首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beattie TR  Bell SD 《The EMBO journal》2012,31(6):1556-1567
Chromosomal DNA replication requires one daughter strand-the lagging strand-to be synthesised as a series of discontinuous, RNA-primed Okazaki fragments, which must subsequently be matured into a single covalent DNA strand. Here, we describe the reconstitution of Okazaki fragment maturation in vitro using proteins derived from the archaeon Sulfolobus solfataricus. Six proteins are necessary and sufficient for coupled DNA synthesis, RNA primer removal and DNA ligation. PolB1, Fen1 and Lig1 provide the required catalytic activities, with coordination of their activities dependent upon the DNA sliding clamp, proliferating cell nuclear antigen (PCNA). S. solfataricus PCNA is a heterotrimer, with each subunit having a distinct specificity for binding PolB1, Fen1 or Lig1. Our data demonstrate that the most efficient coupling of activities occurs when a single PCNA ring organises PolB1, Fen1 and Lig1 into a complex.  相似文献   

2.
During DNA replication, synthesis of the lagging strand occurs in stretches termed Okazaki fragments. Before adjacent fragments are ligated, any flaps resulting from the displacement of the 5′ DNA end of the Okazaki fragment must be cleaved. Previously, Dna2 was implicated to function upstream of flap endonuclease 1 (Fen1 or Rad27) in the processing of long flaps bound by the replication protein A (RPA). Here we show that Dna2 efficiently cleaves long DNA flaps exactly at or directly adjacent to the base. A fraction of the flaps cleaved by Dna2 can be immediately ligated. When coupled with DNA replication, the flap processing activity of Dna2 leads to a nearly complete Okazaki fragment maturation at sub-nanomolar Dna2 concentrations. Our results indicate that a subsequent nucleolytic activity of Fen1 is not required in most cases. In contrast Dna2 is completely incapable to cleave short flaps. We show that also Dna2, like Fen1, interacts with proliferating cell nuclear antigen (PCNA). We propose a model where Dna2 alone is responsible for cleaving of RPA-bound long flaps, while Fen1 or exonuclease 1 (Exo1) cleave short flaps. Our results argue that Dna2 can function in a separate, rather than in a Fen1-dependent pathway.  相似文献   

3.
Lagging strand DNA replication requires the concerted actions of DNA polymerase δ, Fen1 and DNA ligase I for the removal of the RNA/DNA primers before ligation of Okazaki fragments. To better understand this process in human cells, we have reconstituted Okazaki fragment processing by the short flap pathway in vitro with purified human proteins and oligonucleotide substrates. We systematically characterized the key events in Okazaki fragment processing: the strand displacement, Pol δ/Fen1 combined reactions for removal of the RNA/DNA primer, and the complete reaction with DNA ligase I. Two forms of human DNA polymerase δ were studied: Pol δ4 and Pol δ3, which represent the heterotetramer and the heterotrimer lacking the p12 subunit, respectively. Pol δ3 exhibits very limited strand displacement activity in contrast to Pol δ4, and stalls on encounter with a 5′-blocking oligonucleotide. Pol δ4 and Pol δ3 exhibit different characteristics in the Pol δ/Fen1 reactions. While Pol δ3 produces predominantly 1 and 2 nt cleavage products irrespective of Fen1 concentrations, Pol δ4 produces cleavage fragments of 1–10 nts at low Fen1 concentrations. Pol δ3 and Pol δ4 exhibit comparable formation of ligated products in the complete system. While both are capable of Okazaki fragment processing in vitro, Pol δ3 exhibits ideal characteristics for a role in Okazaki fragment processing. Pol δ3 readily idles and in combination with Fen1 produces primarily 1 nt cleavage products, so that nick translation predominates in the removal of the blocking strand, avoiding the production of longer flaps that require additional processing. These studies represent the first analysis of the two forms of human Pol δ in Okazaki fragment processing. The findings provide evidence for the novel concept that Pol δ3 has a role in lagging strand synthesis, and that both forms of Pol δ may participate in DNA replication in higher eukaryotic cells.  相似文献   

