首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生长抑素受体家族(somatostatin receptors,SSTRs)是一类介导生长抑素及其类似物,具有多种生物学效应的G蛋白偶联受体家族,其生理功能和作用机制长期以来倍受关注.研究表明,这些细胞膜上存在的特定膜受体包括SSTR1、SSTR2、SSTR3、SSTR4以及SSTR5,可以通过cAMP、PTP和MAPK信号通路,在调控GH分泌、诱导细胞凋亡、抑制肿瘤细胞增生、抑制胰岛素作用和抑制细胞生长等生物学过程发挥重要的作用,同时表现出与其它G蛋白偶联受体性质相似的动力学特征.本文将SSTRs的结构、分布和生理功能、配体选择性、下游信号通路,以及该受体家族的动力学特征最新研究进展作一综述.  相似文献   

2.
Somatostatins are a diverse family of peptide hormones that regulate various aspects of growth, development, and metabolism through interactions with numerous somatostatin receptor subtypes (SSTRs) on target tissues. In this study, we used rainbow trout to evaluate the effects of growth hormone (GH), insulin (INS), and insulin-like growth factor-I (IGF-I) on the expression of SSTR 1A, 1B and 2 mRNAs. GH regulated the expression of SSTRs in a subtype- and tissue-specific manner. GH reduced SSTR 1A, 1B, and 2 expression in optic tectum, reduced SSTR 1A and 1B expression in pancreas, reduced SSTR 1A expression in liver, and increased hepatic SSTR 1B expression. INS also regulated SSTR expression in a subtype- and tissue-specific manner. INS reduced SSTR 1B expression in optic tectum, increased SSTR 2 expression in pancreas, and increased SSTR 1B and 2 expression in liver. IGF-I generally decreased the expression of all SSTRs. These data indicate that GH, INS, and IGF-I modulate the expression of SSTRs and suggest that independent mechanisms may serve to regulate the various receptor subtypes.  相似文献   

3.
Expression of somatostatin receptors 1 and 2 in the adult mouse kidney   总被引:6,自引:0,他引:6  
  相似文献   

4.
Somatostatin suppresses gastrin and somatostatin secretion via somatostatin receptors (SSTRs). Ammonia produced by Helicobacter pylori has been reported to modify gastric gastrin and somatostatin levels. We investigated the distribution of SSTR-subtype 2 (SSTR-2) in relation to gastrin- and somatostatin-containing cells and the effect of ammonia solution (0.01%-0.1%) administered orally for 2 to 4 weeks on these cells in rat antral mucosa by immunohistochemistry. The majority of SSTR-2 peptide [31-41]-positive cells were located in the basal third of the glands. Double staining experiments revealed that SSTR-2 peptide [31-41]-positive cells are co-localized in 85.0 +/- 2.2% of the gastrin-containing cells and in 34.4 +/- 4.8% of the somatostatin-containing cells. Ammonia solution significantly decreased the number of somatostatin-containing cells and increased the proportion of SSTR-2 peptide [31-41]-labeling in the somatostatin-containing cells in a duration-dependent manner. Maximum changes were observed in rats treated with ammonia solution at the lowest level of 0.01% accompanied by an increase in serum gastrin levels in the portal vein. Sodium hydroxide at the similar pH to 0.01% ammonia solution had no effect. These findings suggest that SSTR-2 are localized in antral endocrine cells and that ammonia solution mainly decreases somatostatin-containing cells without SSTR-2 expression, resulting in an increase in gastrin secretion into the portal vein.  相似文献   

