首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species differences have been observed in the effect of cholecystokinin octapeptide (CCK OP) on the canine and guinea pig gallbladder smooth muscle motility. 1. CCK OP was more potent stimulant in canine than in guinea pig gallbladder smooth muscles. Its pD2 values were 10 and 9.2, respectively. 2. The acetylcholine (10(-4) M)-induced maximum contractions in canine gallbladder muscle strips were by 50% lower as compared to the CCK OP (10(-8) M) maximum responses while in guinea pig gallbladder muscle strips the acetylcholine (ACh) maximum responses were by 20% lower than the CCK OP maximum responses. 3. CCK OP increased [3H]ACh release by 27% in canine gallbladder and by 40% in guinea pig gallbladder. 4. Somatostatin (SOM) had not any direct myogenic effect in guinea pig and canine gallbladder but it decreased [3H]ACh release from gallbladder intrinsic cholinergic neurons.  相似文献   

2.
The binding of 125I-CCK-33 to its receptors prepared from cerebral cortex and cerebellum was studied in four species: mouse, rat, hamster, and guinea pig. Only the guinea pig showed significant binding to membranes from cerebellum and this binding was comparable to that observed for cerebral cortex. In all four species, the order of potency of unlabeled analogs to compete for the binding site was CCK-8 greater than CCK-33 greater than desulfated CCK-8 greater than CCK-4. While the affinity for CCK-8 and CCK-33 was similar in the various species, the relative affinity for desulfated CCK-8 and CCK-4 was less for hamster and guinea pig, indicating species differences in receptor specificity, as well as in regional localization.  相似文献   

3.
A number of different forms of cholecystokinin (CCK) exist in the brain and intestine. Gel permeation and ion exchange chromatography and high performance liquid chromatography have been used to isolate a peptide from partially purified porcine intestinal extracts with N-terminal homology to porcine brain CCK-58. This peptide contracted both the guinea pig ileum longitudinal muscle and gallbladder muscle and these responses were inhibited by dibutyryl cyclic GMP or proglumide. The potency was approximately 1/100 of that of CCK-8. The reason for this low potency is unclear, but it is possible that a critical part of the biologically active region is modified or that it is a truncated form of CCK-58. A further peptide was isolated with a sequence homologous to cytochrome oxidase polypeptide VII and chymodenin.  相似文献   

4.
Smooth muscle cells isolated from the longitudinal muscle layer of guinea pig ileum were used to determine the presence and type of cholecystokinin/gastrin receptor mediating contraction. This was accomplished with a series of cholecystokinin and gastrin agonists (CCK-8, des(SO3)CCK-8, gastrin-17, des(SO3)gastrin-17 and pentagastrin) and antagonists (glutaramic acid derivatives CR 1392, CR 1409, CR 1505 and proglumide). The order of potency of agonists based on EC50 values derived from concentration-response curves was: CCK-8 greater than des(SO3)CCK-8 greater than gastrin-17 greater than des(SO3)gastrin-17. The inhibitory dissociation constant (Ki) for the antagonist CR 1505 derived from Schild plots was the same whether sulfated CCK-8 or desulfated gastrin-17 was used as agonist (4.47 +/- 0.76 versus 4.68 +/- 0.78 nM). Pentagastrin acted as a partial agonist and inhibited partially the response to CCK-8. The Ki values determined for all antagonists with pentagastrin as agonist were similar to those with CCK-8 as agonist. The order of potency of agonists and the independence of Ki values from the type of agonist used implied that CCK and gastrin interact with one receptor type; the receptor is more sensitive to CCK-8 but is minimally influenced by sulfation of the tyrosine residue. In this respect, the receptor appears to be distinct from the CCK receptor on gallbladder muscle cells and pancreatic acinar cells.  相似文献   

