首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MPIF-1, a CC chemokine, is a specific inhibitor of myeloid progenitor cells and is the most potent activator of monocytes. The solution structure of myeloid progenitor inhibitor factor-1 (MPIF-1) has been determined by NMR spectroscopy. The structure reveals that MPIF-1 is a monomer with a well defined core except for termini residues and adopts the chemokine fold of three beta-strands and an overlying alpha-helix. In addition to the four cysteines that characterize most chemokines, MPIF-1 has two additional cysteines that form a disulfide bond. The backbone dynamics indicate that the disulfide bonds and the adjacent residues that include the functionally important N-terminal and N-terminal loop residues show significant dynamics. MPIF-1 is a highly basic protein (pI >9), and the structure reveals distinct positively charged pockets that could be correlated to proteoglycan binding. MPIF-1 is processed from a longer proprotein at the N terminus and the latter is also functional though with reduced potency, and both proteins exist as monomers under a variety of solution conditions. MPIF-1 is therefore unique because longer proproteins of all other chemokines oligomerize in solution. The MPIF-1 structure should serve as a template for future functional studies that could lead to therapeutics for preventing chemotherapy-associated myelotoxicity.  相似文献   

2.
Human herpesvirus-8 (HHV-8) is the infectious agent responsible for Kaposi's sarcoma and encodes a protein, macrophage inflammatory protein-II (vMIP-II), which shows sequence similarity to the human CC chemokines. vMIP-II has broad receptor specificity that crosses chemokine receptor subfamilies, and inhibits HIV-1 viral entry mediated by numerous chemokine receptors. In this study, the solution structure of chemically synthesized vMIP-II was determined by nuclear magnetic resonance. The protein is a monomer and possesses the chemokine fold consisting of a flexible N-terminus, three antiparallel beta strands, and a C-terminal alpha helix. Except for the N-terminal residues (residues 1-13) and the last two C-terminal residues (residues 73-74), the structure of vMIP-II is well-defined, exhibiting average rmsd of 0.35 and 0.90 A for the backbone heavy atoms and all heavy atoms of residues 14-72, respectively. Taking into account the sequence differences between the various CC chemokines and comparing their three-dimensional structures allows us to implicate residues that influence the quaternary structure and receptor binding and activation of these proteins in solution. The analysis of the sequence and three-dimensional structure of vMIP-II indicates the presence of epitopes involved in binding two receptors CCR2 and CCR5. We propose that vMIP-II was initially specific for CCR5 and acquired receptor-binding properties to CCR2 and other chemokine receptors.  相似文献   

3.
We have modeled the structure of human lymphotactin (hLpnt), by homology modeling and molecular dynamics simulations. This chemokine is unique in having a single disulfide bond and a long C-terminal tail. Because other structural classes of chemokines have two pairs of Cys residues, compared to one in Lpnt, and because it has been shown that both disulfide bonds are required for stability and function, the question arises how the Lpnt maintains its structural integrity. The initial structure of hLpnt was constructed by homology modeling. The first 63 residues in the monomer of hLpnt were modeled using the structure of the human CC chemokine, RANTES, whose sequence appeared most similar. The structure of the long C-terminal tail, missing in RANTES, was taken from the human muscle fatty-acid binding protein. In a Protein Data Bank search, this protein was found to contain a sequence that was most homologous to the long tail. Consequently, the modeled hLpnt C-terminal tail consisted of both alpha-helical and beta-motifs. The complete model of the hLpnt monomer consisted of two alpha-helices located above the five-stranded beta-sheet. Molecular dynamics simulations of the solvated initial model have indicated that the stability of the predicted fold is related to the geometry of Pro78. The five-stranded beta-sheet appeared to be preserved only when Pro78 was modeled in the cis conformation. Simulations were also performed both for the C-terminal truncated forms of the hLpnt that contained one or two (CC chemokine-like) disulfide bonds, and for the chicken Lpnt (cLpnt). Our MD simulations indicated that the turn region (T30-G34) in hLpnt is important for the interactions with the receptor, and that the long C-terminal region stabilizes both the turn (T30-G34) and the five-stranded beta-sheet. The major conclusion from our theoretical studies is that the lack of one disulfide bond and the extension of the C-terminus in hLptn are mutually complementary. It is very likely that removal of two Cys residues sufficiently destabilizes the structure of a chemokine molecule, particularly the core beta-sheet, to abolish its biological function. However, this situation is rectified by the long C-terminal segment. The role of this long region is most likely to stabilize the first beta-turn region and alpha-helix H1, explaining how this chemokine can function with a single disulfide bond.  相似文献   