5.
Targeted fluorescent dyes are of substantial value for the intraoperative delineation of primary tumors and metastatic lesions. For this purpose long-wavelength red light (lambda=550-650 nm) offers advantages because of good tissue penetration and direct visibility. Since somatostatin receptors (SSTR) are overexpressed in a number of tumors, a series of potentially tumor-selective peptide-dye conjugates were synthesized by solid-phase peptide synthesis (SPPS). The octapeptides octreotate, Tyr(3)-octreotate and Tyr(3)-octreotide were employed and exhibited high affinity for somatostatin receptors (SSTR). The fluorescent dyes rhodamine 101, sulforhodamine B acid chloride, sulforhodamine 101 or rhodamine B isothiocyanate were conjugated either directly or via spacers, for example the peptidase-labile pentapeptide sequence Ala-Leu-Ala-Leu-Ala. The conjugates were completely assembled on the solid support: Fmoc-SPPS, cyclization via a disulfide linkage, N-terminal attachment of a spacer, and linkage to the fluorescent dye. An in vitro competition assay revealed that the conjugates bind to SSTRs with IC(50) values between 0.7 and 89 nM. The conjugates were generally stable to hydrolysis at pH 7-8 in buffer or serum. However, the rhodamine 101 conjugates revealed a loss of absorption at alkaline pH due to conversion to a neutral spirolactam form, as characterized by NMR.  相似文献   

6.
Five somatostatin receptors (SSTRs) bind somatostatin-14 (S-14) and somatostatin-28 (S-28), but SSTR5 has the highest affinity for S-28. To determine whether S-28 acting through SSTR5 mediates inhibition of glucagon-like peptide-1 (GLP-1), fetal rat intestinal cell cultures were treated with somatostatin analogs with relatively high specificity for SSTRs 2-5. S-28 dose-dependently inhibited GLP-1 secretion stimulated by gastrin-releasing peptide more potently than S-14 (EC(50) 0.01 vs. 5.8 nM). GLP-1 secretion was inhibited by an SSTR5 analog, BIM-23268, more potently than S-14 and nearly as effectively as S-28. The SSTR5 analog L-372,588 also suppressed GLP-1 secretion equivalent to S-28, but a structurally similar peptide, L-362,855 (Tyr to Phe at position 7), was ineffective. An SSTR2-selective analog was less effective than S-28, and an SSTR3 analog was inactive. Separate treatment with GLP-1-(7-36)-NH(2) increased S-28 and S-14 secretion by three- and fivefold; BIM-23268 abolished S-28 without altering S-14, whereas the SSTR2 analog was inactive. The results indicate that somatostatin regulation of GLP-1 secretion occurs via S-28 through activation of SSTR5. GLP-1-stimulated S-28 secretion is also autoregulated by SSTR5 activation, suggesting a feedback loop between GLP-1 and S-28 modulated by SSTR5.  相似文献   

7.
The present study describes the status of somatostatin receptors (SSTRs) and their colocalization with insulin (β), glucagon (α) and somatostatin (δ) producing cells in the pancreatic islets of 11 weeks old R6/2 Huntington's Disease transgenic (HD tg) and age-matched wild type (wt) mice. We also determined expression of tyrosine hydroxylase (TH), glutamic acid decarboxylase (GAD) and presynaptic marker synaptophysin (SYP) in addition to signal transduction pathways associated with diabetes. In R6/2 mice, islets are relatively smaller in size, exhibit enhanced expression and nuclear inclusion of mHtt along with the loss of insulin, glucagon and somatostatin expression. In comparison to wt, R6/2 mice display enhanced mRNA for all SSTRs except SSTR2. In the pancreatic lysate, SSTR1, 4 and 5 immunoreactivity decreases whereas SSTR3 immunoreactivity increases with no discernible changes in SSTR2 immunoreactivity. Furthermore, at the cellular level, R6/2 mice exhibit a receptor specific distributional pattern of SSTRs like immunoreactivity and colocalization with β, α and δ cells. While GAD expression is increased, TH and SYP immunoreactivity was decreased in R6/2 mice, anticipating a cross-talk between the CNS and pancreas in diabetes pathophysiology. We also dissected out the changes in signaling pathway and found decreased activation and expression of PKA, AKT, ERK1/2 and STAT3 in R6/2 mice pancreas. These findings suggest that the impaired organization of SSTRs within islets may lead to perturbed hormonal regulation and signaling. These interconnected complex events might shed new light on the pathogenesis of diabetes in neurodegenerative diseases and the role of SSTRs in potential therapeutic intervention.  相似文献   

