首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phage 2 adsorbed to Pseudomonas aeruginosa strain BI in 5 mM Tris buffer, providing that cations like Na(+), Mg(2+), or Ca(2+) were present. Adsorption was observed over a broad pH range, reaching a maximum level around pH 7.5, which coincided with the pH required for maximal activity of the phage 2-associated slime polysaccharide depolymerase. Mutants of strain BI and other strains of P. aeruginosa possessing slime layers that were devoid of phage 2 depolymerase substrate were incapable of adsorbing phage 2. On the other hand, those strains containing substrate for the phage 2 depolymerase in the slime layer were capable of adsorbing phage 2. The same relationship of phage depolymerase-substrate interaction to phage adsorption was observed with Pseudomonas phage 8, which possesses a depolymerase that differs in its specificity from the phage 2 depolymerase. The receptor-like activity of purified slime containing the specific substrate for the phage-associated depolymerase was demonstrable by its ability to inactivate phage. However, receptor-like activity or phage inactivation was not observed with those slimes that were devoid of the depolymerase substrate.  相似文献   

2.
The aims of this study were to investigate the incidence of different resistance mechanisms to phage K in a bank of Irish Staph aureus hospital strains; and to develop a broad host-range phage cocktail with enhanced lytic activity against those strains which were previously phage resistant. A bank of 180 Staph aureus strains, which included all the sequence types currently in existence in Ireland, were tested for sensitivity to phage K. Twenty nine strains were identified, which did not permit plaque formation. The phage resistance systems in the 29 strain were investigated and it was found that restriction modification (r-m) was evident in 24, an adsorption inhibition mechanism was evident in three, while two were resistant by an unidentified mechanism. Seventeen modified derivatives of phage K were developed which could circumvent all the r-m systems. Nevertheless, six of the modified phage were considered superior in terms of their individual host ranges. These six were pooled as a cocktail with phage K, which then lysed 24 of the 29 resistant strains (97.2% of the entire staphylococcal bank). In conclusion, phage resistant systems affecting phage K are common in Staph. aureus but it is possible to significantly broaden the host-range of this phage for biocontrol applications.  相似文献   

3.
A new generalized transducing bacteriophage in the Escherichia coli system was isolated and characterized. This phage, designated D108, makes clear plaques on E. coli K-10, K-12, K-12(P1kc), K-12(D6), B/r, C, and 15 T(-), and Shigella dysenteriae. The plaque of phage D108 is larger in size than that of phage P1kc. Electron-microscopic observation revealed that phages D108 and P1kc are morphologically different from each other, suggesting that phage D108 belongs to a phage group different from phage P1. The fact that all of the 10 markers tested were transduced by phage D108 indicates that this phage is a generalized transducing phage in the E. coli system. The transduction frequency by phage D108 of chromosomal markers and of a drug resistance factor (R factor) ranged from 2 x 10(-6) to 3 x 10(-8) and 3 x 10(-9) to 6 x 10(-10) per phage, respectively. The cotransduction frequency of the thr and leu markers was 2.8% for phage P1kc and 1.5% for phage D108. The CM and TC markers (chloramphenicol-resistant and tetracycline-resistant markers, respectively) of the R factor were not cotransduced by phage D108, but the markers were generally cotransduced by phage P1kc. The results suggest that the transducing particle of phage D108 contains a smaller amount of host deoxyribonucleic acid than does phage P1kc.  相似文献   

4.
The influence of plasmids of the IncP-2 group on development of bacteriophages of Pseudomonas aeruginosa was studied. Six different types of phage growth inhibition conferred by natural plasmids of the IncP-2 group were found. All these plasmids were shown to have no effect on adsorption and injection of phage DNA into cells, only blocking intracellular phage development. The differences between phage inhibition mechanisms were shown by comparison of efficiency of colony formation by cells containing different plasmids, in the presence of different phages. The presence of the RpL11 plasmid reduces the frequency of lysogenization with G101 phage but not with B3 phage. The mutants of pMG53 plasmid having modified phage inhibition spectrum were obtained. It was inferred that inhibition of different phages is under control of different loci of this plasmid. The mutants of phage B3 overcoming inhibition by plasmids were obtained. It was supposed that the plasmids act at least at three different sites of the phage B3 genome.  相似文献   

