首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
KOHYAMA  T. 《Annals of botany》1989,63(6):625-634
The change in all-sized dbh distribution with stand age wassimulated using data from secondary stands of different agesafter clear-felling in warm-temperate rain forests in YakushimaIsland, southern Japan. The cumulative basal area [cm2 m–2]of all trees larger than a given dbh x [cm] was used as an indexof onesided density effect, which primarily regulates the growthrate and mortality of the tree at x. The relative growth ratein dbh was expressed by a negative linear function of both thecumulative basal area and logarithmic dbh, irrespective of standage. Mortality was found to be positively related to the cumulativebasal area. From these empirical relations, the change in dbhdistribution during the course not only of stand developmentafter clear-felling, but also of gap regeneration within primaryforests, was successfully simulated using the continuity equation,eliminating ‘stand age factors’ from the model.Results of the simulation satisfied the —3/2 power lawof self-thinning. Competition, continuity equation, cumulative basal area, simulation, size distribution, stand dynamics, —3/2 power law, warm-temperate rain forest, Yakushima Island  相似文献   

2.
Abstract. Structural dynamics of a natural tropical seasonal – mixed deciduous – forest were studied over a 4-yr period at Mae Klong Watershed Research Station, Kanchanaburi Province, western Thailand, with particular reference to the role of forest fires and undergrowth bamboos. All trees > 5 cm DBH in a permanent plot of 200 m × 200 m were censused every two years from 1992 to 1996. The forest was characterized by a low stem density and basal area and relatively high species diversity. Both the bamboo undergrowth and frequent forest fires could be dominant factors that prevent continuous regeneration. Recruitment, mortality, gain (growth of survival tree plus ingrowth) and loss in basal area (by tree death) during the four years were 6.70%/yr, 2.91%/yr, 1.22%/yr and 1.34%/yr, respectively. Mortality was size dependent; middle size trees (30–50 cm) had the lowest mortality, while the smallest (5–10 cm) had the highest mortality. Tree recruitment was observed particularly in the first two years, mostly in the area where die-back of undergrowth bamboo occurred. The bias of the spatial distribution of recruitment to the area of bamboo die-back was significant and stronger than that to the forest canopy gaps. Successful regeneration of trees which survive competition with other herbs and trees after dieback of bamboo could occur when repeated forest fires did not occur in subsequent years. It is suggested that both the fire disturbance regime and bamboo life-cycle greatly influence the structure and dynamics of this seasonal tropical forest.  相似文献   

3.
Canopy tree species are the dominant elements of the species-rich, fragile and endangered tropical rain forest ecosystems, yet little is known about the genetics of these species. We provide an estimate of the outcrossing rate in a population of Pithecellobium pedicellare, a large canopy tree in the tropical rain forests of Costa Rica. The outcrossing rate was high (t = 951 ± 0.021) and the pollen pool contributing to the progeny arrays used to measure outcrossing rate showed departure from homogeneity. The high outcrossing rate indicates that individuals scattered over a large area in this low density population could be bound with each other via outcrossing. However, despite a high outcrossing rate, the potential for inbreeding in this population is not negligible. We found a relatively large number of albino and chlorotic seedlings among the progeny arrays of several seed parents. Heterogeneity of pollen pool further indicates that the population, though widely outcrossed, may be structured. A more detailed study of mating systems in tropical rain forest trees may provide additional insights into the mating patterns of these trees. Such studies will be useful not only in understanding the dynamics of micro-evolutionary processes, but also in the conservation and management of tropical forest trees.  相似文献   

4.
Abstract. The coexistence of coniferous (mostly Abies homolepis) and broad-leaved tree species (mostly Fagus crenata) in a mixed temperate old-growth forest in Japan was simulated by a size-structure dynamics model incorporating the asymmetrical (one-sided) effect of shading between these two life-form guilds. The model assumes that the crowding effect due to one-sided competition for light on a tree of a given size regulates the rate of size growth and recruitment. The cumulative basal area of trees larger than a given tree in the forest is employed to express the intensity of one-sided competition on that tree. Cumulative basal areas of both guilds negatively affected the growth rate of any tree. The shading effect by conifers on the growth rate of either guild was stronger than that by broad-leaved species. Two types of model were tested for recruitment; an additive and a reciprocal model. A reciprocal model, where basal area density of conifers and broad-leaved species has a negative effect on the recruitment of its own guild but has a positive effect on that of the other guild, fit the observed data better than an additive model where total basal area of the two guilds suppresses recruitment rates. Simulations using these models showed that, within a particular range of the set of recruitment rates, the two guilds could coexist. The tendency for reciprocal replacement, incorporated in the reciprocal model, substantially widened the range of coexistence and shortened the time required for convergence.  相似文献   

