首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Summary In rodents, residual damage is inducible in hematopoietic stem cells by exposure to ionizing radiation or alkylating agents. This damage can be assayed in mice by transferring bone marrow into lethally irradiated syngeneic recipients and subsequently measuring the incremental increase of 5-(125I)iodo-2-deoxyuridine incorporation in spleens. In this study, bone marrow from mice treated 3 weeks previously with Methylnitrosourea (50 mg/kg) or 450 rad was injected into recipients in order to determine possible residual effects of treatment on erythroid cell differentiation following stem cell seeding. Such effects were detected by a reduced amount of59Fe incorporation into spleens, thus indicating transfer of residual stem cell damage to differentiating cells.Research supported by the U.S. Department of Energy Contract No. DE-AC-02-76CH00016  相似文献   

2.
Part-body irradiated CBA mice were injected with CBA-T6 bone marrow. In this way a predominantly donor population was established in the femora while the marrow of the humeri remained largely (average 94 %) of host origin. In animals examined cytologically up to 2 years later, no tendency was observed for the proportion of donor cells in the humeri to increase. Splenectomy had no effect on this. When femoral bone marrow from the experimental mice was injected into lethally (whole-body) irradiated recipients, cells originating from the primary host repopulated the lymph nodes to a disproportionate extent. Equilibration between the cell populations of femora and humeri occurred after re-exposure to 600 rad whole-body irradiation, but not after 100 rad or 350 rad; thus, regeneration of damaged bone marrow involved a significant contribution from extrinsic stem cells only after the highest dose of radiation. The data are compatible with an inflow of at most ten effective stem cells per humerus per day from the blood, and suggest a much lower figure. This means that few if any of the stem cells of peripheral blood enter the bone marrow and found haemopoietic clones. Evidence is adduced for the existence of a proliferating lymphoid sub-population in the bone marrow, contributing some 5–10% of the observed mitoses. The mitotic cells in the lymph nodes are replaced from marrow-derived progenitors at an estimated rate of 4–5 %/day. The relevant data for the thymus are more variable, but suggest an average figure of 8–11 %/day. Earlier data from mouse parabionts suggest a lower rate of inflow to the thymus.  相似文献   

3.
Experiments were conducted on CBA mice and albino rats. A study was made of the effect of erythrocyte destruction products (EDP) on the content of hemopoietic colony-forming units (CFU), differentiation of stem cells and the erythropoietin production. It was shown that 3 or 4 EDP injections to normal mice or to lethally irradiated (1000 rad) mice after the transplantation of bone marrow cells caused no changes in the CFU level of stem cells differentiation. In case of a daily (for 3 days) administration of EDP to mice before the irradiation (1000 rad) and bone marrow transplantation there was observed an increase of the colonies count in the recipients' spleen on account of the erythroid colonies. EDP injection caused no changes in the erythropoietic activity of the blood serum. A possible role of erythrocyte destruction products in the mechanism of erythropoiesis autoregulation is discussed.  相似文献   

4.
胚胎发育中,肝脏是一个重要的造血器官。近年来胎肝移植的临床应用重新引起了人们的关注。本文应用染色体的 C-带染色法研究了小鼠骨髓和胎肝造血干细胞在照射受体小鼠中的增殖能力与相互间的竞争作用。实验结果表明胎肝造血干细胞在成年骨髓中的植入率比较同样条件下的成年骨髓造血干细胞低,但胎肝造血干细胞比较成年骨髓造血干细胞具有更强的自我更新或增殖能力。在同种胎肝造血干细胞移植中,为了降低同种移植抗力,提高移植的胎肝造血干细胞在受体中的耐受性,移植前对受体作适当的免疫抑制处理是必要的。因此,克服个体发育屏障和移植免疫屏障是提高同种胎肝造血干细胞移植效果中两个重要的研究课题。  相似文献   