4.
During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed.  相似文献   

5.
In most cells, 100-1000 Okazaki fragments are produced for each replicative DNA polymerase present in the cell. For fast-growing cells, this necessitates rapid recycling of DNA polymerase on the lagging strand. Bacteria produce long Okazaki fragments (1-2 kb) and utilize a highly processive DNA polymerase III (pol III), which is held to DNA by a circular sliding clamp. In contrast, Okazaki fragments in eukaryotes are quite short, 100-250 bp, and thus the eukaryotic lagging strand polymerase does not require a high degree of processivity. The lagging strand polymerase in eukaryotes, polymerase delta (pol delta), functions with the proliferating cell nuclear antigen (PCNA) sliding clamp. In this report, Saccharomyces cerevisiae pol delta is examined on model substrates to gain insight into the mechanism of lagging strand replication in eukaryotes. Surprisingly, we find pol delta is highly processive with PCNA, over at least 5 kb, on Replication Protein A (RPA)-coated primed single strand DNA. The high processivity of pol delta observed in this report contrasts with its role in synthesis of short lagging strand fragments, which require it to rapidly dissociate from DNA at the end of each Okazaki fragment. We find that this dilemma is solved by a "collision release" process in which pol delta ejects from PCNA upon extending a DNA template to completion and running into the downstream duplex. The released pol delta transfers to a new primed site, provided the new site contains a PCNA clamp. Additional results indicate that the collision release mechanism is intrinsic to the pol3/pol31 subunits of the pol delta heterotrimer.  相似文献   

6.
The proteins of bacteriophage T7 DNA replication mediate coordinated leading and lagging strand synthesis on a minicircle template. A distinguishing feature of the coordinated synthesis is the presence of a replication loop containing double and single-stranded DNA with a combined average length of 2600 nucleotides. Lagging strands consist of multiple Okazaki fragments, with an average length of 3000 nucleotides, suggesting that the replication loop dictates the frequency of initiation of Okazaki fragments. The size of Okazaki fragments is not affected by varying the components (T7 DNA polymerase, gene 4 helicase-primase, gene 2.5 single-stranded DNA binding protein, and rNTPs) of the reaction over a relatively wide range. Changes in the size of Okazaki fragments occurs only when leading and lagging strand synthesis is no longer coordinated. The synthesis of each Okazaki fragment is initiated by the synthesis of an RNA primer by the gene 4 primase at specific recognition sites. In the absence of a primase recognition site on the minicircle template no lagging strand synthesis occurs. The size of the Okazaki fragments is not affected by the number of recognition sites on the template.  相似文献   

7.
Recent evidence suggests that coupled leading and lagging strand DNA synthesis operates in mammalian mitochondrial DNA (mtDNA) replication, but the factors involved in lagging strand synthesis are largely uncharacterised. We investigated the effect of knockdown of the candidate proteins in cultured human cells under conditions where mtDNA appears to replicate chiefly via coupled leading and lagging strand DNA synthesis to restore the copy number of mtDNA to normal levels after transient mtDNA depletion. DNA ligase III knockdown attenuated the recovery of mtDNA copy number and appeared to cause single strand nicks in replicating mtDNA molecules, suggesting the involvement of DNA ligase III in Okazaki fragment ligation in human mitochondria. Knockdown of ribonuclease (RNase) H1 completely prevented the mtDNA copy number restoration, and replication intermediates with increased single strand nicks were readily observed. On the other hand, knockdown of neither flap endonuclease 1 (FEN1) nor DNA2 affected mtDNA replication. These findings imply that RNase H1 is indispensable for the progression of mtDNA synthesis through removing RNA primers from Okazaki fragments. In the nucleus, Okazaki fragments are ligated by DNA ligase I, and the RNase H2 is involved in Okazaki fragment processing. This study thus proposes that the mitochondrial replication system utilises distinct proteins, DNA ligase III and RNase H1, for Okazaki fragment maturation.  相似文献   