5.
To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in ∼300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressed for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.  相似文献   

6.
Phage Typing Reactions on Brucella Species   总被引:1,自引:0,他引:1  
The nature of the phage typing reactions on Brucella species was determined by rates of adsorption and infection, one-step growth experiments, and susceptibility to lysis from without. The highest rates of adsorption and infection were obtained on smooth B. abortus cultures, and large clear plaques were produced. One or a few phage particles per B. neotomae cell killed about one-half of the cells, but some went through an infective cycle and released mature phage that resulted in production of small clear plaques. With B. suis, more phage particles per cell were required to kill, replication did not occur, and plaques were not observed. Still greater numbers of phage particles were required to cause some inhibition of growth of B. melitensis lawns. Rough Brucella cultures and species, such as B. ovis and B. canis, were not affected by the highest concentrations of phage. B. abortus cultures of intermediate colonial morphology adsorbed phage, but only a few infected cells (after a delayed latent period) released mature phage. An infected culture or colony appeared normal until spontaneous phage mutants appeared which could penetrate the cell wall more effectively than the parent phage. The mutant phage multiplied more rapidly, and the colony changed to a sticky white form.  相似文献   

7.
The structural properties of bacteriophage M13 during disassembly were studied in different membrane model systems, composed of a homologue series of the detergents sodium octyl sulfate, sodium decyl sulfate, and sodium dodecyl sulfate. The structural changes during phage disruption were monitored by spin-labeled electron spin resonance (ESR) and circular dichroism spectroscopy. For the purpose of ESR spectroscopy the major coat protein mutants V31C and G38C were site-directed spin labeled in the intact phage particle. These mutants were selected because the mutated sites are located in the hydrophobic part of the protein, and provide good reporting locations for phage integrity. All amphiphiles studied were capable of phage disruption. However, no significant phage disruption was detected below the critical micelle concentration of the amphiphile used. Based on this finding and the linear dependence of phage disruption by amphiphiles on the phage concentration, it is suggested that the solubilization of the proteins of the phage coat by amphiphiles starts with an attachment to and penetration of amphiphile molecules into the phage particle. The amphiphile concentration in the phage increases in proportion to the amphiphile concentration in the aqueous phase. Incorporation of the amphiphile in the phage particle is accompanied with a change in local mobility of the spin-labeled part of the coat protein and its secondary structure. With increasing the amphiphile concentration in the phage particle, a concentration is reached where the concentration of the amphiphile in the aqueous phase is around its critical micelle concentration. A further increase in amphiphile concentration results in massive phage disruption. Phage disruption by amphiphiles appears to be dependent on the phage coat mutations. It is concluded that phage disruption is dependent on a hydrophobic effect, since phage solubilization could significantly be increased by keeping the hydrophilic part of the amphiphile constant, while increasing its hydrophobic part.  相似文献   

8.
The ability of bacteriophage to persist in the phyllosphere for extended periods is limited by many factors, including sunlight irradiation, especially in the UV zone, temperature, desiccation, and exposure to copper bactericides. The effects of these factors on persistence of phage and formulated phage (phage mixed with skim milk) were evaluated. In field studies, copper caused significant phage reduction if applied on the day of phage application but not if applied 4 or 7 days in advance. Sunlight UV was evaluated for detrimental effects on phage survival on tomato foliage in the field. Phage was applied in the early morning, midmorning, early afternoon, and late evening, while UVA plus UVB irradiation and phage populations were monitored. The intensity of UV irradiation positively correlated with phage population decline. The protective formulation reduced the UV effect. In order to demonstrate direct effects of UV, phage suspensions were exposed to UV irradiation and assayed for effectiveness against bacterial spot of tomato. UV significantly reduced phage ability to control bacterial spot. Ambient temperature had a pronounced effect on nonformulated phage but not on formulated phages. The effects of desiccation and fluorescent light illumination on phage were investigated. Desiccation caused a significant but only slight reduction in phage populations after 60 days, whereas fluorescent light eliminated phages within 2 weeks. The protective formulation eliminated the reduction caused by both of these factors. Phage persistence was dramatically affected by UV, while the other factors had less pronounced effects. Formulated phage reduced deleterious effects of the studied environmental factors.  相似文献   

