首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The addition of 200 pM monoiodinated human atrial natriuretic factor-(99-126) (125I-hANF) to cultured bovine aortic smooth muscle cells at 37 degrees C resulted in a rapid clearance from the medium (t1/2 approximately 7.5 min). Within 5 min, [125I]iodotyrosine126 (125I-Y), Arg125-[125I]iodotyrosine126 (125I-RY) and Phe124-Arg-[125]iodotyrosine126 (125I-FRY) appeared in the medium. The identities of these degradation products were confirmed by 1) retention time on high performance liquid chromatography (HPLC) relative to standards, 2) products generated by digestion with aminopeptidase M, and 3) the absence of the Met110. Preincubation of the cells with ammonium chloride or chloroquine resulted in a significant increase in the intracellular accumulation of radiolabel, indicative of endocytosis and rapid delivery of 125I-hANF to an acidic intracellular compartment (endosome and/or lysosome). Neither ammonium chloride, chloroquine, nor excess unlabeled hANF blocked the rapid appearance in the medium of 125I-RY or 125I-FRY. Bestatin inhibited the generation of 125I-RY, with a concomitant increase in 125I-FRY, suggesting that the 125I-RY is produced by aminopeptidase action on 125I-FRY. The endopeptidase 24.11 (enkephalinase) inhibitor, SCH 39370, did not inhibit the formation of 125I-FRY. These results provide evidence of a peptidase capable of specifically removing the COOH-terminal tripeptide from 125I-hANF. The COOH-terminal tripeptide, Phe124-Arg-Tyr126, was also isolated from cell digests of hANF by HPLC and its identity confirmed by amino acid analysis. Since it is generally believed that the COOH-terminal tripeptide is critical to many of atrial natriuretic factor-(99-126)'s bioactivities, this enzyme may be involved in the inactivation of atrial natriuretic factor-(99-126) in target tissues.  相似文献   

2.
The binding, internalization and degradation of 200 pM monoiodinated human atrial natriuretic factor-(99-126) (125I-hANF) by cultured bovine aortic endothelial cells (BAECs) were studied at 37 degrees C. 125I-hANF was rapidly cleared from the extracellular medium (t1/2 approximately 10 min), whereas preincubation of the cells in the presence of 20 mM-NH4Cl or 0.2 mM-chloroquine resulted in a significant inhibition of this process. The BAECs rapidly produce three major degradation products of 125I-hANF, namely [125I]iodotyrosine 126 (125I-Y), Arg125-[125I]iodotyrosine126 (125I-RY) and Phe124-Arg125-[125I]iodotyrosine126(125I-FRY), which were detected in the extracellular medium. NH4Cl and chloroquine acted to inhibit the generation of 125I-Y and 125I-RY, but not that of 125I-FRY. Furthermore, excess unlabelled hANF (300 nM) completely blocked the rapid production of 125I-Y and 125I-RY in the first 5 min, but only partially (49%) inhibited the generation of 125I-FRY. Thus, in contrast with our previous findings with cultured smooth-muscle cells [Johnson, Arik & Foster (1989) J. Biol. Chem. 264, 11637-11642], BAECs bind, internalize and rapidly degrade 125I-hANF, resulting in the release of 125I-Y and 125I-RY into the extracellular medium. Similarly to smooth-muscle cells, the BAECs generate 125I-FRY from 125I-hANF via an extracellular proteolytic event. The rapidity of the receptor-mediated process and its sensitivity to NH4Cl and chloroquine suggest that the 125I-hANF is proteolytically processed in the endosomes of BAECs and that its receptors cycle between the cell surface and intracellular stores.  相似文献   

3.
Fetal bovine aortic endothelial cells (FBAEC) were exposed to purified fractions of conditioned medium from cultures of hair dermal papilla cells (DPC) to determine the existence of any vascular endothelial growth factor (VEGF)-like paracrine activity of the latter. Such fractions were tested for stimulation of growth and migration of cultured FBAEC. In addition, VEGF secretion by DPC was measured by radioassay of VEGF receptors using FBAEC as target cells. The results showed that stimulation of FBAEC proliferation and migration following exposure to purified conditioned medium was dose-dependent. Radioreceptor assays of recombinant VEGF and purified DPC-conditioned medium showed competitive VEGF binding in FBAEC.Abbreviations CM conditioned medium - DMEM Dulbecco's modified eagle's medium - DPC dermal papilla cells - EDTA ethylenediaminetetra-acetic acid - FBAEC fetal bovine aortic endothelial cells - FCS fetal calf serum - VEGF vascular endothelial growth factor  相似文献   