4.
The CCL15 is a human CC chemokine that activates the receptors, CCR1 and CCR3. Unlike other chemokines, it contains an unusually long N-terminal domain of 31 amino acids preceding the first cysteine residue and a third disulfide bond. To elucidate the functional role of distinct structural determinants, a series of sequential amino-terminal truncated and point-mutated CCL15 derivatives as well as mutants lacking the third disulfide bond and the carboxy-terminal alpha-helix were synthesized using 9-fluorenylmethoxycarbonyl (Fmoc) chemistry. We demonstrate that a truncation of 24 amino acid residues (delta24-CCL15) converts the slightly active 92-residue delta0-CCL15 into a potent agonist of CC chemokine receptor 1 (CCR1) and a weak agonist of CCR3 in cell-based assays. The biological activity decreases from delta24-CCL15 to delta29-CCL15, and re-increases from delta29-CCL15 to delta30-CCL15. Thus, an exocyclic N-terminal region of only one amino acid residue is sufficient for efficient CCR1 activation. As none of the peptides investigated except for delta24-CCL15 activates CCR3, we suggest that CCR1 is the major receptor for CCL15 in vivo. Further we demonstrate that the third disulfide bond of CCL15 and an exchange of tyrosine in position 70 by a leucine residue, which is conserved in CXC chemokines, do not alter the interaction with CCR1. In contrast, a CCL15 derivative lacking the carboxy-terminal alpha-helix exhibits a complete loss of tertiary structure and hence loss of CCR1 agonistic and binding activity. This study demonstrates that specific protein residues in chemokines, which contribute to receptor-ligand interaction, vary significantly between chemokines and cannot be extrapolated using data from functionally related chemokines.  相似文献   

5.
Lymphotactin (Ltn) is a unique chemokine that under physiological solution conditions displays large-scale structural heterogeneity, defining a new category of "metamorphic proteins". Previous Ltn studies have indicated that each form is required for proper function, but the mechanism of interconversion remains unknown. Here we have investigated the temperature dependence of kinetic rates associated with interconversion and unfolding by stopped-flow fluorescence to determine transition-state free energies. Comparisons of derived thermodynamic parameters revealed striking similarities between interconversion and protein unfolding. We conclude that Ltn native-state rearrangement proceeds by way of a large-scale unfolding process rather than a unique intermediate structure.  相似文献   

6.
Chemokine dimerization has been the subject of much interest in recent years as evidence has accumulated that different quaternary states of chemokines play different biological roles; the monomer is believed to be the receptor-binding unit, whereas the dimer has been implicated in binding cell surface glycosaminoglycans. However, although several studies have provided evidence for this paradigm by making monomeric chemokine variants or dimer-impaired chemokines, few have provided direct evidence of the receptor function of a chemokine dimer. We have produced a covalent dimer of the CC chemokine macrophage inflammatory protein-1beta (MIP-1beta) by placing a disulfide bond at the center of its dimer interface through a single amino acid substitution (MIP-1beta-A10C). This variant was shown to be a nondissociating dimer by SDS-PAGE and analytical ultracentrifugation. NMR reveals a structure largely the same as the wild type protein. In studies of glycosaminoglycan binding, MIP-1beta-A10C binds to a heparin-Sepharose column as tightly as the wild type protein and more tightly than monomeric variants. However, MIP-1beta-A10C neither binds nor activates the MIP-1beta receptor CCR5. It was found that the ability to activate CCR5 was recovered upon reduction of the intermolecular disulfide cross-link by incubation with 1 mm dithiothreitol. This work provides the first definitive evidence that the CC chemokine MIP-1beta dimer is not able to bind or activate its receptor and implicates the CC chemokine monomer as the sole receptor-interacting unit.  相似文献   