5.
 以海南岛霸王岭自然保护区1 hm2老龄原始林样地的调查材料为基础,分析了热带山地雨林群落的组成、高度结构、径级结构及有关的树种多样性特征。结果表明:霸王岭热带山地雨林树种较丰富,物种多样性指数较高。树种数和树木的密度都随高度级、径级的增加而呈负指数或负幂函数递减;热带山地雨林不同高度级、不同径级和不同小样方斑块内的树种数都与树木密度呈显著的正相关关系。热带山地雨林经过自然的演替达到老龄顶极群落后,最后进入主林层的只是少部分树种的少数个体。  相似文献   

6.
Slik JW 《Oecologia》2004,141(1):114-120
In this study I investigated the effects of the extreme, 1997/98 El Niño related drought on tree mortality and understorey light conditions of logged and unlogged tropical rain forest in the Indonesian province of East Kalimantan (Borneo). My objectives were to test (1) whether drought had a significant effect on tree mortality and understorey light conditions, (2) whether this effect was greater in logged than in undisturbed forest, (3) if the expected change in tree mortality and light conditions had an effect on Macaranga pioneer seedling and sapling densities, and (4) which (a)biotic factors influenced tree mortality during the drought. The 1997/1998 drought led to an additional tree mortality of 11.2, 18.1, and 22.7% in undisturbed, old logged and recently logged forest, respectively. Mortality was highest in logged forests, due to extremely high mortality of pioneer Macaranga trees (65.4%). Canopy openness was significantly higher during the drought than during the non-drought year (6.0, 8.6 and 10.4 vs 3.7, 3.8 and 3.7 in undisturbed, old logged and recently logged forest, respectively) and was positively correlated with the number of dead standing trees. The increase in light in the understorey was accompanied by a 30 to 300-fold increase in pioneer Macaranga seedling densities. Factors affecting tree mortality during drought were (1) tree species successional status, (2) tree size, and (3) tree location with respect to soil moisture. Tree density and basal area per surface unit had no influence on tree mortality during drought. The results of this study show that extreme droughts, such as those associated with El Niño events, can affect the tree species composition and diversity of tropical forests in two ways: (1) by disproportionate mortality of certain tree species groups and tree size classes, and (2) by changing the light environment in the forest understorey, thereby affecting the recruitment and growth conditions of small and immature trees.  相似文献   

7.
Abstract. Structural changes are analysed in four samples representing 4 ha, two line transects and two hectare plots, of Amazonian tropical lowland rain forest in northern Ecuador. Only trees with a DBH ≥ 10 cm were included. A sample of floodplain forest in Añangu represents the largest turnover found in tropical forests (stand half-life = 23 yr). The line transect and hectare plot both of tierra firme forest in Añangu have the same turnover (37 yr) and were balanced for death and in-growth of both individuals and wood (basal area). The 1-ha tierra firme sample in Cuyabeno had a turnover of 67 yr and was in a growing phase. The floodplain line transect in Añangu was in a phase of structural breakdown. However, the floodplain line transect had the largest growth of basal area per tree (23.4 cm2/yr). The tierra firme samples had a growth of 9.6, 10.1, and 13.6 cm2/yr. Most of the dead trees fell with some uprooting in three of the four samples. However, no significant difference in the distribution of mode of death was found between the four samples. Death was independent of topography and the dead trees were randomly distributed. As the trees grow up they occupy more space and larger trees (DBH ≥ 15 cm) become more uniformly distributed, whereas smaller trees (DBH ≤ 15 cm) were randomly distributed. Our study confirms that plots of 1 ha are not sufficient to include representative samples of different stages of forest structure.  相似文献   