8.
Phospholipase C-β (PLC-β) is a key molecule in G protein-coupled receptor (GPCR)-mediated signaling. Many studies have shown that the four PLC-β subtypes have different physiological functions despite their similar structures. Because the PLC-β subtypes possess different PDZ-binding motifs, they have the potential to interact with different PDZ proteins. In this study, we identified PDZ domain-containing 1 (PDZK1) as a PDZ protein that specifically interacts with PLC-β3. To elucidate the functional roles of PDZK1, we next screened for potential interacting proteins of PDZK1 and identified the somatostatin receptors (SSTRs) as another protein that interacts with PDZK1. Through these interactions, PDZK1 assembles as a ternary complex with PLC-β3 and SSTRs. Interestingly, the expression of PDZK1 and PLC-β3, but not PLC-β1, markedly potentiated SST-induced PLC activation. However, disruption of the ternary complex inhibited SST-induced PLC activation, which suggests that PDZK1-mediated complex formation is required for the specific activation of PLC-β3 by SST. Consistent with this observation, the knockdown of PDZK1 or PLC-β3, but not that of PLC-β1, significantly inhibited SST-induced intracellular Ca(2+) mobilization, which further attenuated subsequent ERK1/2 phosphorylation. Taken together, our results strongly suggest that the formation of a complex between SSTRs, PDZK1, and PLC-β3 is essential for the specific activation of PLC-β3 and the subsequent physiologic responses by SST.  相似文献   

9.
The peptide hormone somatostatin (SST) and its five G protein-coupled receptors (SSTR1-5) were described to be present in the skin, but their cutaneous function(s) and skin-specific signalling mechanisms are widely unknown. By using receptor specific agonists we show here that the SSTRs expressed in keratinocytes are functionally coupled to the inhibition of adenylate cyclase. In addition, treatment with SSTR4 and SSTR5/1 specific agonists significantly influences the MAP kinase signalling pathway. As epidermal hormone receptors in general are known to regulate re-epithelialization following skin injury, we investigated the effect of SST on cell counts and migration of human keratinocytes. Our results demonstrate a significant inhibition of cell migration and reduction of cell counts by SST. We do not observe an effect on apoptosis and necrosis. Analysis of signalling pathways showed that somatostatin inhibits cell migration independent of its effect on cAMP. Migrating keratinocytes treated with SST show altered cytoskeleton dynamics with delayed lamellipodia formation. Furthermore, the activity of the small GTPase Rac1 is diminished, providing evidence for the control of the actin cytoskeleton by somatostatin receptors in keratinocytes. While activation of all receptors leads to redundant effects on cell migration, only treatment with a SSTR5/1 specific agonist resulted in decreased cell counts. In accordance with reduced cell counts and impaired migration we observe delayed re-epithelialization in an ex vivo wound healing model. Consequently, our experiments suggest SST as a negative regulator of epidermal wound healing.  相似文献   

10.
There have been few studies of physiological importance on the regulation of somatostatin by hormones. We have studied the effect of the synthetic glucocorticoid dexamethasone on somatostatin production in the human medullary thyroid carcinoma TT cell line, a model for somatostatin production by the parafollicular cell. Dexamethasone inhibited somatostatin production in a dose-related manner with a maximal effect at a concentration of 10(-6) M. TT cells treated with dexamethasone (10(-6) M) showed an almost complete inhibition of somatostatin peptide production by 48 h of treatment. Molecular sizing chromatography demonstrated a decrease in both the probable somatostatin precursor (13,000 dalton) and the fully processed peptide. Analysis of mRNA content by hybridization revealed that dexamethasone also caused a decrease in detectable somatostatin mRNA. The hybridizable somatostatin mRNA decreased to approximately 50% of basal levels within 12 h of treatment. Northern blot hybridization showed a decrease in a single RNA species representing mature somatostatin mRNA. Dose-response experiments revealed inhibition of both peptide and mRNA at concentrations from 1 X 10(-8) to 1 X 10(-5) M dexamethasone. Four days after withdrawal from dexamethasone treatment, peptide and mRNA levels were higher than dexamethasone-treated controls. The sex steroid estradiol had no inhibitory effect on somatostatin production. These results suggest a potential regulator of somatostatin production and provide a system for the study of somatostatin gene regulation.  相似文献   