5.
The capacity of NZB stem cells to proliferate in vivo was evaluated in two systems which required repopulation of peripheral organs. In both types of depletion systems, stem-cell repopulation after cyclophosphamide treatment or adoptive transfer repopulation in lethally irradiated hosts, it was found that NZB stem cells were hyperproliferating. The increase in proliferating cells was most pronounced in the spleens of NZB mice treated with high-dose cyclophosphamide and in lethally irradiated F1 mice reconstituted with NZB T-cell-depleted bone marrow. Thus, upon a stimulus to repopulate, NZB marrow stem cells will hyperproliferate in peripheral organs resulting in an increase in cell number. The abnormality in the marrow cells can be observed in young NZB mice when their marrow cells are in an environment which requires recovery and division.  相似文献   

6.
A comparison of the exocolonizing and autorepopulating tests for haemopoietic stem-cell assay indicate that the ‘overshoot’in splenic colony formation, observed 12–14 days after 150 rad total-body radiation (TBR), only occurs with the auto-repopulation assay. The explanation is that the priming dose of 150 rad increases the absolute seeding rate of stem cells from the marrow. A seeding rate significantly greater than normal can ‘take’only if the spleen is available—it can expand and accommodate stem cells while the bone marrow cannot. If, however, the absolute number of colony-forming cells are decreased in the femur, a relative increase in seeding rate can take place even in the splenectomized animal. Evidence is presented concerning the different turnover states of exo- and autorepopulating stem cells (CFU) and those responsible for erythropoietic response (ERC), and the precursors of agar colony-formers.  相似文献   

7.
The effect of mouse serum interferon (IF) in vitro and an inducer in vivo on the proliferation of a pluripotent stem cell population with high turnover rate was studied. Proliferation rate was characterized by the number of CFUs in the S phase of the cell cycle. Increased proliferation of bone marrow stem cell populations was produced either by irradiating the donor mice with 3.36 Gy (336 rad) 60Co-gamma rays 7 days before the experiment or by incubating normal bone marrow cells with 10(-11) M concentration of isoproterenol. IF considerably reduced the number of CFUs in S phase in both cases without reducing the CFUs content of the samples. Injection of IF inducer (4 mg/kg poly I:C) into regenerating mice also inhibited the proliferation of CFUs without decreasing the femoral CFUs level. Regeneration kinetics of CFUs from irradiated poly I:C-treated mice ran parallel with that of irradiated untreated animals but showed a characteristic delay corresponding to approximately one CFUs doubling. A transient, non-cytotoxic proliferation inhibitory effect of IF or IF inducer is, therefore, proposed.  相似文献   

8.
Cells responsible for repopulation of irradiated longterm cultures of murine bone marrow and capable of generating CFUs for at least 4-5 weeks after seeding referred here to as primitive hemopoietic stem cells (P-HSC) were assayed by limiting dilution analysis. During development of mice P-HSC can be detected for the first time in the liver of 12-13-day-old embryos and their number is about 10 per organ. At day 17-18 of gestation the number of P-HSC increases ten-fold; however, we could not detect the proliferation of these cells using the technique of hydroxyurea suicide. In the adult mouse P-HSC content is about 100 precursors per femur and their concentration is one P-HSC per 1-2 x 10(5) bone marrow cells. P-HSC content in the spleen is 0.5 per 10(6) cells. In vivo treatment with 5-fluorouracil or hydroxyurea (six injections every 6 h) does not alter significantly the number of P-HSC, although either treatment kills about 99% of CFUs. Several months after reconstitution of lethally irradiated mice with a "small" inoculum of bone marrow cells (0.20-0.35 x 10(6)) the number of bone marrow P-HSC was reduced as compared to that in animals reconstituted by injection of a "large" cell dose (20-35 x 10(6)). These data suggest that P-HSC have limited proliferative potential and are incapable of self-maintenance.  相似文献   