5.
When dispersed chief cells from guinea pig stomach were first incubated with carbachol, washed, and then reincubated with carbachol in fresh incubation solution, the stimulation of pepsinogen secretion and the rise in intracellular calcium concentration during the second incubation were reduced. Carbachol did not cause residual enzyme secretion, but the same range of concentrations that causes enzyme secretion caused desensitization that was rapid, temperature dependent, and reversible with time. Preincubation with carbachol caused approximately a 65% reduction in enzyme secretion stimulated during a subsequent incubation with this agonist, but the potency of carbachol was unaffected. Prior exposure to carbachol also reduced subsequent stimulation caused by cholecystokinin (CCK-8), gastrin I, ionophore A23187, or 12-O-tetradecanoylphorbol 13-acetate but did not alter stimulation by any agonist that increases cellular cAMP. Carbachol pretreatment of Fura-loaded chief cells caused a threefold increase in the EC50 for carbachol-stimulated [Ca2+]i and approximately a 30% reduction in the maximal rise in [Ca2+]i in response to carbachol or CCK-8. Inhibition of [N-methyl-3H] scopolamine binding by carbachol following carbachol pretreatment indicated that modulation of receptor affinity or number did not account for functional desensitization. These data indicate that carbachol causes heterologous desensitization of pepsinogen secretion stimulated by agonists that mobilize cellular Ca2+ or activate protein kinase C through a postreceptor action and suggest that an attenuated rise in chief cell calcium is one mechanism mediating the desensitization of enzyme secretion.  相似文献   

6.
Smooth muscle cells were isolated from the circular muscle layer of guinea pig stomach and permeabilized by brief exposure to saponin. Both permeabilized and intact muscle cells contracted in response to cholecystokinin octapeptide (CCK-8) and acetylcholine, but only permeabilized muscle cells contracted in response to inositol 1,4,5-trisphosphate (InsP3). The contractile response to InsP3 was prompt (peak less than 5 s), concentration-dependent (EC50-0.3 microM), and insensitive to antimycin or oligomycin. Contraction induced by either InsP3 or CCK-8 was accompanied by a concentration-dependent increase in free Ca2+ that was directly correlated with the magnitude of contraction. Both InsP3 and CCK-8 caused rapid net efflux of Ca2+ from cells preloaded with 45Ca2+. Contraction, increase in free Ca2+ concentration, and net 45Ca2+ efflux elicited by a combination of maximal concentrations of InsP3 and CCK-8 were not significantly different from those elicited by maximal concentrations of either agent alone. Repeated stimulation of single muscle cells with either InsP3 or CCK-8 in Ca2+-free medium caused eventual loss of the contractile response to all agents. The response to all agents was restored upon re-exposure of the cell to a cytosol-like concentration of Ca2+, implying equal access of InsP3 and receptor-linked agonists to the same intracellular Ca2+ store. The results demonstrate that InsP3 mimics the effects of receptor-linked agonists on contraction and mobilization of intracellular Ca2+ in permeabilized smooth muscle cells that retain the functional properties of intact smooth muscle cells and support a role for InsP3 as membrane-derived messenger responsible for mobilization of intracellular Ca2+ in smooth muscle cells.  相似文献   

7.
缩胆囊素和促胰液素对豚鼠离体胃平滑肌运动的影响   总被引:8,自引:0,他引:8  
用8个肌槽同时记录豚鼠胃不同部位肌条的收缩活动,以观察八肽缩胆囊素(CCK-8)和促胰液素的影响。结果表明:CCK-8能(1)增高各部位纵行肌和环行肌的张力;(2)加快胃体纵行肌,胃窦纵行肌、环行肌和幽门环行肌的收缩频率;(3)增大胃窦环行肌收缩波平均振幅和(4)增加幽门环行肌收缩波运动指数,但减少胃体和胃窦纵行肌收缩波平均振幅。上述作用均不能被阿托品和消炎病所阻断。而促胰液素对各部位肌条的收缩活动没有明显的影响。  相似文献   