4.
A mitogenic and plasminogen activator (PA)-inducing activity for endothelial cells has been identified in serum-free culture medium of normal AG 7680 and transformed tumorigenic GM 7373 fetal bovine aortic endothelial (FBAE) cells. The activity binds to heparin-Sepharose and it is quenched by polyclonal anti-human placental basic fibroblast growth factor (bFGF) antibodies. In the serum-free conditioned medium of FBAE cells, the anti-bFGF antiserum recognizes an immunorective Mr 20,000 molecule which co-purifies with the mitogenic and PA-inducing activity on a heparin-Sepharose column. The partially purified Mr 20,000 bFGF-like molecule competes with the typical Mr 18,000 125I-bFGF form for the binding to high-affinity bFGF receptors in intact GM 7373 cells. Immunoprecipitation of biosynthetically labeled GM 7373 cells with anti-bFGF antiserum confirms the presence of a Mr 20,000 bFGF-like molecule in the conditioned medium of these cells and identifies the typical Mr 16,000 and Mr 18,000 bFGF forms and two high-molecular-weight immunoreactive Mr 22,000 and Mr 25,000 bFGF forms in their cell extract. Immunoreactive Mr 20,000 bFGF is detectable also in the conditioned medium of transformed nontumorigenic FBAE GM 7372 cells and of adult bovine aortic endothelial cells, but not in the culture medium of nonendothelial cell types, including rat and mouse fibroblasts, human hepatoma, and human endometrial adenocarcinoma cells. The results indicate that bovine endothelial cells secrete a Mr 20,000 bFGF-like molecule which shares several biological, biochemical, and immunological characteristics with the typical cell-associated Mr 18,000 bFGF.  相似文献   

5.
We have stably expressed the cDNA encoding the 165 amino-acid long form of human vascular endothelial growth factor (VEGF) in BHK-21 cells. VEGF was partially purified from the conditioned medium of transfected cells using heparin-sepharose affinity chromatography. The partially purified VEGF was mitogenic for various types of endothelial cells and inhibited the binding of pure [125I]VEGF to its receptors. Western blot analysis, using anti-VEGF antibodies, revealed a 47 kDa VEGF homodimer in the partially purified VEGF fraction. Preincubation of the transfected cells with the N-glycosylation inhibitor tunicamycin resulted in the conversion of the 47 kDa VEGF homodimer into a smaller, deglycosylated form of 42 kDa. Partially purified preparations of the deglycosylated VEGF displayed a mitogenic activity that was similar to that of the glycosylated form and efficiently inhibited the binding of native [125I]VEGF to the VEGF receptors of bovine aortic arch derived endothelial cells.  相似文献   

6.
The biosynthesis and modulation of the vasoconstrictor peptide endothelin was studied in the conditioned medium from cultured bovine pulmonary artery endothelial (BPAE) cells. Conditioned medium from cultured BPAE cells produced contraction of isolated rabbit aortic rings. Incubation of BPAE cells with the protease inhibitors TPCK or isatoic anhydride attenuated the extent of conditioned medium-induced contractions. Incubation of BPAE cells with thrombin produced an enhancement of conditioned medium-induced contraction by approximately 25%. Endothelin levels in conditioned medium were measured by RIA and incubation of BPAE cells with TPCK or isatoic anhydride significantly reduced endothelin levels, whereas incubation with thrombin or transforming growth factor beta-1 stimulated the levels of endothelin in the conditioned medium. These data indicate that endothelin may be modulated by certain protease inhibitors and by platelet and immune cell mediators and suggest a potential new mode of vascular tone regulation.  相似文献   