11.
12.
Previous studies have shown that CpG oligodeoxynucleotides (ODNs) have substantial immunostimulatory effects with anticancer applications. The antitumor applications that have been described previously are mediated through the CpG-induced activation of the host immune system, not through direct antitumor effects. Using cytostasis and cell proliferation assays, we demonstrated that specific ODNs inhibit the proliferation of RM-1 cells, a murine prostate cancer cell line. Flow cytometry analysis using propidium iodide (PI) nuclear staining confirmed the direct proapoptotic effect of ODNs on prostate cancer cells. This effect was dose dependent. Further studies using Western blot analysis and electrophoresis mobility shift assay (EMSA) revealed that the treatment of prostate cancer cells with specific ODNs activated the caspase pathway(s) and decreased the binding activities of AP-1 and NF-kappaB in a time-dependent manner. Evaluation of a panel of ODNs containing different DNA motifs demonstrated that the optimal proapoptotic sequences required polyG sequences but that CpG motifs were not essential. Finally, in vivo antitumor studies showed that the proapoptotic polyG motifs significantly inhibited prostate tumor growth. PolyG motifs inhibited tumor growth, and the effects were enhanced by CpG immune activating sequences. ODN containing both polyG and CpG motifs may have enhanced efficacy in tumor therapy through multiple mechanisms of action, including direct antitumor activities and immune activation.  相似文献   

13.
Summary. Imatinib, a tyrosine kinase inhibitor directed against the enzymatic domain of KIT protein, was found to produce dramatic clinical responses in metastatic gastrointestinal stromal tumors (GISTs). However, resistance usually develops thus determining treatment failure. The present study was performed to analyse the expression of somatostatin receptor (SSTR) subtypes, modulators of tissue transglutaminase, in a series of GISTs and leiomyosarcomas by immunohistochemistry to identify a new potential therapeutic target. Sixteen cases (8 males and 8 females, age range: 38–73; 11 GISTs, 4 leiomyosarcomas, 1 leiomyoma) were studied. Immunohistochemical detection of the relevant SSTRs was performed on paraffin-embedded tissue sections, stained with polyclonal antibodies directed against the five somatostatin receptor subtypes. We found 7 out of 16 (44%) tumors expressing all SSTRs and 14 out of 16 (87%) tumors positive for at least 3 subtypes. SSTR2A was the most represented subtype in the tumors studied, being expressed in approximately 70% of cases exhibiting an intense labeling in most of these cases. The significant expression of SSTRs shown in this series of GISTs and gastrointestinal leiomyosarcomas suggests a potential therapeutic target to be explored alone and/or in combination with other therapeutic agents in the setting of refractory GI stromal tumors.  相似文献   

14.
The role of somatostatin (SST) and epidermal growth factor (EGF) in breast cancer is undisputed; however, the molecular mechanisms underlying their antiproliferative or proliferative effects are not well understood. We initially confirmed that breast tumour tissues express all five somatostatin receptors (SSTR1-5) and four epidermal growth factor receptors (ErbB1-4). Subsequently, to gain insight into the function of SSTRs and ErbBs in oestrogen receptor (ER)-positive (MCF-7) or ERα-negative (MDA-MB-231) breast cancer cells, we defined SSTR1, SSTR5 and ErbB1 mRNA and protein expression in these two tumour cell lines. Consistent with previous studies showing SSTR1/SSTR5 heterodimerization and having seen cell-specific and ligand-selective alterations in receptor expression, we next elucidated whether SSTR1 and SSTR5 functionally interact with ErbB1 using pbFRET analysis. We subsequently determined the effects of SST and EGF either alone, or in combination, on selected downstream signalling molecules such as erk1/2, p38 and JNK. Here, we showed that both SST and EGF influenced erk1/2 phosphorylation and that SST modulated the effects of EGF in a cell-specific manner. We also demonstrated agonist-, time and cell-dependent regulation of p38 phosphorylation. We further investigated modulation of Grb2, SOS, Shc, SH-PTP1 and SH-PTP2. ErbB1 adaptor proteins known to play a role in MAPK activation, Shc, Grb2 and SOS, changed in an agonist- and cell-specific manner whereas, SH-PTP1 and SH-PTP2, adaptor proteins reported to interact with SSTRs, translocated from the cytosol to membrane in a cell-specific manner following SST and/or EGF treatment. Although several previous studies have shown crosstalk between RTKs and GPCRs, there are no reports describing SSTR (GPCR) modulation of ErbBs (RTK) in breast cancer. To the best of our knowledge, this is the first report describing crosstalk/interactions between SSTRs and ErbBs.  相似文献   