8.
Capacitative calcium entry in guinea pig gallbladder smooth muscle in vitro   总被引:4,自引:0,他引:4  
Quinn T  Molloy M  Smyth A  Baird AW 《Life sciences》2004,74(13):1659-1669
This study investigates the involvement of capacitative Ca2+ entry in excitation-contraction coupling in guinea pig gallbladder smooth muscle. Thapsigargin (0.1 nM-1 microM, a sarcoplasmic reticulum Ca(2+)-ATPase inhibitor) produced slowly developing sustained tonic contractions in guinea pig isolated gallbladder strips. All contractions approached 50% of the response to carbachol (10 microM) after 55 min. Contractile responses to thapsigargin (1 microM) were abolished in a Ca(2+)-free medium. Subsequent re-addition of Ca2+ (2.5 mM) produced a sustained tonic contraction (99 +/- 6% of the carbachol response). The contractile response to Ca2+ re-addition following incubation of tissues in a Ca(2+)-free bathing solution in the absence of thapsigargin was significantly less than in its presence (79 +/- 4 % vs 100 +/- 7 % of carbachol; p < 0.05). Contractile responses to Ca2+ re-addition following treatment with thapsigargin were attenuated by (a) the L-type voltage-operated Ca2+ channel antagonist, nifedipine (10 microM) and (b) the general inhibitor of Ca2+ entry channels including store-operated channels, SK&F96365 (50 microM and 100 microM). In separate experiments, responses to Ca2+ re-addition were essentially abolished by the tyrosine kinase inhibitor, genistein (100 microM). These results suggest that capacitative Ca2+ entry provides a source of activator Ca2+ for guinea pig gallbladder smooth muscle contraction. Contractile responses to Ca2+ re-addition following depletion of sarcoplasmic reticulum Ca2+ stores with thapsigargin, are mediated in part by Ca2+ entry through voltage-operated Ca2+ channels and by capacitative Ca2+ entry through store-operated Ca2+ channels which can be blocked by SK&F96365. Furthermore, capacitative Ca2+ entry in this tissue may be modulated by tyrosine kinase.  相似文献   

9.
The muscarinic receptors of muscularis mucosa have some recognition properties that suggest they resemble receptors of the M1 subtype. The nerves of these tissues also contain muscarinic receptors which inhibit tonic contractions caused by release of a substance-P-like material by field stimulation. These receptors also appear to be M1 in type as they are maximally activated by McNeil A343 as well as by carbachol (pD2, 5.5 and 7.5, respectively). They are also inhibited by pirenzepine, as well as by atropine (negative logarithms of the required dose for 50% inhibition or potentiation, 6.6-6.7 compared with 8.2-8.3). Hexahydrosiladifenidol, an antagonist selective or M2 receptors of guinea pig ileum, had a low (approximately 7.1) pA2 value for antagonism of both agonists in smooth muscle in this tissue. However, it was closer to atropine in potency with respect to potentiating tonic responses to field stimulation or to inhibiting phasic responses to field stimulation than it was to antagonizing smooth muscle contractions. Thus, atropine was about 40 times more potent than pirenzepine and 2-5 times more potent than hexahydrosilafenidol. There were some quantitative differences in the effectiveness of these three antagonists in blocking the phasic (acetylcholine-mediated) response to field stimulation. Atropine was 70-100 times more potent than pirenzepine and 8-25 times more potent than hexahydrosiladifenidol. This greater potency difference for inhibition of phasic contractions compared with potentiation of tonic contractions was discussed. This tissue appears to be one of the first smooth muscles in which both nerves and muscles contain muscarinic receptors with some recognition properties resembling those of the M1 subtype.  相似文献   