7.
I-309 is a member of the CC subclass of chemokines and is one of only three human chemokines known to contain an additional, third disulfide bond. The three-dimensional solution structure of I-309 was determined by (1)H nuclear magnetic resonance spectroscopy and dynamic simulated annealing. The structure of I-309, which remains monomeric at high concentrations, was determined on the basis of 978 experimental restraints. The N-terminal region of I-309 was disordered, as has been previously observed for the CC chemokine eotaxin but not others such as MCP-1 and RANTES. This was followed in I-309 by a well-ordered region between residues 13 and 69 that consisted of a 3(10)-helix, a triple-stranded antiparallel beta-sheet, and finally a C-terminal alpha-helix. Root-mean-square deviations of 0.61 and 1.16 were observed for the backbone and heavy atoms, respectively. A comparison of I-309 to eotaxin and HCC-2 revealed a significant structural change in the C-terminal region of the protein. The alpha-helix normally present in chemokines was terminated early and was followed by a short section of extended strand. These changes were a direct result of the additional disulfide bond present in this protein. An examination of the I-309 structure will aid in an understanding of the specificity of this protein with its receptor, CCR8.  相似文献   

8.
All chemokines share a common structural scaffold that mediate a remarkable variety of functions from immune surveillance to organogenesis. Chemokines are classified as CXC or CC on the basis of conserved cysteines, and the two subclasses bind distinct sets of GPCR class of receptors and also have markedly different quaternary structures, suggesting that the CXC/CC motif plays a prominent role in both structure and function. For both classes, receptor activation involves interactions between chemokine N-loop and receptor N-domain residues (Site-I), and between chemokine N-terminal and receptor extracellular/transmembrane residues (Site-II). We engineered a CC variant (labeled as CC-CXCL8) of the chemokine CXCL8 by deleting residue X (CXC → CC), and found its structure is essentially similar to WT. In stark contrast, CC-CXCL8 bound poorly to its cognate receptors CXCR1 and CXCR2 (Ki > 1 μm). Further, CC-CXCL8 failed to mobilize Ca2+ in CXCR2-expressing HL-60 cells or recruit neutrophils in a mouse lung model. However, most interestingly, CC-CXCL8 mobilizes Ca2+ in neutrophils and in CXCR1-expressing HL-60 cells. Compared with the WT, CC-CXCL8 binds CXCR1 N-domain with only ∼5-fold lower affinity indicating that the weak binding to intact CXCR1 must be due to its weak binding at Site-II. Nevertheless, this level of binding is sufficient for receptor activation indicating that affinity and activity are separable functions. We propose that the CXC motif functions as a conformational switch that couples Site-I and Site-II interactions for both receptors, and that this coupling is critical for high affinity binding but differentially regulates activation.  相似文献   

9.
Tomczak A  Pisabarro MT 《Proteins》2011,79(4):1277-1292
Chemokines are small secreted proteins that play an important role in immune responses and have also been shown to be involved in cartilage development and contributing to pathogenesis of a variety of diseases. They present a conserved 3D structure, so-called IL8-like chemokine fold, which is supported by conserved cysteines forming intra-molecular disulfide bonds. These cysteine sequence motifs have often been used to find new chemokine family members by sequence-based database searches. However, it has been shown that different patterns can provide disulfide bonds fitting into an IL8-like architecture, which has been the key to identify new remote homologues of the IL8-like chemokine family. We report a structural-functional characterization of cytokine-like protein 1 (Cytl1) by a combination of different computational structure-based techniques. Previous studies based on sequence analysis and secondary structure predictions reported that Cytl1 might adopt a 4-helical cytokine fold. However, our detailed molecular modeling studies and structure-based functional analysis strongly suggest that Cytl1 is more likely to adopt an IL8-like chemokine fold, in particular similar to CCL2 (monocyte chemoattractant protein 1, MCP-1). Moreover, we identify in a CCL2-like 3D model of Cytl1 the necessary reported features to signal through the chemokine receptor CCR2. Those discovered structural features of Cytl1 as CCL2-like chemokine, together with the fact that both, CCL2 and Cytl1, are known to be involved in cartilage development and pathogenesis of osteoarthritis and rheumatoid arthritis, make us hypothesize that Cytl1 could be a structurally and functionally related analog of CCL2 signaling through the chemokine receptor CCR2.  相似文献   