15.
Specific binding sites for somatostatin have been characterized in cytosolic fraction of rat intestinal mucosa by using 125I-labelled Tyr11-somatostatin and a variety of physicochemical conditions. The binding depended on time, temperature and pH, and was reversible, saturable and specific. At apparent equilibrium, the specific binding of 125I-Tyr11-somatostatin was competitively inhibited by native somatostatin in the 1 nM-4 microM concentration range. Binding studies suggested the presence of two classes of binding sites: a class with high affinity (Kd = 0.07 microM) and low capacity (4.6 pmol/mg protein) and a class with low affinity (Kd = 1.05 microM) and high capacity (277 pmol/mg protein) at 25 degrees C. Somatostatin exhibited competitive inhibition of tracer binding, while neuropeptides such as neurotensin, substance P, Leu-enkephalin, and vasoactive intestinal peptide were ineffective. The presence of somatostatin binding sites in cytosolic fraction of intestinal mucosa, together with the known occurrence of somatostatin in D-cells and nerve endings in the small intestine, strongly suggest that this peptide may be involved in the physiology and physiopathology of intestinal epithelium.  相似文献   

16.
Data on the immunohistochemical expression and localization of the five somatostatin receptors (SSTRs) have been obtained by our group in separate studies concerning the many faces of prostate cancer (PCa), its precursor high grade prostatic intraepithelial neoplasia (HGPIN) and normal epithelium (Nep). This publication highlights the key findings, with special reference to: normal prostate epithelium; untreated HGPIN and PCa, both clinically and incidentally detected; PCa with NE differentiation; HGPIN and PCa following complete androgen ablation (CAA); and hormone refractory (HR) PCa. Taken together, the data obtained in these investigations demonstrate that SSTR profiling in individual patients with HGPIN and the multifaceted PCa is feasible and is of relevance to better tailor the somatostatin analogue-based treatment.  相似文献   

17.
生长抑素(somatostatin,SST)通过与细胞膜上的G蛋白偶联的生长抑素受体(somatostatin receptors,SSTRs)结合而发挥其抑制细胞增殖的作用,因而生长抑素类似物(somatostatin analogue, SSA)常被用于肿瘤辅助治疗。然而,治疗效果存在相当大的个体差异,推测生长抑素类似物治疗效果不佳,与内源性生长抑素受体表达缺失或者表达量和亚型组合有关。为此,检测各亚型SSTR在几例罕见的神经内分泌肿瘤中的表达,并检测过表达SSTR2和SSTR5以及受体激活对细胞增殖的抑制效果,分析受体激活的可能机制,有助于临床筛选适合SSA肿瘤辅助治疗的病例,预估SSA的治疗效果。免疫组化检测肿瘤组织SSTR1-5的表达。在培养的293T细胞中过表达SSTR2和SSTR5,免疫共沉淀检测受体相互作用,免疫荧光和共聚焦显微镜检测受体细胞内定位。用MTT法检测受体过表达及激活对培养的人肺癌细胞NCI-H460细胞增殖的影响,用流式细胞技术检测细胞周期分布。SSTR1-5在10例神经内分泌肿瘤组织中均有不同程度的表达,表达亚型及表达量与肿瘤类型和年龄无关,SSTR5在所有肿瘤组织中均表达。SSTR2与SSTR5可形成受体相互作用。SSTR2与SSTR5活化后相互作用增加并定位于细胞质。共表达SSTR2和SSTR5显著抑制细胞增殖,并与受体激活剂呈现剂量相关性。SSTR2/SSTR5的共表达及激活显著减少S期的细胞而滞留于G1期。  相似文献   