9.
The ability of bacteriophage to persist in the phyllosphere for extended periods is limited by many factors, including sunlight irradiation, especially in the UV zone, temperature, desiccation, and exposure to copper bactericides. The effects of these factors on persistence of phage and formulated phage (phage mixed with skim milk) were evaluated. In field studies, copper caused significant phage reduction if applied on the day of phage application but not if applied 4 or 7 days in advance. Sunlight UV was evaluated for detrimental effects on phage survival on tomato foliage in the field. Phage was applied in the early morning, midmorning, early afternoon, and late evening, while UVA plus UVB irradiation and phage populations were monitored. The intensity of UV irradiation positively correlated with phage population decline. The protective formulation reduced the UV effect. In order to demonstrate direct effects of UV, phage suspensions were exposed to UV irradiation and assayed for effectiveness against bacterial spot of tomato. UV significantly reduced phage ability to control bacterial spot. Ambient temperature had a pronounced effect on nonformulated phage but not on formulated phages. The effects of desiccation and fluorescent light illumination on phage were investigated. Desiccation caused a significant but only slight reduction in phage populations after 60 days, whereas fluorescent light eliminated phages within 2 weeks. The protective formulation eliminated the reduction caused by both of these factors. Phage persistence was dramatically affected by UV, while the other factors had less pronounced effects. Formulated phage reduced deleterious effects of the studied environmental factors.  相似文献   

10.
B. megatherium cells were grown in various culture media, centrifuged and washed, and suspended in other culture media containing "C" or "T" phage. The per cent of infection, rate of growth, lysis, and phage production were determined. The behavior of the system depends on the culture medium in which the cells were grown and also on the culture medium in which they were mixed with phage. With the T phage it is possible to set up systems which yield the following results: 1. No infection, normal growth, no phage production. 2. Infection, normal growth, no lysis) phage production. 3. Infection, growth for several hours, lysis, and phage production. 4. Infection, no growth, lysis, and phage production. The C phage system is less affected by changes in the culture medium. The change in the behavior of the cells with T phage probably is not due to selection since it occurs without much growth of the culture, and is readily reversible.  相似文献   

11.
Strains of hemolytic Vibrio cholerae O1 (El Tor vibrio) which are sensitive to Mukerjee's cholera phage group IV were isolated from cholera patients in North-East Thailand in 1986. Plaques of the phage on these hemolytic V. cholerae O1 were usually translucent but almost transparent on some strains, just like the plaques on non-hemolytic V. cholerae O1 (classical vibrio). These hemolytic V. cholerae O1 were lysogenized with the infection of cholera phage IV, and the lysogenized strains produced phage different from cholera phage IV. These hemolytic strains were classified into Cured type in prophage typing of V. cholerae O1, El Tor, because they were also lysogenized with Kappa phage and were hemolytic. When Cured-type V. cholerae O1, El Tor previously isolated in various countries were examined for the sensitivity to cholera phage IV, some of the isolates were sensitive.  相似文献   

12.
Yu  Ling  Wang  Shuang  Guo  Zhimin  Liu  Hongtao  Sun  Diangang  Yan  Guangmou  Hu  Dongliang  Du  Chongtao  Feng  Xin  Han  Wenyu  Gu  Jingmin  Sun  Changjiang  Lei  Liancheng 《Applied microbiology and biotechnology》2018,102(2):971-983