9.
Space flight with associated microgravity is complicated by "astronaut's anemia" and other hematologic abnormalities. Altered erythroid differentiation, red cell survival, plasma volume, and progenitor numbers have been reported. We studied the impact of microgravity on engraftable stem cells, culturing marrow cells in rotary wall vessel (RWV) culture chambers mimicking microgravity and in normal gravity nonadherent Teflon bottles. A quantitative competitive engraftment technique was assessed under both conditions in lethally irradiated hosts. We assessed 8-wk engraftable stem cells over a period spanning at least one cell cycle for cytokine (FLT-3 ligand, thrombopoietin [TPO], steel factor)-activated marrow stem cells. Engraftable stem cells were supported out to 56 h under microgravity conditions, and this support was superior to that seen in normal-gravity Teflon bottle cultures out to 40 h, with Teflon bottle culture support superior to RWV from 40 to 56 h. A nadir of stem cell number was seen at 40 h in Teflon and 48 h in RWV, suggesting altered marrow stem cell cycle kinetics under microgravity. This is the first study of engraftable stem cells under microgravity conditions, and the differences between microgravity and normal gravity cultures may present opportunities for unique future stem cell expansion strategies.  相似文献   

10.
Compared to saline-injected mice 9 days after 6.5 Gy irradiation, there were twofold more Day 8 spleen colony-forming units (CFU-S) per femur and per spleen from B6D2F1 mice administered a radioprotective dose of human recombinant interleukin-1-alpha (rIL-1) 20 h prior to their irradiation. Studies in the present report compared the numbers of CFU-S in nonirradiated mice 20 h after saline or rIL-1 injection. Prior to irradiation, the number of Day 8 CFU-S was not significantly different in the bone marrow or spleens from saline-injected mice and rIL-1-injected mice. Also, in the bone marrow, the number of Day 12 CFU-S was similar for both groups of mice. Similar seeding efficiencies for CFU-S and percentage of CFU-S in S phase of the cell cycle provided further evidence that rIL-1 injection did not increase the number of CFU-S prior to irradiation. In a marrow repopulation assay, cellularity as well as the number of erythroid colony-forming units, erythroid burst-forming units, and granulocyte-macrophage colony-forming cells per femur of lethally irradiated mice were not increased in recipient mice of donor cells from rIL-1-injected mice. These results demonstrated that a twofold increase in the number of CFU-S at the time of irradiation was not necessary for the earlier recovery of CFU-S observed in mice irradiated with sublethal doses of radiation 20 h after rIL-1 injection.  相似文献   

11.
The effect of mouse serum interferon (IF) in vitro and an inducer in vivo on the proliferation of a pluripotent stem cell population with high turnover rate was studied. Proliferation rate was characterized by the number of CFUs in the S phase of the cell cycle. Increased proliferation of bone marrow stem cell populations was produced either by irradiating the donor mice with 3·36 Gy (336 rad) 60Co-gamma rays 7 days before the experiment or by incubating normal bone marrow cells with 10–11 M concentration of isoproterenol. IF considerably reduced the number of CFUs in S phase in both cases without reducing the CFUs content of the samples. Injection of IF inducer (4 mg/kg poly I:C) into regenerating mice also inhibited the proliferation of CFUs without decreasing the femoral CFUs level. Regeneration kinetics of CFUs from irradiated poly I:C-treated mice ran parallel with that of irradiated untreated animals but showed a characteristic delay corresponding to approximately one CFUs doubling. A transient, non-cytotoxic proliferation inhibitory effect of IF or IF inducer is, therefore, proposed.  相似文献   