8.
Trypanosoma brucei''s mitochondrial genome, kinetoplast DNA (kDNA), is a giant network of catenated DNA rings. The network consists of a few thousand 1 kb minicircles and several dozen 23 kb maxicircles. Here we report that TbPIF5, one of T. brucei''s six mitochondrial proteins related to Saccharomyces cerevisiae mitochondrial DNA helicase ScPIF1, is involved in minicircle lagging strand synthesis. Like its yeast homolog, TbPIF5 is a 5′ to 3′ DNA helicase. Together with other enzymes thought to be involved in Okazaki fragment processing, TbPIF5 localizes in vivo to the antipodal sites flanking the kDNA. Minicircles in wild type cells replicate unidirectionally as theta-structures and are unusual in that Okazaki fragments are not joined until after the progeny minicircles have segregated. We now report that overexpression of TbPIF5 causes premature removal of RNA primers and joining of Okazaki fragments on theta structures. Further elongation of the lagging strand is blocked, but the leading strand is completed and the minicircle progeny, one with a truncated H strand (ranging from 0.1 to 1 kb), are segregated. The minicircles with a truncated H strand electrophorese on an agarose gel as a smear. This replication defect is associated with kinetoplast shrinkage and eventual slowing of cell growth. We propose that TbPIF5 unwinds RNA primers after lagging strand synthesis, thus facilitating processing of Okazaki fragments.  相似文献   

9.
The influence of poly(ADP-ribose) polymerase (PARP) on the replication of DNA containing the SV40 origin of replication has been examined. Extensive replication of SV40 DNA can be carried out in the presence of T antigen, topoisomerase I, the multimeric human single strand DNA-binding protein (HSSB), and DNA polymerase alpha-DNA primase (pol alpha-primase) complex (the monopolymerase system). In the monopolymerase system, both small products (Okazaki fragments), arising from lagging strand synthesis, and long products, arising from leading strand synthesis, are formed. The synthesis of long products requires the presence of relatively high levels of pol alpha-primase complex. In the presence of PARP, the synthesis of long products was blocked and only small Okazaki fragments accumulated, arising from the replication of the lagging strand template. The inhibition of leading strand synthesis by PARP can be effectively reversed by supplementing the monopolymerase system with the multimeric activator 1 protein (A1), the proliferating cell nuclear antigen (PCNA) and PCNA-dependent DNA polymerase delta (the dipolymerase system). The inhibition of leading strand synthesis in the monopolymerase system was caused by the binding of PARP to the ends of DNA chains, which blocked their further extension by pol alpha. The selective accumulation of Okazaki fragments was shown to be due to the coupled synthesis of primers by DNA primase and their immediate extension by pol alpha complexed to primase. PARP had little effect on this coupled reaction, but did inhibit the subsequent elongation of products, presumably after pol alpha dissociated from the 3'-end of the DNA fragments. PARP inhibited several other enzymatic reactions which required free ends of DNA chains. PARP inhibited exonuclease III, DNA ligase, the 5' to 3' exonuclease, and the elongation of primed DNA templates by pol alpha. In contrast, PARP only partly competed with the elongation of primed DNA templates by the pol delta elongation system which required SSB, A1, and PCNA. These results suggest that the binding of PARP at the ends of nascent DNA chains can be displaced by the binding of A1 and PCNA to primer ends. HSSB can be poly(ADP-ribosylated) in vivo as well as in vitro. However, the selective effect of PARP in blocking leading strand synthesis in the monopolymerase system was shown to depend primarily on its DNA binding property rather than on its ability to synthesize poly(ADP-ribose).  相似文献   