8.
1.  Relationships between tropical rain forest biomass and environmental factors have been determined at regional scales, e.g. the Amazon Basin, but the reasons for the high variability in forest biomass at local scales are poorly understood. Interactions between topography, soil properties, tree growth and mortality rates, and treefalls are a likely reason for this variability.
2.  We used repeated measurements of permanent plots in lowland rain forest in French Guiana to evaluate these relationships. The plots sampled topographic gradients from hilltops to slopes to bottomlands, with accompanying variation in soil waterlogging along these gradients. Biomass was calculated for >175 tree species in the plots, along with biomass productivity and recruitment rates. Mortality was determined as standing dead and treefalls.
3.  Treefall rates were twice as high in bottomlands as on hilltops, and tree recruitment rates, radial growth rates and the abundance of light-demanding tree species were also higher.
4.  In the bottomlands, the mean wood density was 10% lower than on hilltops, the basal area 29% lower and the height:diameter ratio of trees was lower, collectively resulting in a total woody biomass that was 43% lower in bottomlands than on hilltops.
5.  Biomass productivity was 9% lower in bottomlands than on hilltops, even though soil Olsen P concentrations were higher in bottomlands.
6.   Synthesis . Along a topographic gradient from hilltops to bottomlands there were higher rates of treefall, which decreased the stand basal area and favoured lower allocation to height growth and recruitment of light-demanding species with low wood density. The resultant large variation in tree biomass along the gradient shows the importance of determining site characteristics and including these characteristics when scaling up biomass estimates from stand to local or regional scales.  相似文献   

9.
Aim This study documents the effects of multiple fires and drought on the woody structure of a north Australian savanna never grazed by domestic stock. Location The study was conducted in a 500 ha pocket of Eucalyptus‐dominated savanna surrounded by a late Quaternary lava flow. The flow is known as the Great Basalt Wall, located c. 50 km northeast of Charters Towers in semi‐arid north‐eastern Australia. This region was exposed to the largest 5‐year rainfall deficit on record between 1992 and 1996. Methods All individual woody plants were tagged within a 1.56 ha plot. Species were segregated into their habitat affinities (rain forest, ecotone, savanna) and regeneration strategy (resprouter, seeder). The survivorship of plants within these categories was analysed in relation to fire intensity from the first fire, and to each of four fires lit between 1996 and 2001. Results Before the first fire, the plot contained thirty‐one tree species including twenty‐one typical of the surrounding dry rain forest. These rain forest species were represented by small individuals and constituted <1% of the total basal area of woody plants. The basal area of savanna trees was 7.5 m2 ha?1 at the commencement of monitoring, although 31% had recently died and others had major crown damage. Further death of the drought debilitated savanna trees was substantial during the first year of monitoring and the basal area of live savanna trees declined to 1.1 m2 ha?1 after 5 years. Most species from both rain forest and savanna were classified as resprouters and are capable of regenerating from underground organs after fire. Species without this ability (rain forest seeders and ecotone seeders) were mostly eliminated after the first two consecutive fires. Among resprouters, survivorship declined as fire intensity increased and this was more pronounced for rain forest than for savanna species. Repeated burning produced a cumulative effect of decreasing survivorship for rain forest resprouters relative to savanna resprouters. Main conclusions The study provides evidence that savanna and rain forest trees differ in fire susceptibility and that recurrent fire can explain the restricted distribution of rain forest in the seasonally arid Australian tropics. The time of death of the savanna trees is consistent with the regional pattern after severe drought, and highlights the importance of medium term climate cycles for the population dynamics of savanna tree species and structure of Australian savannas.  相似文献   