10.
HCC-2, a 66-amino acid residue human CC chemokine, was reported to induce chemotaxis on monocytes, T-lymphocytes, and eosinophils. The three-dimensional structure of HCC-2 has been determined by 1H nuclear magnetic resonance (NMR) spectroscopy and restrained molecular dynamics calculations on the basis of 871 experimental restraints. The structure is well-defined, exhibiting average root-mean-square deviations of 0.58 and 0.96 A for the backbone heavy atoms and all heavy atoms of residues 5-63, respectively. In contrast to most other chemokines, subtle structural differences impede dimer formation of HCC-2 in a concentration range of 0.1 microM to 2 mM. HCC-2, however, exhibits the same structural elements as the other chemokines, i.e., a triple-stranded antiparallel beta-sheet covered by an alpha-helix, showing that the chemokine fold is not influenced by quaternary interactions. Structural investigations with a HCC-2 mutant prove that a third additional disulfide bond present in wild-type HCC-2 is not necessary for maintaining the relative orientation of the helix and the beta-sheet.  相似文献   

11.
Human CC chemokine 2 (HCC-2) is a novel member of the chemokine peptide family that induces chemotaxis of monocytes, T lymphocytes and eosinophils via activation of the CCR-1 and CCR-3 receptors. Fmoc chemistry was optimized and used to synthesize the biologically active 66-residue peptide HCC-2-(48-113). Introduction of the three disulfide bonds was achieved by oxidative folding in the presence of the redox system cysteine/cystine. Alternatively, a semiselective approach utilizing a mixed Acm/Trt protection scheme for disulfide formation was applied. It was found that, without participation of the two HCC-2-specific cysteine residues in positions 64 and 104, the two typical chemokine disulfides are formed predominantly during oxidative folding. In addition, the mutant [Ala64,104]HCC-2-(48-113) lacking the third disulfide bond that discriminates HCC-2 from most other chemokines was synthesized. For disulfide bond formation, oxidative folding was compared with the use of Acm/Trt protection. HCC-2-(48-113) and the mutant [Ala64,104]HCC-2-(48-113) were further analyzed by CD and one-dimensional 1H NMR-spectroscopy. Both peptides adopt a similar stable secondary and tertiary structure in solution.  相似文献   

12.
Mayer KL  Stone MJ 《Biochemistry》2000,39(29):8382-8395
The human CC chemokine eotaxin-2 is a specific agonist for the chemokine receptor CCR3 and may play a role in the recruitment of eosinophils in allergic diseases and parasitic infections. We report the solution structure of eotaxin-2 determined using heteronuclear and triple resonance NMR methods. A family of 20 structures was calculated by hybrid distance geometry-simulated annealing from 854 NOE distance restraints, 48 dihedral angle restraints, and 12 hydrogen bond restraints. The structure of eotaxin-2 (73 amino acid residues) consists of a helical turn (residues 17-20) followed by a 3-stranded antiparallel beta-sheet (residues 22-26, 37-41, and 44-49) and an alpha-helix (residues 54-66). The N-loop (residues 9-16) is packed against both the sheet and the helix with the two conserved disulfide bonds tethering the N-terminal/N-loop region to the beta-sheet. The average backbone and heavy atom rmsd values of the 20 structures (residues 7-66) are 0.52 and 1.13 A, respectively. A linear peptide corresponding to the N-terminal region of CCR3 binds to eotaxin-2, inducing concentration-dependent chemical shift changes or line broadening of many residues. The distribution of these residues suggests that the peptide binds into an extended groove located at the interface between the N-loop and the beta2-beta3 hairpin. The receptor peptide may also interact with the N-terminus of the chemokine and part of the alpha-helix. Comparison of the eotaxin-2 structure with those of related chemokines indicates several structural features that may contribute to receptor specificity.  相似文献   

13.
CXCL11 (ITAC) is one of three chemokines known to bind the receptor CXCR3, the two others being CXCL9 (Mig) and CXCL10 (IP-10). CXCL11 differs from the other CXCR3 ligands in both the strength and the particularities of its receptor interactions: It has a higher affinity, is a stronger agonist, and behaves differently when critical N-terminal residues are deleted. The structure of CXCL11 was determined using solution NMR to allow comparison with that of CXCL10 and help elucidate the source of the differences. CXCL11 takes on the canonical chemokine fold but exhibits greater conformational flexibility than has been observed for related chemokines under the same sample conditions. Unlike related chemokines such as IP-10 and IL-8, ITAC does not appear to form dimers at millimolar concentrations. The origin for this behavior can be found in the solution structure, which indicates a beta-bulge in beta-strand 1 that distorts the dimerization interface used by other CXC chemokines.  相似文献   