12.
The extent of bone marrow damage caused by the administration of single or repeated doses of either hydroxyurea (1000 mg/kg b.w.) or colchicine (1 mg/kg b.w.) are comparable. This conclusion is based on serial studies of bone marrow cellularity and of the CFUc numbers in the bone marrow. the proliferation response of the pluripotential haemopoietic stem cells, determined by the cells forming colonies in the spleen of lethally irradiated mice (CFUs) markedly differs if the bone marrow damage is caused by hydroxyurea or colchicine. While hydroxyurea administration stimulates a large proportion of the resting G0 cells into the cell cycle, the damage induced by colchicine is followed by only a mild increase in the CFUs proliferation rate. The seeding efficiency of the spleen colony technique has been determined after both hydroxyurea and colchicine administration. This parameter, important for the estimation of the number of the pluripotential haemopoietic stem cells in blood forming organs, is significantly affected by hydroxyurea administration, but also by repeated injections of colchicine. Following a single dose of hydroxyurea, the time-course of the CFUs numbers, which were corrected for the change in the seeding efficiency, shows an overshoot occurring after 18–20 hr. At the other time periods, the number of pluripotential haemopoietic stem cells is little affected by a single hydroxyurea injection. This poses a question about the nature of the stimulus, which after hydroxyurea administration triggers the CFUs from the resting G0 state into the cell cycle. There is evidence that this stimulus is probably not represented by the damage caused to the various intensively proliferating cell populations of the bone marrow. This evidence is based on experiments which show that colchicine induced damage, of a degree similar to that after hydroxyurea, does not stimulate the CFUs proliferation rate to an extent comparable to hydroxyurea. The possibility that colchicine could block CFUs in the G0 state or that it could interfere with the progress of CFUs through the G1 and S phases of the cell cycle have been ruled out by experiments which demonstrated that colchicine (1 mg/kg b.w.), administered 10 min before hydroxyurea, does not reduce the number of CFUs triggered into the cell cycle as the consequence of hydroxyurea administration.  相似文献   

13.
A mixed transplantation of bone marrow cells, and lymph nodes or thymic cells of mice CBA strain into lethally irradiated hybrid recipients (CBAXC57B1)F1 is accompanied with changes in the differentiation pattern from a mainly erythroid to a mainly granuloid way. Thymectomy of either donor of bone marrow cells or recipients, or both, destroys the stem cell differentiation in the direction of granulopoieseis. Intact syngeneic lymphocytes normalize differentiation of the stem cells, but in the presence of tissue antigens these provide for the stem cell differentiation mainly in the direction of granulopoiesis. The differentiation of stem haemopoietic cells is accomplished under the thymic and lymphocyte control. T-differentiating lymphocytes (Td) are the lymphocytes controlling the stem cell differentiation.  相似文献   

14.
THE ROLE OF BONE MARROW OF X-IRRADIATED MICE IN THYMIC RECOVERY   总被引:1,自引:0,他引:1  
The influence of the bone marrow on the repopulation of the thymus in X-irradiated mice has been investigated.
It was observed that the thymus and a certain population of bone marrow lymphocytic cells were repopulated in parallel in a cyclic fashion. This occurred either after a single exposure of mice to 400 R or after serial weekly X-ray treatments with 170 R. Lethally irradiated recipients which were grafted with bone marrow cells obtained 12-24 days after four weekly irradiations of donor mice with 170 R also exhibited a cyclic repopulation of both the thymus and the bone marrow lymphocytic population. In contrast, mice which were transplanted with bone marrow cells from unirradiated donors, containing an equal number of stem cells (CFU), exhibited a continuous rather than a cyclic recovery of both cell populations. the bone marrow stem cells of mice recovering from X-irradiation were found to have a decreased proliferative activity, since they produced significantly smaller spleen colonies in lethally irradiated recipients than marrow cells from unirradiated mice.
The results were interpreted as indicating that the bone marrow lymphocytic cells may act as thymic precursor cells and that thymic lymphopoiesis is dependent on the presence of such cells. Evidently, the production of lymphocytic cells will decrease when the stimulus for granulocyte production increases due to the limited proliferative activity of the surviving bone marrow stem cells after irradiation. This may result in a cyclic variation of the production of bone marrow lymphocytic cells and it follows that thymic lymphopoiesis will run parallel.  相似文献   