10.
Most tropical trees produce fleshy fruits that attract frugivores that disperse their seeds. Early demography and distribution for these tree species depend on the effects of frugivores and their behavior. Anthropogenic changes that affect frugivore communities could ultimately result in changes in tree distribution and population demography. We studied the frugivore assemblage at 38 fruiting Elmerrillia tsiampaca, a rain forest canopy tree species in Papua New Guinea. Elmerrillia tsiampaca is an important resource for frugivorous birds at our study site because it produces abundant lipid-rich fruits at a time of low fruit availability. We classified avian frugivores into functional disperser groups and quantified visitation rates and behavior at trees during 56 canopy and 35 ground observation periods. We tested predictions derived from other studies of plant–frugivore interactions with this little-studied frugivore assemblage in an undisturbed rain forest. Elmerrillia tsiampaca fruits were consumed by 26 bird species, but most seeds were removed by eight species. The most important visitors (Columbidae, Paradisaeidae and Rhyticeros plicatus) were of a larger size than predicted based on diaspore size. Columbidae efficiently exploited the structurally protected fruit, which was inconsistent with other studies in New Guinea where structurally protected fruits were predominantly consumed by Paradisaeidae. Birds vulnerable to predation foraged for short time periods, consistent with the hypothesis that predator avoidance enhances seed dispersal. We identified seven functional disperser groups, indicating there is little redundancy in disperser groups among the regular and frequent visitors to this tropical rain forest tree species.  相似文献   

11.
Climbers play different roles in forest biology and ecology and are the first to be eliminated during forest clearing but little is known about the species composition, distribution and relationship with tree species of this group of plants of tropical forest. This study thus investigated the species composition, abundance and tree relationship of climbers along altitudinal gradient in four 0.06 ha plots in a secondary forest at Ile‐Ife, Nigeria. All trees ≥10 cm g.b.h were examined for the presence of climbers in the plots. There were 49 climber species consisting of 35 liana and fourteen vine species distributed over 41 genera and 28 families in the forest. Lianas contributed 34% and vines 13.7% of the plant species in the forest. Climber basal area, density, number of species, genera and families increased with altitude. Forty‐two per cent (42%) of the trees in the forest carried climbers. There was significant positive correlation (P ≤ 0.05) between girth sizes of host trees of 31–50 cm with the girths of climbers on them indicating that trees of these girth sizes are highly susceptible to climber infestation. Tree species host density and size are important factors in determining the presence of climbers on a tree.  相似文献   

12.
We studied the spatial distribution of fruits and plants, mortality and growth rates ofScaphium macropodum (Sterculiaceae) in four 1-ha plots in a tropical rain forest in West Kalimantan, Indonesia. The species is a large deciduous tree and produces wind-dispersed fruits on defoliated twigs. The density of dispersed fruits on the ground decreased with increasing distance from a parent tree. The area under the parent's crown had the highest density of the fruits and the highest mortality of the seedlings immediately after germination. Consequently, the density of the established seedlings peaked 14 m from the tree which is outside its crown. Thick litter mainly from the parent tree seemed to physically prevent the seedlings' root from reaching the soil surface and caused the high mortality. Juvenile and mature trees distributed exclusively, suggesting that regeneration is the most successful outside of the crown of mature trees. Saplings under canopy shade did not grow well.Scaphium macropodum is hypothesized to require a gap for seedling growth and successful regeneration, whereas it can germinate and last under closed canopies as suppressed seedlings or saplings.  相似文献   

13.
Habitat fragmentation is considered the most serious threat to primate conservation in the tropics, and understanding it effects on lion-tailed macaque is very important because most of the populations live in fragmented habitats. We examined demographic parameters of 9 lion-tailed macaque groups in 8 rain forest fragments with reference to fragment area, tree density, canopy cover, tree height, and total basal area of food trees. Group size ranged from 7 to 90 individuals but was not related to habitat variables. Birth and growth rates of groups did not differ significantly between small (n = 4) and large (n = 4) fragments. Tree density, canopy cover, and total basal of food trees all show strong positive correlations with fragment area. Growth rate correlates with tree density, but there are no other significant relationships between birth or growth rate and habitat variables. The percentage of immature individuals in the group is significantly positively associated with the total basal area of food trees, but not with any other habitat variable. Comparison of our data from this study with data available for the same population in 1996 indicates a slight decline in birth rate but an increase in total number of individuals, from 154 to 242. Of the 5 small fragment groups, 3 have increased in size since 1996 while the sizes of the other 2 groups have remained the same. Based on this study, we advocate that to manage the fragile lion-tailed macaque groups the following steps need to be taken: 1) create dispersal corridors between the fragments using fruit trees to facilitate male dispersal, 2) construct canopy bridges across the prevailing roads, 3) protect the fragments from further degradation, and 4) periodically monitor these populations for long-term conservation.  相似文献   