14.
Breakthroughs in G protein-coupled receptor structure determination based on crystallography have been mainly obtained from receptors occupied in their transmembrane domain core by low molecular weight ligands, and we have only recently begun to elucidate how the extracellular surface of G protein-coupled receptors (GPCRs) allows for the binding of larger peptide molecules. In the present study, we used a unique chemoselective photoaffinity labeling strategy, the methionine proximity assay, to directly identify at physiological conditions a total of 38 discrete ligand/receptor contact residues that form the extracellular peptide-binding site of an activated GPCR, the angiotensin II type 1 receptor. This experimental data set was used in homology modeling to guide the positioning of the angiotensin II (AngII) peptide within several GPCR crystal structure templates. We found that the CXC chemokine receptor type 4 accommodated the results better than the other templates evaluated; ligand/receptor contact residues were spatially grouped into defined interaction clusters with AngII. In the resulting receptor structure, a β-hairpin fold in extracellular loop 2 in conjunction with two extracellular disulfide bridges appeared to open and shape the entrance of the ligand-binding site. The bound AngII adopted a somewhat vertical binding mode, allowing concomitant contacts across the extracellular surface and deep within the transmembrane domain core of the receptor. We propose that such a dualistic nature of GPCR interaction could be well suited for diffusible linear peptide ligands and a common feature of other peptidergic class A GPCRs.  相似文献   

15.
The structure of monomeric human chemokine IL-8 (residues 1–66) was determined in aqueous solution by NMR spectroscopy. The structure of the monomer is similar to that of each subunit in the dimeric full-length protein (residues 1–72), with the main differences being the location of the N-loop (residues 10–22) relative to the C-terminal α-helix and the position of the side chain of phenylalanine 65 near the truncated dimerization interface (residues 67–72). NMR was used to analyze the interactions of monomeric IL-8 (1–66) with ND-CXCR1 (residues 1–38), a soluble polypeptide corresponding to the N-terminal portion of the ligand binding site (Binding Site-I) of the chemokine receptor CXCR1 in aqueous solution, and with 1TM-CXCR1 (residues 1–72), a membrane-associated polypeptide that includes the same N-terminal portion of the binding site, the first trans-membrane helix, and the first intracellular loop of the receptor in nanodiscs. The presence of neither the first transmembrane helix of the receptor nor the lipid bilayer significantly affected the interactions of IL-8 with Binding Site-I of CXCR1.  相似文献   

16.
CCL28 is a human chemokine constitutively expressed by epithelial cells in diverse mucosal tissues and is known to attract a variety of immune cell types including T-cell subsets and eosinophils. Elevated levels of CCL28 have been found in the airways of individuals with asthma, and previous studies have indicated that CCL28 plays a vital role in the acute development of post-viral asthma. Our study builds on this, demonstrating that CCL28 is also important in the chronic post-viral asthma phenotype. In the absence of a viral infection, we also demonstrate that CCL28 is both necessary and sufficient for induction of asthma pathology. Additionally, we present the first effort aimed at elucidating the structural features of CCL28. Chemokines are defined by a conserved tertiary structure composed of a three-stranded β-sheet and a C-terminal α-helix constrained by two disulfide bonds. In addition to the four disulfide bond-forming cysteine residues that define the traditional chemokine fold, CCL28 possesses two additional cysteine residues that form a third disulfide bond. If all disulfide bonds are disrupted, recombinant human CCL28 is no longer able to drive mouse CD4+ T-cell chemotaxis or in vivo airway hyper-reactivity, indicating that the conserved chemokine fold is necessary for its biologic activity. Due to the intimate relationship between CCL28 and asthma pathology, it is clear that CCL28 presents a novel target for the development of alternative asthma therapeutics.  相似文献   