18.
Retroviral integrase (IN) catalyzes the integration of double-stranded viral DNA into the host cell genome. The reaction can be divided in two steps: 3'-end processing and DNA strand transfer. Here we studied the effect of short oligonucleotides (ODNs) on human immunodeficiency virus type 1 (HIV-1) IN. ODNs were either specific, with sequences representing the extreme termini of the viral long terminal repeats, or nonspecific. All ODNs were found to competitively inhibit the processing reaction with Ki values in the nM range for the best inhibitors. Our studies on the interaction of IN with ODNs also showed that: (i) besides the 3'-terminal GT, the interaction of IN with the remaining nucleotides of the 21-mer specific sequence was also important for an effective interaction of the enzyme with the substrate; (ii) in the presence of specific ODNs the activity of the enzyme was enhanced, a result which suggests an ODN-induced conformational change of HIV-1 IN.  相似文献   

19.
Novel somatostatin analogues containing a pyrazinone ring, compounds 1 and 2, exhibited good antiproliferative activity on A431 tumor cells. To increase antitumor activity and binding affinity on somatostatin receptors (SSTRs), we substituted Tyr in the critical sequence, Tyr-D-Trp-Lys, with more hydrophobic aromatic residue. The substituted compounds dramatically lost antitumor activity, indicating that Tyr residue was an essential residue.  相似文献   

20.
We have synthesized two photoreactive derivatives of somatostatin, namely [125I-Tyr11,azidonitrobenzoyl (ANB)-Lys4]somatostatin and [125I-Tyr11,ANB-Lys9]somatostatin, and used them to characterize somatostatin receptors biochemically in several cell types. Saturation binding experiments carried out in the dark demonstrated that [125I-Tyr11,ANB-Lys4]somatostatin bound with high affinity (KD = 126 +/- 39 pM) to a single class of binding sites in GH4C1 pituitary cell membranes. The affinity of this analog was similar to that of the unsubstituted peptide [125I-Tyr11]somatostatin (207 +/- 3 pM). In contrast, specific binding was not observed with [125I-Tyr11,ANB-Lys9]somatostatin. The binding of both [125I-Tyr11,ANB-Lys4]somatostatin and [125I-Tyr11]somatostatin was potently inhibited by somatostatin (EC50 = 300 pM) whereas at 100 nM unrelated peptides had no effect. Furthermore, both pertussis toxin treatment and guanyl-5'yl imidophosphate (Gpp(NH)p) markedly reduced [125I-Tyr11,ANB-Lys4]somatostatin binding. Thus, [125I-Tyr11,ANB-Lys4]somatostatin binds to G-protein coupled somatostatin receptors with high affinity. To characterize these receptors biochemically, GH4C1 cell membranes were irradiated with ultraviolet light following the binding incubation, and the labeled proteins were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. A major band of 85 kDa was specifically labeled with [125I-Tyr11,ANB-Lys4]somatostatin but not with [125I-Tyr11,ANB-Lys9]somatostatin or [125I-Tyr11]somatostatin. The binding affinity of the 85-kDa protein for [125I-Tyr11,ANB-Lys4]somatostatin was very high (Kd = 34 pM). Labeling of this protein was inhibited competitively by somatostatin (EC50 = 140 +/- 80 pM) but not by unrelated peptides. Furthermore, this band was not labeled in pertussis toxin-treated membranes or in untreated membranes incubated with Gpp(NH)p. Finally, [125I-Tyr11,ANB-Lys4]somatostatin specifically labeled bands of 82, 75, and 72 kDa in membranes prepared from mouse pituitary AtT-20 cells, rat pancreatic acinar AR4-2J cells, and HIT hamster islet cells, respectively. Thus, [125I-Tyr11,ANB-Lys4]somatostatin represents the first photolabile somatostatin analog able to bind to receptors with high affinity. Our studies demonstrate that this novel peptide covalently labels specific somatostatin receptors in a variety of target cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号