15.
Erythropoiesis was suppressed in CDF1 female mice using one of three different techniques: hypertransfusion, daily injections of low doses of actinomycin D, or post-hypobaric polycythemia. Spleens and bone marrows of these mice contained increased numbers of stem cells as determined by transplantation into lethally irradiated syngeneic mice. These stem cells were capable of producing both erythrocytic and granulocytic progeny. An increase in the number of multipotential stem cells or increases in the numbers of both unipotential granulocytic and erythrocytic stem cells is compatible with these observations and implies that hematopoietic stem cells may have a basic rate of division that is in part independent of stimuli to differentiate. The implications of these findings for the possible modification of antineoplastic drug-induced bone marrow toxicity are discussed.  相似文献   

16.
Using a single spleen colony transplantation technique and sex chromosome typing as a natural cytogenetic marker, most spleen colony-forming cells (CFC) in adult bone marrow or fetal livers of inbred LACA or C57 mice re-established hemopoiesis in lethally irradiated mice when the spleen colonies were sampled at 13 days after transplantation. However, most of the spleen colony-forming cells in the peripheral blood of normal mice possess little potential for proliferation and are less efficient in the re-establishment of hemopoiesis in lethally irradiated mice. The CFC population is heterogeneous in the mice. From the subsequent retransplantation of colonies from colony-forming cells in the peripheral blood, the simple assessment of spleen colony-forming units (CFU-s) content, based on the number of splenic colonies, does not reliably represent the content of hemopoietic stem cells.  相似文献   

17.
Muscle-derived stem cells (MDSCs) can differentiate into multiple lineages, including haematopoietic lineages. However, it is unknown whether MDSCs preserve their myogenic potential after differentiation into other lineages. To address this issue, we isolated from dystrophic muscle a population of MDSCs that express stem-cell markers and can differentiate into various lineages. After systemic delivery of three MDSC clones into lethally irradiated mice, we found that differentiation of the donor cells into various lineages of the haematopoietic system resulted in repopulation of the recipients' bone marrow. Donor-derived bone-marrow cells, isolated from these recipients by fluorescence-activated cell sorting (FACS), also repopulated the bone marrow of secondary, lethally irradiated, recipients and differentiated into myogenic cells both in vitro and in vivo in normal mdx mice. These findings demonstrate that MDSC clones retain their myogenic potential after haematopoietic differentiation.  相似文献   

18.
In a search of alternative techniques of red cell depletion from the marrow prior AB0 incompatible transplantation we got interested in B?yum technique of polysaccharide-ditrizoate gradient centrifugation for isolation of mononuclear cells. This method might be used for the purpose of red cell depletion only if it preserves haemopoiesis reconstituting stem cells. Whether this is the case was tested using murine model of lethally irradiated donors. Polysaccharide-ditrizoate gradient isolated mononuclear cells contained 100% spleen colony forming stem cells and possessed the same bone marrow and spleen reconstitutive potential as non-manipulated marrow cells. Therefore, this method may be considered for potential clinical application.  相似文献   

19.
Granulated metrial gland (GMG) cell differentiation was examined in deciduomata in lethally irradiated mice which had been reconstituted with rat bone marrow. The time at which the bone marrow reconstitution was carried out was varied in relation to the time of initiating the decidual reaction. GMG cells were examined at various times after bone marrow transplantation to determine whether they had the morphology which characterised them as being derived from host or donor stem cells. Differentiation of donor type GMG cells was seen within the first week after transplantation and occurred even when the bone marrow was transplanted two days after initiating the decidual response.  相似文献   

20.
T B Rudneva  V M Man'ko 《Ontogenez》1979,10(5):510-512
The expression of allogenic inhibition was studied when transplanting 10(5) cells of bone marrow of C57BL mice to the lethally irradiated recipients (CBA X C57BL) F1 of different age (2 to 11 months). In the control experiments the bone marrow cells at the same dose were introduced to the lethally irradiated syngenic (C57BL) mice. The most pronounced inhibition of the parental stem cells proliferation was registered in 2 months old recipients F1 (4.7 times), it was somewhat weakened in 3 months old and animal in 4--11 months old recipients (1.1 to 1.8 times). The thymectomy of adult recipients F1 did not eliminate the expression of allogenic inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号