10.
W H Gmeiner  A Skradis  R T Pon    J Liu 《Nucleic acids research》1998,26(10):2359-2365
Cytarabine is a potent anticancer drug that interferes with elongation of the lagging strand at the replication fork during DNA synthesis. The effects of cytarabine substitution on the structural and thermodynamic properties of a model Okazaki fragment were investigated using UV hyperchromicity and 1H NMR spectroscopy to determine how cytarabine alters the physicochemical properties of Okazaki fragments that are intermediates during DNA replication. Two model Okazaki fragments were prepared corresponding to a primary initiation site for DNA replication in the SV40 viral genome. One model Okazaki fragment consisted of five ribo- and seven deoxyribonucleotides on the hybrid strand, together with its complementary (DNA) strand. The second model Okazaki fragment was identical to the first with the exception of cytarabine substitution for deoxycytidine at the third DNA nucleotide of the hybrid strand. Thermodynamic parameters for the duplex to single strand transition for each model Okazaki fragment were calculated from the concentration dependence of the T m at 260 nm. Cytarabine significantly decreased the stability of this model Okazaki fragment, decreasing the melting temperature from 46.8 to 42.4 degrees C at a concentration of 1.33 x 10(-5) M. The free energy for the duplex to single strand transition was 1.2 kcal/mol less favorable for the cytarabine-substituted Okazaki fragment relative to the control at 37 degrees C. Analysis of the temperature dependence of the imino1H resonances for the two duplexes demonstrated that cytarabine specifically destabilized the DNA:DNA duplex portion of the model Okazaki fragment. These results are consistent with inhibition of lagging strand DNA synthesis by cytarabine substitution resulting from destabilization of the DNA:DNA duplex portion of Okazaki fragments in vivo .  相似文献   

11.
Rolling circle replication has previously been reconstituted in vitro using M13 duplex circles containing preformed forks and the 10 purified T4 bacteriophage replication proteins. Leading and lagging strand synthesis in these reactions is coupled and the size of the Okazaki fragments produced is typical of those generated in T4 infections. In this study the structure of the DNAs and DNA-protein complexes engaged in these in vitro reactions has been examined by electron microscopy. Following deproteinization, circular duplex templates with linear tails as great as 100 kb are observed. The tails are fully duplex except for one to three single-stranded DNA segments close to the fork. This pattern reflects Okazaki fragments stopped at different stages in their synthesis. Examination of the DNA-protein complexes in these reactions reveals M13 duplex circles in which 64% contain a single large protein mass (replication complex) and a linear duplex tail. In 56% of the replicating molecules with a tail there is at least one fully duplex loop at the replication complex resulting from the portion of the lagging strand engaged in Okazaki fragment synthesis folding back to the replisome. The single-stranded DNA segments at the fork bound by gene 32 and 59 proteins are not extended but rather appear organized into highly compact structures ("bobbins"). These bobbins constitute a major portion of the mass of the full replication complex.  相似文献   

12.
Duplex DNA is replicated in the 5'-3' direction by coordinated copying of leading and lagging strand templates with somewhat different proteins and mechanics, providing the potential for differences in the fidelity of replication of the two strands. We previously showed that in Saccharomyces cerevisiae, active replication origins establish a strand bias in the rate of base substitutions resulting from replication of unrepaired 8-oxo-guanine (GO) in DNA. Lower mutagenesis was associated with replicating lagging strand templates. Here, we test the hypothesis that this bias is due to more efficient repair of lagging stand mismatches by measuring mutation rates in ogg1 strains with a reporter allele in two orientations at loci on opposite sides of a replication origin on chromosome III. We compare a MMR-proficient strain to strains deleted for the MMR genes MSH2, MSH6, MLH1, or EXOI. Loss of MMR reduces the strand bias by preferentially increasing mutagenesis for lagging strand replication. We conclude that GO-A mismatches generated during lagging strand replication are more efficiently repaired. This is consistent with the hypothesis that 5' ends of Okazaki fragments and PCNA, present at high density during lagging strand replication, are used as strand discrimination signals for mismatch repair in vivo.  相似文献   

13.
Okazaki fragment processing is an integral part of DNA replication. For a long time, we assumed that the maturation of these small RNA-primed DNA fragments did not necessarily have to occur during S phase, but could be postponed to late in S phase after the bulk of DNA synthesis had been completed. This view was primarily based on the arrest phenotype of temperature-sensitive DNA ligase I mutants in yeast, which accumulated with an almost fully duplicated set of chromosomes. However, many temperature-sensitive alleles can be leaky and the re-evaluation of DNA ligase I-deficient cells has offered new and unexpected insights into how cells keep track of lagging strand synthesis. It turns out that if Okazaki fragment joining goes awry, cells have their own alarm system in the form of ubiquitin that is conjugated to the replication clamp PCNA. Although this modification results in mono- and poly-ubiquitination of PCNA, it is genetically distinct from the known post-replicative repair mark at lysine 164. In this Extra View, we discuss the possibility that eukaryotic cells utilize different enzymatic pathways and ubiquitin attachment sites on PCNA to alert the replication machinery to the accumulation of single-stranded gaps or nicks behind the fork.Key words: DNA ligase I, DNA replication, Okazaki fragment processing, PCNA, ubiquitin, SUMO  相似文献   