7.
Ionizing radiation has been reported to affect the fibrinolytic activity of exposed tissue. With cultured bovine aortic endothelial cells, radiation suppresses the release of plasminogen activator to the conditioned media, with a concomitant increase in intracellular plasminogen activator. Thus study was undertaken to determine whether radiation-impaired plasminogen activator release can be modified by phorbol ester. We exposed cultured bovine aortic endothelial cells to a sterilizing dose of 10 Gy of gamma-rays and found the treatment led to cell injury, as evidenced by an increased release of prelabeled chromium, and to a reduction of plasminogen activator in the conditioned media with elevated intracellular plasminogen activator in irradiated cells. Phorbol ester enhanced plasminogen activator activity in both sham-irradiated and irradiated endothelial cells. It was interesting to note that the increased plasminogen activator in phorbol ester-stimulated sham-irradiated cells was largely retained inside the cell, while it was released to the conditioned media in irradiated cells. Apparently, altered plasminogen activator activity of radiation-sterilized endothelial cells can be modified by exogenous stimuli.  相似文献   

8.
Neovascular responses induced by cultured aortic endothelial cells   总被引:7,自引:0,他引:7  
Neovascularization was studied in the chorioallantoic membrane of the chick embryo after implantation of bovine aortic endothelial and smooth muscle cells, Swiss and BALB/c 3T3 cells and human diploid fibroblasts cultured separately on microcarrier beads. Quantitative analysis of neovascularization indicated a 3 1/2-fold increase in the number of blood vessels responding to endothelial cells while smooth muscle cells induced a twofold increase when compared to the response of beads without cells. Skin fibroblasts and Swiss 3T3 cells did not elicit a comparable response. The marked angiogenic response induced by endothelial cells was characterized by a 137% increase in total vessel length and a 35% increase in average vessel area when compared to controls. Two of the properties required for an angiogenesis factor--stimulation of cellular migration and proliferation--can also be demonstrated using endothelial cell-conditioned medium in cell culture systems. Medium from cultured bovine aortic endothelium stimulates DNA synthesis, proliferation, and migration of smooth muscle cells. In addition, conditioned media from both endothelial cells and smooth muscle cells produced an angiogenic response in the chorioallantoic membrane assay, which was comparable to that produced by intact cells growing on microcarrier beads. Similar responses were not evident with medium conditioned by other cell types. These results indicate the potential importance of endothelial cells and endothelial cell products in regulating blood vessel growth.  相似文献   

9.
Endothelial cells in culture produce a vasoconstrictor substance   总被引:7,自引:0,他引:7  
We report that cultured vascular endothelial cells release into the culture medium a vasoconstrictor peptide, a substance we call an endothelium-derived constricting factor (EDCF). Conditioned medium from cultured bovine aortic and pulmonary artery endothelial cells caused sustained, dose-dependent isometric constriction of vascular rings isolated from bovine coronary and pulmonary arteries and rat and guinea pig pulmonary arteries and aortas. The medium also caused vasoconstriction when infused into isolated, perfused rabbit hearts and rat kidneys. Conditioned medium from bovine aortic intimal explants also contained constrictor activity, whereas medium from denuded intimal explants, cultured microvascular endothelial cells, vascular smooth muscle cells, or lung fibroblasts did not. Constrictor activity increased progressively in the culture medium over 2-12 h of incubation. Thrombin stimulated the release of constrictor activity; hypoxia, anoxia and meclofenamate had no effect and the calcium ionophore A23187 inhibited EDCF release. The EDCF caused a characteristic slow-onset and sustained constriction of the vascular rings that relaxed slowly over 60-90 min following removal. The constriction was not affected by inhibitors of arachidonic acid metabolism or by antagonists of serotonergic, histaminergic, alpha-adrenergic, opioid, leukotriene, angiotensin II, or substance P receptors; constriction was reversed partly by verapamil and acetylcholine and completely by nitroprusside and isoproterenol. EDCF was heat stable, not extractable into organic solvents, and completely destroyed by trypsin and neutral protease. Cycloheximide blocked the production of EDCF. These properties and the results of polyacrylamide gel filtration experiments suggested that EDCF was a peptide with a molecular weight of 3,000 daltons. These findings show that endothelial cells in culture produce a vasoconstrictor substance and support the idea that endothelial cell products play a role in mediating vascular tone.  相似文献   