10.
Calcitonin gene related peptide has been shown to relax vascular and intestinal smooth muscle. This study examines the effects of calcitonin gene related peptide on cholecystokinin-induced contraction of guinea pig gallbladder strips in vitro. Calcitonin gene related peptide was found to cause a dose-dependent relaxation of cholecystokinin-induced tension, which was blocked by the calcitonin gene related peptide receptor antagonist human calcitonin gene related peptide. Previous studies demonstrated that calcitonin gene related peptide acted directly on guinea pig gallbladder smooth muscle to inhibit acetylcholine- or KCl-induced contraction. The present results further confirm that calcitonin gene related peptide acts directly on the smooth muscle. In addition, the use of L-NG-nitroarginine methyl ester, glibenclamide, and other agents strongly suggests that calcitonin gene related peptide also acts by way of the nonadrenergic noncholinergic nervous system, to induce the relaxation of cholecystokinin-induced contraction observed in the guinea pig gallbladder strips.  相似文献   

11.
INTRODUCTION: This study examines hypotheses that BDL induces increased guinea pig gallbladder smooth muscle PGE2 release by up-regulation of COX-2. METHODS: BDL, Sham and Control Hartley guinea pig gallbladders were placed in cell culture, grown to confluence and underwent Western Blot analysis for smooth muscle cell content of COX-1, COX-2, Prostacylin Synthase, actin, caldesmon, vinculin, meta-vinculin and tropomyosin and were assayed for basal release of 6-keto-PGF(1alpha), PGE2 and TxB2 by EIA. RESULTS: BDL did not alter content of smooth muscle cytoskeletal proteins. BDL for 48 h increased smooth muscle cell release of PGE2 and 6-keto-PGF(1alpha) by 3-fold or more when compared to the Control and Sham groups. Western Blot analysis showed increased content of COX-2 in the BDL group. CONCLUSIONS: BDL for 48 h markedly increased endogenous guinea pig smooth muscle cell PG release, which was due to increased COX-2 synthesis.  相似文献   

12.
J E Shook  T F Burks 《Life sciences》1986,39(26):2533-2539
Although three neurokinin receptors (NK-1, NK-2, NK-3) have been identified by radioligand binding assays, only the NK-1 and NK-3 types have been found in smooth muscle bioassays. In this study, evidence is presented demonstrating functional NK-2 type receptors in the guinea pig gallbladder (GPGB). The potencies of the following neurokinins were determined in the GPGB and the guinea pig ileum (GPI): substance P (SP), physalaemin (PH), eledoisin (EL), substance K (SK) and kassinin (KA). ED50 values were determined by linear regression analysis of the dose-related increases in the force generated by each peptide. In the GPI, the rank order of potency was SP = PH = EL greater than SK = KA, indicating NK-1 selectivity. In the GPGB, the relative potencies were SK greater than KA greater than EL much greater than PH greater than SP, which is similar to that reported for the NK-2 receptor in radioligand binding assays. These findings demonstrate the NK-2 receptor tissue selectivity of the GPGB.  相似文献   

13.
Calcitonin gene-related peptide (CGRP) relaxes vascular and intestinal smooth muscle. This study localized CGRP in the guinea pig gallbladder, examined the effects of CGRP on KCl- and ACh-induced contraction, and determined CGRPs site of action in the gallbladder. The gallbladder of male Hartley guinea pigs was used in in vitro tension studies, radioimmunoassay, or immunocytochemical studies. Radioimmunoassay showed that 8.0 +/- 0.5 pmol/g of immunoreactive CGRP was present. Immunocytochemistry demonstrated that immunoreactive-CGRP nerve fibers occurred around blood vessels, in gallbladder smooth muscle layers, and were associated with ganglia. No immunoreactive cell bodies were observed, even after colchicine treatment. The in vitro tension studies showed that CGRP inhibits either KCl- or acetylcholine-stimulated contraction. CGRP may in part act directly on the gallbladder smooth muscle to inhibit contraction.  相似文献   