14.
Prokaryotic DNA replication mechanisms   总被引:8,自引:0,他引:8  
The three different prokaryotic replication systems that have been most extensively studied use the same basic components for moving a DNA replication fork, even though the individual proteins are different and lack extensive amino acid sequence homology. In the T4 bacteriophage system, the components of the DNA replication complex can be grouped into functional classes as follows: DNA polymerase (gene 43 protein), helix-destabilizing protein (gene 32 protein), polymerase accessory proteins (gene 44/62 and 45 proteins), and primosome proteins (gene 41 DNA helicase and gene 61 RNA primase). DNA synthesis in the in vitro system starts by covalent addition onto the 3'OH end at a random nick on a double-stranded DNA template and proceeds to generate a replication fork that moves at about the in vivo rate, and with approximately the in vivo base-pairing fidelity. DNA is synthesized at the fork in a continuous fashion on the leading strand and in a discontinuous fashion on the lagging strand (generating short Okazaki fragments with 5'-linked pppApCpXpYpZ pentaribonucleotide primers). Kinetic studies reveal that the DNA polymerase molecule on the lagging strand stays associated with the fork as it moves. Therefore the DNA template on the lagging strand must be folded so that the stop site for the synthesis of one Okazaki fragment is adjacent to the start site for the next such fragment, allowing the polymerase and other replication proteins on the lagging strand to recycle.  相似文献   

15.
Given the polarity of DNA duplex, replication by the leading strand polymerase is continuous whereas that by the lagging strand polymerase is discontinuous proceeding through Okazaki fragments. Yet the respective polymerases act processively, implying that the recycling of the lagging strand polymerase is a controlled process. We demonstrate that the rate of the lagging strand polymerase relative to that of fork movement affects Okazaki fragment size and generates ssDNA gaps. We show by using a substrate with limited priming sites that Okazaki fragments can be shifted to shorter lengths by varying the rate of the primase. We find that clamp and clamp loader levels affect both primer utilization and Okazaki fragment size, possibly implicating clamp loading onto the RNA primer in the mechanism of lagging strand polymerase recycling. We formulate a signaling model capable of rationalizing the distribution of Okazaki fragments under various conditions for this and possibly other replisomes.  相似文献   

16.
DNA replication is a highly processive and efficient process that involves the coordination of at least eight proteins to form the replisome in bacteriophage T4. Replication of DNA occurs in the 5' to 3' direction resulting in continuous replication on the leading strand and discontinuous replication on the lagging strand. A key question is how a continuous and discontinuous replication process is coordinated. One solution is to avoid having the completion of one Okazaki fragment to signal the start of the next but instead to have a key step such as priming proceed in parallel to lagging strand replication. Such a mechanism requires protein elements of the replisome to readily dissociate during the replication process. Protein trapping experiments were performed to test for dissociation of the clamp loader and primase from an active replisome in vitro whose template was both a small synthetic DNA minicircle and a larger DNA substrate. The primase, clamp, and clamp loader are found to dissociate from the replisome and are continuously recruited from solution. The effect of varying protein concentrations (dilution) on the size of Okazaki fragments supported the protein trapping results. These findings are in accord with previous results for the accessory proteins but, importantly now, identify the primase as dissociating from an active replisome. The recruitment of the primase from solution during DNA synthesis has also been found for Escherichia coli but not bacteriophage T7. The implications of these results for RNA priming and extension during the repetitive synthesis of Okazaki fragments are discussed.  相似文献   