10.
Cultured bovine aortic endothelial cells synthesize growth factors which markedly differ in the regulation of their storage and secretion. Endothelial cell lysates, but not conditioned medium, contain a growth factor activity that appears to be basic fibroblast growth factor (FGF) by the following criteria: (1) it elutes from heparin-Sepharose at 1.4-1.6 M NaCl; (2) it is mitogenic for bovine aortic and capillary endothelial cells; (3) it is heat sensitive but stable to dithiothreitol; (4) it has a molecular weight of about 18,000 daltons; and (5) it cross-reacts with antiserum directed against basic FGF. In contrast, endothelial cell conditioned medium, but not lysates, contains a growth factor activity that (1) elutes from heparin-Sepharose at 0.4-0.5 M NaCl; (2) is mitogenic for fibroblasts and vascular smooth muscle cells but not for capillary endothelial cells; (3) is heat stable and dithiothreitol sensitive; and (4) competes with platelet-derived growth factor (PDGF) for binding to fibroblasts. From these criteria, it appears that endothelial cells secrete into the medium growth factors some of which are PDGF-like, but secrete little if any basic FGF. It is suggested that endothelial cell-associated basic FGF acts in an autocrine fashion to stimulate endothelial cell proliferation in response to endothelial cell perturbation or injury. On the other hand, the endothelial cell-secreted growth factors which are smooth muscle cell but not endothelial cell mitogens might exert a paracrine function on neighboring cells of the vessel wall.  相似文献   

11.
Heterotypic and homotypic cell-cell adhesion molecules in endothelial cells   总被引:1,自引:0,他引:1  
Sickle red blood cells display an abnormal propensity to adhere to cultured bovine aortic endothelial cells when compared to normal red blood cells. The adherence was potentiated three-fold by endothelial cell derived conditioned medium, enriched in multimers of von Willebrand factor. Such adherence was ablated by 80% by either the synthetic peptide (RGDS) or antibody to GPIIb/IIIa, indicating the presence of RGD peptide recognition domain/receptor in either endothelial cells or sickle cells or both. The adherence was also inhibited by 70% by phosphatidylserine, but not by other phospholipids, indicating the presence of putative receptors for this phospholipid in endothelial cells. The labeling of cultured bovine aortic endothelial cells with monoclonal antibodies revealed the localization of MAB D2 to regions of cell-cell contact. The antigen on endothelial cells which cross-reacts with this antibody has a Mr of 130,000. The addition of such an antibody during the plating of endothelial cells disrupted monolayer formation. It appears that a 130-kDa polypeptide antigen in endothelial cells which is recognized by MAB D2, may be a cell-cell adhesion molecule.  相似文献   

12.
Thrombospondin (TSP) forms specific complexes with transforming growth factor-beta (TGF-beta) in the alpha granule releasate of platelets and these TSP-TGF-beta complexes inhibit the growth of bovine aortic endothelial cells (BAE). In these studies, we report that TSP stripped of associated TGF-beta (sTSP) retained growth inhibitory activity which was partially reversed by a neutralizing antibody specific for TGF- beta. Since BAE cells secrete latent TGF-beta, we determined whether sTSP activates the latent TGF-beta secreted by BAE cells. Cells were cultured with or without sTSP and then the conditioned medium was tested for the ability to support TGF-beta-dependent normal rat kidney (NRK) colony formation in soft agar. Medium conditioned with sTSP showed a dose- and time-dependent ability to stimulate BAE-secreted TGF- beta activity, reaching maximal activation by 1-2 h with 0.4 micrograms/ml (0.9 nM) sTSP. The sTSP-mediated stimulation of TGF-beta activity is not dependent on serum factors and is not a general property of extracellular matrix molecules. The sTSP-mediated stimulation of TGF-beta activity was blocked by a mAb specific for sTSP and by neutralizing antibodies to TGF-beta. Activation of BAE cell secreted latent TGF-beta by sTSP can occur in the absence of cells and apparently does not require interactions with cell surface molecules, since in conditioned medium removed from cells and then incubated with sTSP, activation occurs with kinetics and at levels similar to what is seen when sTSP is incubated in the presence of cells. Serine proteases such as plasmin are not involved in sTSP-mediated activation of TGF- beta. Factors that regulate the conversion of latent to active TGF-beta are keys to controlling TGF-beta activity. These data suggest that TSP is a potent physiologic regulator of TGF-beta activation.  相似文献   