In recent years, after the emergence of a large number of multidrug-resistant bacteria, phages and phage-associated products for the prevention and control of bacterial disease have revealed prominent advantages as compared with antibiotics. However, bacteria are susceptible to becoming phage-resistant, thus severely limiting the application of phage therapy. In this study, Escherichia coli cells were incubated with lytic bacteriophages to obtain mutants that were resistant to the lytic phages. Then, bacteriophages against the phage-resistant variants were isolated and subsequently mixed with the original lytic phage to prepare a novel phage cocktail for bactericidal use. The data showed that our phage cocktail not only had notable bactericidal effects, including a widened host range and rapid lysis, but also decreased the generation and mutation frequency of phage-resistant strains in vitro. In addition, we tested our cocktail in a murine bacteremia model. The results suggested that compared with the single phage, fewer phage-resistant bacteria appeared during the treatment of phage cocktail, thus prolonging the usable time of the phage cocktail and improving its therapeutic effect in phage applications. Importantly, our preparation method of phage cocktail was proved to be generalizable. Because the bacteriophage against the phage-resistant strain is an ideal guard that promptly attacks potential phage resistance, this guard-killer dual-function phage cocktail provides a novel strategy for phage therapy that allows the natural ecology to be sustained.

  相似文献   

13.
The lipid-containing bacteriophage PRD1 was disrupted, and the subviral particles were studied. Guanidine treatment released two phage proteins (P3 and P5). These proteins form the polyhedral capsid. The remaining phage proteins were associated with the phage membrane vesicle. The vesicle was capable of forming a tubular structure. The isolated phage membrane vesicles aggregated readily. We found that aggregation and tube formation were associated with specific phage proteins (P11 and P18, respectively) by using protease treatment and an analysis of nonsense mutant phage particles. In addition, the possibility that free vesicles might be precursors to empty virions was studied.  相似文献   

14.
Several phage hosts of group A streptococci became resistant to lysis by bacteriophage as a consequence of having acquired the ability to grow in the presence of chloramphenicol. The phage was adsorbed to the streptococcal cell, and P(32)-labeling of the phage showed that the phage genome penetrated the chloramphenicol (CM)- resistant cells as it did the parent cells. However, artificial lysis of the infected CM-resistant cells with chloroform or enzymes revealed no intracellular mature phage particles. Lysates of infected CM-resistant cells contained no phage-related antigenic materials which possessed serum-blocking power, although they were readily detected in lysates of infected parent cells. The CM-resistant cells were not lysogenized by the phage. Only cells resistant to more than 10 mug/ml of chloramphenicol were resistant to phage, and this threshold effect was taken as an indication of at least two different loci of chloramphenicol resistance on the streptococcal genome. Strains resistant to high levels of other antibiotics, such as streptomycin and erythromycin, showed no resistance to lysis by phage. Evidence indicated that the mutant cells were deficient in an essential function associated with the phage genome.  相似文献   

15.
Phage phi 197 is representative of a widespread lactococcal phage group characterized by a particular morphology (prolate head with a noncontractile tail). In order to develop an immunoenzymatic phage detection test, fusion proteins containing beta-galactosidase fused to epitopes of phage phi 197 structural proteins were constructed by cloning random DNA fragments from the phage genome upstream of a lacZ gene on a plasmid vector. Recombinant plasmids containing certain fragments encoded the synthesis of fusion proteins which react with polyclonal antibodies against the phage and confer a Lac+ phenotype on Escherichia coli. Three different epitopes were represented; phage-specific DNA fragments encoding these epitopes were mapped at three locations on the phage genome, and their nucleotide sequences were determined. Two fused phage antigens were conformational epitopes, whereas the phage epitope of protein encoded by the recombinant plasmid designated pOA17 was a denaturation-resistant epitope. This epitope was very immunogenic. Protein encoded by plasmid pOA17 was synthesized in large amounts from a strong promoter. Antibodies raised against this hybrid protein were used to identify the 46-kDa minor phage protein which provides the epitope. Antibody cross-reactivity of phages related to phi 197 showed that this epitope is well conserved in this genetic group.  相似文献   