17.
Thrombospondin-1 (TSP-1) contains three type 1 repeats (TSRs), which mediate cell attachment, glycosaminoglycan binding, inhibition of angiogenesis, activation of TGFbeta, and inhibition of matrix metalloproteinases. The crystal structure of the TSRs reported in this article reveals a novel, antiparallel, three-stranded fold that consists of alternating stacked layers of tryptophan and arginine residues from respective strands, capped by disulfide bonds on each end. The front face of the TSR contains a right-handed spiral, positively charged groove that might be the "recognition" face, mediating interactions with various ligands. This is the first high-resolution crystal structure of a TSR domain that provides a prototypic architecture for structural and functional exploration of the diverse members of the TSR superfamily.  相似文献   

18.
CCL5 (RANTES) is a proinflammatory chemokine known to activate leukocytes through its receptor, CCR5. Although the monomeric form of CCL5 is sufficient to cause cell migration in?vitro, CCL5's propensity for aggregation is essential for migration in?vivo, T?cell activation and apoptosis, and HIV entry into cells. However, there is currently no structural information on CCL5 oligomers larger than the canonical CC chemokine dimer. In this study the solution structure of a CCL5 oligomer was investigated using an integrated approach, including NMR residual dipolar couplings to determine allowed relative orientations of the component monomers, SAXS to restrict overall shape, and hydroxyl radical footprinting and NMR cross-saturation experiments to identify interface residues. The resulting model of the CCL5 oligomer provides a basis for explaining the disaggregating effect of E66 and E26 mutations and suggests mechanisms by which glycosaminoglycan binding may promote oligomer formation and facilitate cell migration in?vivo.  相似文献   

19.
Stromal cell-derived factor 1 (SDF-1), a member of the CXC chemokine family, is the only chemokine to bind to the receptor CXCR4. This receptor is also a co-receptor for syncytia-inducing forms of HIV in CD4(+) cells. In addition, SDF-1 is responsible for attracting mature lymphocytes to the bone marrow and can therefore contribute to host versus graft rejection in bone marrow transplantation. Clearly, by manipulating SDF-1 activity, we could find a possible anti-viral AIDS treatment and aid in bone marrow transplantation. SDF-1 binds to CXCR4 primarily via the N terminus, which appears flexible in the recently determined three-dimensional structure of SDF-1. Strikingly, short N-terminal SDF-1 peptides have been shown to have significant SDF-1 activity. By using NMR, we have determined the major conformation of the N terminus of SDF-1 in a 17-mer (residues 1-17 of SDF-1) and a 9-mer dimer (residues 1-9 of SDF-1 linked by a disulfide bond at residue 9). Residues 5-8 and 11-14 form similar structures that can be characterized as a beta-turn of the beta-alphaR type. These structural motifs are likely to be interconverting with other states, but the major conformation may be important for recognition in receptor binding. These results suggest for the first time that there may be a link between structuring of short N-terminal chemokine peptides and their ability to activate their receptor. These studies will act as a starting point for synthesizing non-peptide analogs that act as CXCR4 antagonists.  相似文献   

20.
Eotaxin is a member of the chemokine family of about 40 proteins that induce cell migration. Eotaxin binds the CC chemokine receptor CCR3 that is highly expressed by eosinophils, and it is considered important in the pathology of chronic respiratory disorders such as asthma. The high resolution structure of eotaxin is known. The 74 amino acid protein has two disulfide bridges and shows a typical chemokine fold comprised of a core of three antiparallel beta-strands and an overlying alpha-helix. In this paper, we report the backbone dynamics of eotaxin determined through 15N-T1, T2, and [1H]-15N nuclear Overhauser effect heteronuclear multidimensional NMR experiments. This is the first extensive study of the dynamics of a chemokine derived from 600, 500, and 300 MHz NMR field strengths. From the T1, T2, and NOE relaxation data, parameters that describe the internal motions of eotaxin were derived using the Lipari-Szabo model free analysis. The most ordered regions of the protein correspond to the known secondary structure elements. However, surrounding the core, the regions known to be functionally important in chemokines show a range of motions on varying timescales. These include extensive subnanosecond to picosecond motions in the N-terminus, C-terminus, and the N-loop succeeding the disulfides. Analysis of rotational diffusion anisotropy of eotaxin and chemical exchange terms at multiple fields also allowed the confident identification of slow conformational exchange through the "30s" loop, disulfides, and adjacent residues. In addition, we show that these motions may be attenuated in the dimeric form of a synthetic eotaxin. The structure and dynamical basis for eotaxin receptor binding is discussed in light of the dynamics data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号