13.
Several angiogenic preparations that have been shown to stimulate plasminogen activator (PA) and collagenase production by cultured bovine capillary endothelial (BCE) cells were tested for their ability to stimulate BCE cell motility in the phagokinetic track assay. Bovine retinal extract, medium conditioned by 3T3-F442A differentiated mouse adipocytes, SK HEP-1 human hepatoma cell lysate, mouse sarcoma 180 cell lysate, and medium conditioned by mouse sarcoma 180 cells stimulated motility 68.7%, 48.5%, 140.9%, 56.5%, and 102.1%, respectively, relative to untreated cells. The motility-stimulating activity of these preparations was dose dependent and linear over the 16-h assay period. Several hormones and growth factors were tested for BCE cell motility-stimulating activity, including insulin, vasopressin, fibroblast growth factor, and a partially purified preparation of sarcoma growth factor, and were found to be ineffective. 12-0-tetradecanoyl-phorbol-acetate (TPA), a potent stimulator of both PA and collagenase activities in BCE cells, also did not stimulate motility, indicating that protease production is not sufficient to stimulate BCE cell motility in this assay. Neither SK HEP-1 hepatoma cell lysate nor TPA was effective in stimulating motility in bovine aortic endothelial (BAE) cells. The inability of SK HEP-1 hepatoma cell lysate to stimulate movement in BAE cells is consistent with the observation that angiogenesis occurs by sprouting of capillaries, not large vessels.  相似文献   

14.
Conditioned medium from cultured bovine aortic endothelial cells contains an inactive plasminogen activator inhibitor (PAI). This latent PAI can be "activated" with denaturants. For example, less than 0.01 units/microliter of PAI activity was detected in untreated conditioned medium, but medium treated with sodium dodecyl sulfate (1.7 mM), guanidine HCl (4 M), urea (12 M) or KSCN (6 M) contained 0.9, 1.9, 0.8, and 0.5 units/microliter, respectively. This effect was dose-dependent with respect to the particular reagent used, and the same concentration of reagent which induced PAI activity also stimulated the ability of a component in conditioned medium to form sodium dodecyl sulfate-stable complexes with exogenously added plasminogen activators. Neither activity was stimulated by extensive dialysis or by treatment with NaCl (5 M), Na2SO4 (2.8 M), or dicetyl phosphate (0.1%). Analysis of treated and untreated conditioned medium by gel filtration revealed that the latent and active PAIs migrated with apparent Mr values of 30,000 and 50,000, respectively. Thus, "activation" is associated with an increase in the apparent Mr of the molecule. These observations suggest that activation does not result from the removal of either a small dialyzable component from the medium, or of a large Mr component that is bound to the latent PAI. Other possible mechanisms of activation are discussed. We recently isolated an active PAI from bovine endothelial cells (van Mourik, J.A., Lawrence, D.A., and Loskutoff, D.J. (1984) J. Biol. Chem. 259, 14914-14921). Monospecific antiserum to this active PAI selectivity immunoprecipitated the latent PAI from conditioned medium. These results indicate that the two PAIs are immunologically related and suggest that the latent form is converted into the active form by the sodium dodecyl sulfate present during the purification.  相似文献   

15.
A human breast cancer cell line (MCF-7), when sealed on confluent bovine pulmonary aortic endothelial cell (CPAE) monolayers, induced morphological changes (retraction) in CPAE cells. The area of retraction depended on the incubation time and the number of MCF-7 cells, suggesting that MCF-7 cells had the capacity to retract CPAE cells. This capacity was reduced by 60% by pretreatment of MCF-7 cells with 17β-estradiol (E) and progesterone (Pg). The extent of retraction was not affected by the addition of various protease inhibitors. CPAE retraction was induced also by adding conditioned medium (CM) from the culture of MCF-7 cells. Considerably less activity was detected in the CM obtained from MCF-7 cells cultured in the presence of E and Pg. The retraction was reversed in 24 h by culturing the monolayer in fresh medium without CM and was not induced by trypsin treatment of the CM.  相似文献   