16.
Characterization of Lactococcus lactis phage antigens.   总被引:2,自引:2,他引:0       下载免费PDF全文
Phage phi 197 is representative of a widespread lactococcal phage group characterized by a particular morphology (prolate head with a noncontractile tail). In order to develop an immunoenzymatic phage detection test, fusion proteins containing beta-galactosidase fused to epitopes of phage phi 197 structural proteins were constructed by cloning random DNA fragments from the phage genome upstream of a lacZ gene on a plasmid vector. Recombinant plasmids containing certain fragments encoded the synthesis of fusion proteins which react with polyclonal antibodies against the phage and confer a Lac+ phenotype on Escherichia coli. Three different epitopes were represented; phage-specific DNA fragments encoding these epitopes were mapped at three locations on the phage genome, and their nucleotide sequences were determined. Two fused phage antigens were conformational epitopes, whereas the phage epitope of protein encoded by the recombinant plasmid designated pOA17 was a denaturation-resistant epitope. This epitope was very immunogenic. Protein encoded by plasmid pOA17 was synthesized in large amounts from a strong promoter. Antibodies raised against this hybrid protein were used to identify the 46-kDa minor phage protein which provides the epitope. Antibody cross-reactivity of phages related to phi 197 showed that this epitope is well conserved in this genetic group.  相似文献   

17.
A Ishikawa  H Ikeda 《Gene》1983,21(3):211-216
Dictyostelium discoideum myxamoebae were cultured with Escherichia coli cells infected with lambda phage in the presence of chloramphenicol. After eliminating the uningested bacteria by repeated centrifugation in a Percoll gradient, we examined the myxamoeba cytoplasm (not the food vacuole) for the presence of phage DNA. A significant amount of DNA extracted from the myxamoebae was hybridizable with purified phage lambda DNA, and capable of forming phage particles when packaged in vitro with phage lambda proteins. The EcoRI restriction maps of the phages recovered from the plaques were identical to that of the infecting phage. These results strongly suggest that phage DNA molecules were taken up by the cellular slime mold cells and that at least some fraction existed in intact form.  相似文献   

18.
Phage therapy has been a centre of attraction for biomedical scientists to treat infections caused by drug resistant strains. However, ability of phage to act only on extracellular bacteria and probability of interference by anti-phage antibodies in vivo is considered as a important limitation of bacteriophage therapy. To overcome these hurdles, liposome were used as delivery vehicle for phage in this study. Anti-phage antibodies were raised in mice and pooled serum was evaluated for its ability to neutralize free and liposome entrapped phage. Further, ability of phage and liposome-entrapped phage to enter mouse peritoneal macrophages and kill intracellular Klebsiella pneumoniae was compared. Also, an attempt to compare the efficacy of free phage and liposome entrapped phage, alone or in conjunction with amikacin in eradicating mature biofilm was made. The entrapment of phage in liposome provided 100% protection to phage from neutralizing antibody. On the contrary un-entrapped phage got neutralized within 3 h of its interaction with antibody. Compared to the inability of free phage to enter macrophages, the liposome were able to deliver entrapped phage inside macrophages and cause 94.6% killing of intracellular K. pneumoniae. Liposome entrapped phage showed synergistic activity along with amikacin to eradicate mature biofilm of K. pneumoniae. Our study reinforces the growing interest in using phage therapy as a means of targeting multidrug resistant bacterial infections as liposome entrapment of phage makes them highly effective in vitro as well as in vivo by overcoming the majority of the hurdles related to clinical use of phage.  相似文献   

19.
20.
Restriction fragments hybridizing to phage HP1c1 DNA were identified in digests of DNA from lysogenic strains of Haemophilus influenzae. The results showed that the cohesive ends of the mature phage DNA were joined in lysogens and that the phage genome was covalently linked to the host DNA, indicating that lysogeny involves recombination between specific sites on the phage and host chromosomes. The site on the phage chromosome at which this recombination occurred was between 110 and 750 base pairs of the left end on the mature phage genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号