17.
Okazaki fragment processing is an integral part of DNA replication. For a long time, we assumed that the maturation of these small RNA-primed DNA fragments did not necessarily have to occur during S phase, but could be postponed to late in S phase after the bulk of DNA synthesis had been completed. This view was primarily based on the arrest phenotype of temperature-sensitive DNA ligase I mutants in yeast, which accumulated with an almost fully duplicated set of chromosomes. However, many temperature-sensitive alleles can be leaky, and the re-evaluation of DNA ligase I-deficient cells has offered new and unexpected insights into how cells keep track of lagging strand synthesis. It turns out that if Okazaki fragment joining goes awry, cells have their own alarm system in the form of ubiquitin that is conjugated to the replication clamp PCNA. Although this modification results in mono- and poly-ubiquitination of PCNA, it is genetically distinct from the known post-replicative repair mark at lysine 164. In this Extra View, we discuss the possibility that eukaryotic cells utilize different enzymatic pathways and ubiquitin attachment sites on PCNA to alert the replication machinery to the accumulation of single-stranded gaps or nicks behind the fork.  相似文献   

18.
DNA replication is one of the most important events in living cells, and it is still a key problem how the DNA replication machinery works in its details. A replication fork has to be a very dynamic apparatus since frequent DNA polymerase switches from the initiating DNA polymerase alpha to the processive elongating DNA polymerase delta occur at the leading strand (about 8 x 10(4) fold on both strands in one replication round) as well as at the lagging strand (about 2 x 10(7) fold on both strands in one replication round) in mammalian cells. Lagging strand replication involves a very complex set of interacting proteins that are able to frequently initiate, elongate and process Okazaki fragments of 180 bp. Moreover, key proteins of this important process appear to be controlled by S-phase check-point proteins. It became furthermore clear in the last few years that DNA replication cannot be considered uncoupled from DNA repair, another very important event for any living organism. The reconstitution of nucleotide excision repair and base excision repair in vitro with purified components clearly showed that the DNA synthesis machinery of both of these macromolecular events are similar and do share many components of the lagging strand DNA synthesis machinery. In this minireview we summarize our current knowledge of the components involved in the execution and regulation of DNA replication at the lagging strand of the replication fork.  相似文献   

19.
Replication forks formed during rolling-circle DNA synthesis supported by a tailed form II DNA substrate in the presence of the primosome, the single-stranded DNA binding protein, and the DNA polymerase III holoenzyme (Pol III HE) that had been reconstituted from the purified subunits, beta, tau, and the gamma.delta complex, at limiting (with respect to nucleotide incorporation) concentrations of the Pol III core (alpha, epsilon, and theta) produced aberrantly small Okazaki fragments, while the synthesis of the leading strand was unperturbed. These small Okazaki fragments were not arrayed in tandem along the lagging-strand DNA template, but were separated by large gaps. Similarly structured synthetic products were not manufactured by replication forks reconstituted with higher, saturating concentrations of the Pol III core. Replication forks producing these small fragments could respond, by modulating the size of the Okazaki fragments produced, to variations in the concentration of NTPs or the primase, conditions that affect the frequency of priming on the lagging strand, but not to variation in the concentration of dNTPs, conditions that affect the frequency of utilization of the primers. Significantly longer Okazaki fragments (greater than 7 kilobases) could be produced in the presence of a limiting amount of Pol III core at low concentrations of the primase. These observations indicated that the production of small Okazaki fragments was not a result of a debilitated lagging-strand Pol III core, but rather a function of the time available for nascent strand synthesis during the cycle of events that are required for the manufacture of an Okazaki fragment and that it was the association of primase with the replication fork that keyed this cycle.  相似文献   

20.
The sliding clamp, PCNA, of the archaeon Sulfolobus solfataricus P2 is a heterotrimer of three distinct subunits (PCNA1, 2, and 3) that assembles in a defined manner. The PCNA heterotrimer, but not individual subunits, stimulates the activities of the DNA polymerase, DNA ligase I, and the flap endonuclease (FEN1) of S. solfataricus. Distinct PCNA subunits contact DNA polymerase, DNA ligase, or FEN1, imposing a defined architecture at the lagging strand fork and suggesting the existence of a preformed scanning complex at the fork. This provides a mechanism to tightly couple DNA synthesis and Okazaki fragment maturation. Additionally, unique subunit-specific interactions between components of the clamp loader, RFC, suggest a model for clamp loading of PCNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号