16.
Endothelioma cells expressing the polyoma virus middle T oncogene induced hemangiomas in mice by the recruitment of nonproliferating endothelial cells from host blood vessels (Williams et al. 1989). I now report that SPARC, a Ca(2+)-binding glycoprotein that perturbs cell-matrix interactions and inhibits the endothelial cell cycle, is produced by endothelioma cells and is in part responsible for the alterations in the morphology and growth that occur when nontransformed bovine aortic endothelial cells are cocultured with endothelioma cells. Normal endothelial cells cocultured with two different middle T-positive endothelial cell lines, termed End cells, exhibited changes in shape that were accompanied by the formation of cell clusters. Media conditioned by End cells repressed proliferation of normal endothelial cells, but enhanced that of an established line of murine capillary endothelium. Radiolabeling studies revealed no apparent differences in the profile of proteins secreted by aortic or capillary cells cultured in End cell conditioned media. Characterization of proteins produced by End cells led to the identification of type IV collagen, laminin, entactin, and SPARC as major secreted products. Although SPARC did not affect the morphology of End or capillary cells, it was associated with overt changes in the shape of aortic endothelial cells. Moreover, SPARC and a synthetic peptide from SPARC domain II inhibited the incorporation of [3H]thymidine by aortic cells, but had minimal to no effect on the capillary endothelial cell line. The inhibition of growth exhibited by aortic endothelial cells cultured in End cell conditioned media could be partially reversed by antibodies specific for SPARC and SPARC peptides. These studies indicate a potential role for SPARC in the generation of hemangiomas by End cells in vivo, a process that requires normal (host) endothelial cells to disengage from the extracellular matrix, withdraw from the cell cycle, migrate, and reassociate into the disorganized cellular networks that comprise cavernous and capillary hemangiomas.  相似文献   

17.
The stimulation of cyclic GMP accumulation and particulate guanylate cyclase activity by atrial natriuretic peptide (ANP) was compared to the affinity and number of ANP receptors in eight cultured cell types. At 100 nM, ANP increased cyclic GMP by 13-fold in bovine adrenal cortical, 35-fold in human lung fibroblast, 58-fold in canine kidney epithelial, 60-fold in bovine aortic smooth muscle, 120-fold in rat mammary epithelial, 260-fold in rat Leydig, 300-fold in bovine kidney epithelial, and 475-fold in bovine aortic endothelial cells. ANP (1 microM) increased particulate guanylate cyclase activity by 1.5-, 2.5-, 3.1-, 3.2-, 5.0-, 7.0-, 7.8-, and 8.0-fold in bovine adrenal cortical, bovine aortic smooth muscle, human lung fibroblast, canine kidney epithelial, rat mammary epithelial, rat Leydig, bovine kidney epithelial, and bovine aortic endothelial cells, respectively. Specific 125I-ANP binding to intact rat Leydig (3,000 sites/cell; Kd = 0.11 nM), bovine aortic endothelial (14,000 sites/cell; Kd = 0.09 nM), bovine adrenal cortical (50,000 sites/cell; Kd = 0.12 nM), human lung fibroblast (80,000 sites/cell; Kd = 0.32 nM), and bovine aortic smooth muscle (310,000 sites/cell; Kd = 0.82 nM) cells was saturable and high affinity. No specific and saturable ANP binding was detected in bovine and canine kidney epithelial and rat mammary epithelial cells. Two ANP-binding sites of 66,000 and 130,000 daltons were specifically labeled by 125I-ANP after cross-linking with disuccinimidyl suberate. The 130,000-dalton ANP-binding sites bound to a GTP-agarose affinity column, and the specific activity of guanylate cyclase was increased by 90-fold in this fraction. Our results demonstrate that the increase in cyclic GMP accumulation and particulate guanylate cyclase activity by ANP does not correlate with the affinity and number of ANP-binding sites. These results suggest that multiple populations of ANP receptors exist in these cells and that only one receptor subtype (130,000 daltons) is associated with particulate guanylate cyclase activity.  相似文献   