14.
TRPP2 channel protein belongs to the superfamily of transient receptor potential(TRP) channels and is widely expressed in various tissues, including smooth muscle in digestive gut. Accumulating evidence has demonstrated that TRPP2 can mediate Ca~(2+) release from Ca~(2+) stores. However, the functional role of TRPP2 in gallbladder smooth muscle contraction still remains unclear. In this study, we used Ca~(2+) imaging and tension measurements to test agonist-induced intracellular Ca~(2+) concentration increase and smooth muscle contraction of guinea pig gallbladder, respectively. When TRPP2 protein was knocked down in gallbladder muscle strips from guinea pig, carbachol(CCh)-evoked Ca~(2+) release and extracellular Ca~(2+) influx were reduced significantly, and gallbladder contractions induced by endothelin 1 and cholecystokinin were suppressed markedly as well. CCh-induced gallbladder contraction was markedly suppressed by pretreatment with U73122, which inhibits phospholipase C to terminate inositol 1,4,5-trisphosphate receptor(IP3) production, and 2-aminoethoxydiphenyl borate(2APB), which inhibits IP3 recepor(IP3R) to abolish IP3R-mediated Ca~(2+) release. To confirm the role of Ca~(2+) release in CCh-induced gallbladder contraction, we used thapsigargin(TG)-to deplete Ca~(2+) stores via inhibiting sarco/endoplasmic reticulum Ca~(2+)-ATPase and eliminate the role of store-operated Ca~(2+) entry on the CCh-induced gallbladder contraction. Preincubation with 2 μmol L~(-1) TG significantly decreased the CCh-induced gallbladder contraction. In addition, pretreatments with U73122, 2APB or TG abolished the difference of the CCh-induced gallbladder contraction between TRPP2 knockdown and control groups. We conclude that TRPP2 mediates Ca~(2+) release from intracellular Ca~(2+) stores, and has an essential role in agonist-induced gallbladder muscle contraction.  相似文献   

15.
The ability of 8-ethoxycarbonyl-10, 11 dihydro-A-prostaglandin(HR 546) to antagonise smooth muscle contracting effect of prostaglandins E2 and F2alpha on isolated preparations of rat and hamster stomach fundus, guinea pig ileum and gerbil colon has been studied. HR 546 was found to be a potent, non-specific, probably competitive, prostaglandin antagonist on these four smooth muscle preparations.  相似文献   

16.
In isolated canine ileal longitudinal muscle preparations, cholecystokinin-octapeptide (CCK-8) produced a concentration-dependent contraction, which was suppressed by peptide YY (PYY) and was abolished by tetrodotoxin and atropine. PYY was approximately 2200-times as potent as CR1505, a CCK-receptor antagonist. PYY opposed the action of CCK-8 to a greater extent than that of nicotine and transmural electrical stimulation. Acetylcholine-induced contractions were not influenced by PYY. It seems likely that the CCK-8-induced ileal muscle contraction is associated with an activation of CCK receptors in cholinergic nerves, which generates nerve action potentials and releases acetylcholine, whereas CCK-8 acts on CCK receptors in gallbladder smooth muscle, producing contractions. It may be concluded that PYY inhibits the action of CCK-8 on ileal muscle strips, by inhibiting the release of acetylcholine from cholinergic nerve terminals. On the other hand, in the gallbladder, PYY does not appear to block cholinergic nerve function.  相似文献   

