. Total chromosome volume shows a linear relationship with DNA content; however, the total chromosome length of the complement of the different species is approximately constant. Nucleolar volume and the number of chromocentres in the different species also show a relationship with DNA content. Taken together, these data suggest that while chromosome fragmentation could have generated the present-day range of chromosome numbers in the genus, there have also been changes in the total quantity of DNA with the result that species with similar chromosome numbers have different DNA contents. The relationships of DNA content with chromosome volume inLuzula and other genera are compared and the differences discussed.  相似文献   

14.
Identification of individual chromosomes in Lupinus is not possible due to gradient in size and similar morphology. To overcome this problem, molecular cytogenetics was developed for Lupinus. As an initial step in karyotype analysis, fluorescent in situ hybridization (FISH) was performed to determine genomic distribution of rRNA genes in L. hispanicus, L. luteus and L. × hispanicoluteus. It was found that all three diploid species posses two chromosome pairs carrying 18S-5.8S-25S rDNA and one chromosome pair carrying 5S rDNA. The use of probes for rDNA permitted unambiguous identification of three different pairs of chromosomes and revealed conservation of the number of rDNA loci among the three species. The study represents the first step in physical mapping of Lupinus genome through FISH by providing distinct chromosome landmarks. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The chromosome numbers of nearly all species of the grass subtribesAristaveninae andAirinae from Europe and northern Africa are presented. Among theAristaveninae the genusAristavena has 2n = 14 chromosomes, whereasDeschampsia forms a polyploid series with the basic number x = 13. In the subtribeAirinae the basic number x = 7 predominates.Avenella includes a polyploid series up to dekaploidy, whilst the lowest diploid value so far known in grasses — caused by descending dysploidy — exists in the annual generaAiropsis andPeriballia with 2n = 8.From both subtribes 12 different karyotypes are described and depicted as idiograms. The basic karyotypes ofCorynephorus, Periballia andVahlodea differ from each other by different chromosome length. SAT-chromosomes in theAirinae vary somewhat. Some marker chromosomes eludicate phylogenetic relationships. Amphiplasty appears in various genera and was studied particularly in the amphidiploidAira caryophyllea. Karyological and genomatic trends are considered in relation to evolutionary strategies of annuals and perennials.The nuclear DNA content of some species has been determined cytophotometrically. In subtribeAirinae a positive correlation exists between chromosome volume, pollen diameter, and DNA content. A comparison of the duration of microsporogenesis and microgametogenesis in annual and perennial species with their nuclear DNA content has shown that a primary nucleotypic influence is not recognizable.
  相似文献   

16.
We present the first report on somatic chromosome numbers and morphology in eight of 13 recorded species ofCrossostylis, one of inland genera of Rhizophoraceae. The chromosome number ofCrossostylis is 2n=28 in all species examined; therefore, the genus hasx=14, a number which is the smallest and unknown elsewhere in the family. Based onCrossostylis raiateensis, we further present that 24 of 28 chromosomes at metaphase have centromeres at median position, and the remaining four at submedian or subterminal position. The chromosome morphology seems to imply thatCrossostylis might be a tetraploid with the original base numberx=7, but an extensive study in the other inland genera is needed to find such a small chromosome number.  相似文献   

17.
鼠尾草属(Salvia)是唇形科(Lamiaceae)最大的属,属下多种为民间常用草药,亦有供观赏的种类。为探究横断山区物种在细胞学水平的进化方式,讨论形态分类学与分子系统学之间的分类关系,该研究通过广泛收集染色体文献资料,采用植物常规压片法对采集自横断山地区6种8居群鼠尾草属植物进行核型分析,并构建了中国地区分布的鼠尾草属植物叶绿体系统发育树。统计结果表明:(1)全世界范围内报道了约23%的鼠尾草属植物染色体数据,其中分布在中国地区的鼠尾草属植物染色体报道率为32.10%,分布在横断山地区的鼠尾草属植物报道率为40.54%,(2)鼠尾草属植物染色体基数以x=8和x=11为主,分布在中国地区的鼠尾草属植物染色体基数均为x=8。实验结果表明:(1)西藏鼠尾草(S. wardii)核型数据为首次报道。(2)雪山鼠尾草(S. evansiana)首次在云南德钦地区发现二倍体居群。将细胞学数据结合叶绿体进化树开展染色体进化关联分析,论证多倍化可能不是鼠尾草属物种适应高海拔环境的主要机制,表明多倍体不是该属物种形成的主要进化途径而是以二倍体水平为主,推测染色体组的加倍可能是物种在形态学与分子系统学上分类关系不一致的原因之一。该研究丰富了横断山区鼠尾草属植物的染色体核型数据,结合区域分子系统树探讨染色体特征的进化关系,为今后深入研究该属物种的核型进化做出了探索,为开展祖先物种染色体基数推演分析补充了基础数据。  相似文献   

18.
Phillip RB  Konkol NR  Reed KM  Stein JD 《Genetica》2001,111(1-3):119-123
The sex chromosome pair has been identified previously as the largest submetacentric pair in the genome in several species of the genus Salvelinus (eastern trouts and chars) including S. namaycush (lake trout) and as a large subtelocentric/acrocentric pair in several species of the genus Oncorhynchus (Pacific trouts and salmon). Sex chromosomes have not been identified in Salmo (Atlantic salmon and brown trout). Two paint probes, one specific for the short arm (Yp) and the other for the long arm (Yq) of the sex chromosome pair in Salvelinus namaycush were hybridized to chromosomes of Oncorhynchus mykiss (rainbow trout) and O. tshawytscha (chinook salmon) and Salmo salar (Atlantic salmon) and S. trutta (brown trout). The two probes hybridized to two different autosomal pairs in each of the Oncorhynchus species, supporting lack of homology between the sex chromosomes in the two genera. The Yp probe hybridized to interstitial regions on two different chromosome pairs in S. salar and one pair in S. trutta. The Yq probe hybridized to a different pair in both species.  相似文献   

19.
Noor MA  Kliman RM 《Genetica》2003,118(1):51-58
A recent study suggested that recent nuclear gene introgression between Drosophila simulans and D. mauritiana may have obscured efforts to estimate the phylogeny of the species of the D. simulans clade, which includes these two species and D. sechellia. Here, we report sequence variation of an intron of the eyeless gene in this species group. This gene should introgress freely between these species because it is not linked to any known barriers to gene exchange. We have also reevaluated levels of sequence divergence among species in this clade, noting differences between loci in regions of low recombination (as in all chromosome 4 loci) relative to other loci. Overall, none of the data analyzed were consistent with recent introgression exclusively between D. simulans and D. mauritiana.  相似文献   

20.
Päällysaho S 《Genetica》2002,114(1):73-79
When estimating the level of DNA sequence variation within and between populations or when planning QTL analysis, it is essential to know the location of the genes under study. In the present work, five X chromosomal genes, earlier localised in Drosophila virilis and D. littoralis, were mapped by in situ hybridisation on the larval polytene chromosomes of four other virilis group species, D. a. americana, D. flavomontana, D. lacicola and D. montana. Conjugation of X chromosomes of the most interesting species pairs was studied in interspecific hybrids. Three of the marker genes were used as RFLP markers to examine the occurrence of recombination in D. flavomontana and D. montana hybrid females. The gene arrangement of all species studied, appeared to be different at the proximal end of the X chromosome, which prevented normal conjugation along the most part of the X chromosome. The data illustrating the locations of five X chromosomal marker genes are presented for D. a. americana, D. flavomontana, D. lacicola and D. montana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号