18.
Lipoprotein lipase (LPL), the major enzyme responsible for the hydrolysis of circulating lipoprotein triglyceride molecules, is synthesized in myocytes and adipocytes but functions while bound to heparan sulfate proteoglycans (HSPGs) on the luminal surface of vascular endothelial cells. This requires transfer of LPL from the abluminal side to the luminal side of endothelial cells. Studies were performed to investigate the mechanisms of LPL transcytosis using cultured monolayers of bovine aortic endothelial cells. We tested whether HSPGs and members of the low density lipoprotein (LDL) receptor superfamily were involved in transfer of LPL from the basolateral to the apical side of cultured endothelial cells. Heparinase/heparinitase treatment of the basolateral cell surface or addition of heparin to the basolateral medium decreased the movement of LPL. This suggested a requirement for HSPGs. To assess the role of receptors, we used either receptor-associated protein, the 39-kDa inhibitor of ligand binding to the LDL receptor-related protein and the very low density lipoprotein (VLDL) receptor, or specific receptor antibodies. Receptor-associated protein reduced (125)I-LPL and LPL activity transfer across the monolayers. When the basolateral surface of the cells was treated with antibodies, only anti-VLDL receptor antibodies inhibited transcytosis. Moreover, overexpression of the VLDL receptor using adenoviral-mediated gene transfer increased LPL transcytosis. Thus, movement of active LPL across endothelial cells involves both HSPGs and VLDL receptor.  相似文献   

19.
Lipoprotein lipase (LPL) hydrolyzes triglyceride in plasma lipoprotein primarily while bound to vascular endothelial cells. LPL metabolism by cultured endothelial cells was studied. Purified radioiodinated bovine LPL bound to porcine aortic endothelial cells at 4 degrees C with an association constant of 0.18 x 10(7) m-1. Analysis of the time course of LPL dissociation from endothelial cells at 4 degrees C yielded a dissociation rate constant of 3.9 x 10(-6)s-1. After 1 h at 37 degrees C, 28% of the LPL initially bound to the cell surface was no longer releasable by heparin or trypsin treatments, suggesting that LPL was internalized by the cells. Addition of heparin to the medium or pretreatment of the cells with heparinase markedly reduced the amount of LPL internalized, establishing a requirement for cell surface heparan sulfate proteoglycans in the process. When cells containing internalized LPL were incubated at 37 degrees C, a time-dependent increase in the amount of LPL in the medium and a corresponding decrease in LPL associated with the cells was found. This suggested that internalized LPL was released back into the medium. The catalytic activity, molecular size, and heparin-binding characteristics of the released LPL was similar to native LPL. Addition of either heparin, heparinase, or excess unlabeled LPL to prevent the rebinding of released 125I-LPL to the cell surface increased the amount of 125I-LPL present in the medium, suggesting that there is a process of recycling of 125I-LPL bound to the cell surface. Studies examining the effect of pH on dissociation of LPL from its binding site showed less dissociation of cell surface bound LPL at pH 5.5 compared with pH 7.4 and 8.5. These results suggest that even at acidic pH as in endocytotic vesicles, LPL remains bound to proteoglycans and this may facilitate the recycling of internalized LPL molecules.  相似文献   

20.
Cultured bovine aortic endothelial cells (BAEC) secrete into their medium a growth-promoting factor that stimulates many connective tissue cells in culture. We now report that this growth-promoting activity is due to at least two different proteins which are biochemically separable and immunologically distinct. Cation exchange chromatography (Carboxymethyl-Sephadex) of concentrated BAEC-conditioned medium yields two major peaks of growth-promoting activity which adsorb at pH 8 and elute with a salt gradient. One of these peaks contains as well a protein that inhibits the binding of radioiodinated platelet-derived growth factor (PDGF) to its receptor on target cells. The PDGF-like mitogen is purified approx. 25-fold by this chromatographic step. A second peak of mitogenic activity exhibits no binding to the PDGF receptor. Both the PDGF-like mitogenic activity and the PDGF-distinct mitogenic activity are highly cationic, stable to boiling, sensitive to beta-mercaptoethanol, and between 30 and 50 kD in molecular weight. Complementary studies with human umbilical vein endothelial cells in culture were performed. These human cells also produce both growth-promoting activity and a protein that binds to the PDGF receptor. The latter activity is greatly inhibited by a specific antiserum to human PDGF, whereas the growth-promoting activity of the conditioned medium is minimally affected. The degree of inhibition of the two activities is, however, quantitatively consistent: 3.5 ng of PDGF-like activity in the radioreceptor assay is inhibited, while 5 ng of PDGF-like activity in the DNA synthesis assay is inhibited. The data from the two species are consistent with the proposal that cultured endothelial cells produce at least two distinct mitogens, one of which is biochemically and immunologically related to PDGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号