17.
It has been reported that certain N-carboxyacyl analogues of CCK-8 and of CCK-7 with a substituted Gly in position 3 or 4 of the peptide possess higher potencies at stimulating pancreatic enzyme secretion than at stimulating gallbladder contraction, suggesting that these analogues are able to differentiate subtypes of CCKA receptors. However, no studies examined directly the interaction of these peptides with the CCK receptors in both tissues. In the present study, CCK-8 and various N-carboxyacyl analogues of CCK-7 and of CCK-8 were prepared by solid phase synthesis using Fmoc chemistry and were purified by HPLC; molecular weight and sufficient sulfation were determined by mass spectrometry. [125I]Bolton-Hunter(BH)-CCK-8 binding to sections of the guinea pig pancreas and gallbladder was determined under identical conditions; amylase release from pancreatic acini and contraction of gallbladder muscle strips were measured in vitro. Each peptide stimulated amylase release (EC50): ). The same relative potencies were found for stimulation of gallbladder contraction, and for the inhibition of [125I]BH-CCK-8 binding to pancreas and gallbladder sections. These data demonstrate that the CCKA receptors in the pancreas and on gallbladder smooth muscle possess similar affinities for the various N-carboxyacyl analogues of CCK-7 and CCK-8 with a substituted Gly and provide further evidence that the CCKA receptors in gallbladder and pancreas cannot be distinguished pharmacologically.  相似文献   

18.
There are no known specific effective cholecystokinin (CCK) receptor antagonists of both peripheral and central nervous systems. Here, we describe experiments which demonstrate that a synthetic pseudopeptide analogue of CCK-7 is a potent agonist in the peripheral system and behaves as a selective and highly potent inhibitor of the dopamine-like effects of CCK in the striatum. This compound, t-butyloxycarbonyl-Tyr (SO3H)-Nle psi (COCH2)Gly-Trp-Nle-Asp-Phe-NH2, is able to stimulate enzyme secretion from rat pancreatic acini, with high efficacy and potency. It is also very potent in inhibiting the binding of labeled CCK-8 to rat pancreatic acini (IC50 = 5 nM) and to guinea pig and mouse brain membranes (IC50 = 0.7 nM). However, this compound is able to antagonize the effects of intrastriatally injected t-butyloxycarbonyl-[Nle28,31] CCK-8 in mice, with high potency.  相似文献   

19.
PKC is involved in mediating the tonic component of gastrointestinal smooth muscle contraction in response to stimulation by agonists for G protein-coupled receptors. Here, we present pharmacological and immunohistochemical evidence indicating that a member of the novel PKC isoforms, PKC-delta, is involved in maintaining muscarinic receptor-coupled tonic contractions of the guinea pig ileum. The tonic component of carbachol-evoked contractions was enhanced by an activator of conventional and novel PKCs, phorbol 12,13-dibutyrate (PDBu; 200 nM or 1 microM), and by an activator of novel PKCs, ingenol 3,20-dibenzoate (IDB; 100 or 500 nM). Enhancement was unaffected by concentrations of bisindolylmaleimide I (BIM-I; 22 nM) that block conventional PKCs or by a PKC-epsilon-specific inhibitor peptide but was attenuated by higher doses of BIM-I (2.2 microM). Relevant proteins were localized at a cellular and subcellular level using confocal analysis. Immunohistochemical staining of the ileum showed that PKC-delta was exclusively expressed in smooth muscles distributed throughout the layers of the gut wall. PKC-epsilon immunoreactivity was prominent in enteric neurons but was largely absent from smooth muscle of the muscularis externa. Treatment with PDBu, IDB, or carbachol resulted in a time- and concentration-dependent translocation of PKC-delta from the cytoplasm to filamentous structures within smooth muscle cells. These were parallel to, but distinct from, actin filaments. The translocation of PKC-delta in response to carbachol was significantly reduced by scopolamine or calphostin C. The present study indicates that the tonic carbachol-induced contraction of the guinea pig ileum is mediated through a novel PKC, probably PKC-delta.  相似文献   

20.
The primary structure of gastrin-releasing peptide from the guinea pig stomach has been determined by automated Edman degradation and shown to be identical to porcine gastrin-releasing peptide. Extracts of guinea pig brain and small intestine contained both gastrin-releasing peptide and its COOH-terminal decapeptide (neuromedin C) but the stomach extracts contained only gastrin-releasing peptide. Within the small intestine, highest concentrations of gastrin-releasing peptide-like immunoreactivity were found in extracts of the circular and longitudinal smooth muscle layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号