14.
Changes in species composition and density of trees >10 cm gbh in a tropical dry evergreen forest in Puthupet, south India are interpreted for the period between 1992 and 2002. A 1-ha plot was inventoried in 1992 and was recensused in 2002. During the 10-year interval tree taxa diversity as well as stand density increased, but the basal area value decreased. Tree species richness increased by 21% (from 24 to 29 species) by an addition of eight species and local extinction of three species. The tree density increased just by eight individuals (from 1330 stems ha−1 in 1992 to 1338 ha−1 in 2002), but the basal area decreased by 8% (from 37.5 to 34.5 m2 ha−1). Many species (11 numbers) have increased in abundance rather than decreased. Many surviving species seem to have considerable stability in abundance at the local scale. The density of smaller stems (10 29 cm gbh) increased by 15.3%, while that of the larger trees decreased drastically (81.6%). Ninety percent of the missing stems were from the middlestorey of the forest. Tree density changes among the three ecological guilds revealed a decrease in stem density and an increase in basal area in the lowerstorey; while the middlestorey exhibited a reverse trend. Family-wise, tree density changes revealed that the majority of families (67%) showed an increase in stem density. Long-term studies on tree population changes are essential to estimate tree mortality and recruitment rates, which will provide a greater insight in tropical forest dynamics.  相似文献   

15.
西双版纳望天树林的群落生态学研究   总被引:32,自引:6,他引:32  
朱华 《云南植物研究》1992,14(3):237-258
  相似文献   

16.
Abstract. Density‐dependence in tree population dynamics has seldom been examined in dry tropical forests. Using long‐term data from a large permanent plot, this study examined 16 common species in a dry tropical forest in southern India for density‐dependence. Employing quadrat‐based analyses, correlations of mortality, recruitment and population change with tree densities were examined. Mortality in 1–10 cm diameter trees was largely negatively correlated with conspecific density, whereas mortality in > 10 cm diameter trees was positively correlated. Mortality was, however, largely unaffected by the basal area and abundance of heterospecific trees. Recruitment was poor in most species, but in Lagerstroemia microcarpa (Lythraceae), Tectona grandis (Verbenaceae) and Cassia fistula (Fabaceae), species that recruited well, strong negative correlations of recruitment with conspecific basal area and abundance were found. In a few other species that could be tested, recruitment was again negatively correlated with conspecific density. In Lagerstroemia, recruitment was positively correlated with the basal area and abundance of heterospecific trees, but these correlations were non‐significant in other species. Similarly, although the rates of population change were negatively correlated with conspecific density they were positive when dry‐season ground fires occurred in the plot. Thus, the observed positive density‐dependence in large‐tree mortality and the negative density‐dependence in recruitment in many species were such that could potentially regulate tree populations. However, repeated fires influenced density‐dependence in the rates of population change in a way that could promote a few common species in the tree community.  相似文献   

17.
When considering all trees irrespective of their species, natural tropical rain forests typically exhibit spatial patterns that range from random to regular. The regularity is often interpreted as a footprint of tree competition. Using 23 permanent sample plots totalling 61 ha in the rain forests of central Africa, we characterized their spatial patterns and modelled those that exhibited regularity by a Strauss point process. This Strauss process is obtained as a Markov point process whose interaction function is an exponential function of a competition index commonly used in forestry. The parameter of this Strauss process characterizes the strength of competition. The 23 plots in central Africa differed in tree density and basal area, and could be discriminated depending on the type of spatial patterns: plots having a large basal area with respect to their density had a non regular pattern, whereas those having a small basal area with respect to their density had a regular pattern. For those plots that exhibited regularity, average tree size could be used to predict the strength of competition. The parameter of the Strauss process was significantly related to the average size by a linear relationship, such that competition decreases as average tree size increases. This relationship extrapolated to a null value of the Strauss parameter when average tree size reaches 32 cm in diameter. This relationship between average tree size and spatial pattern is a testable feature for future studies on the relationship between competition and spatial pattern in natural forests.  相似文献   

18.
Changes in tree, liana, and understory plant diversity and community composition in five tropical rain forest fragments varying in area (18–2600 ha) and disturbance levels were studied on the Valparai plateau, Western Ghats. Systematic sampling using small quadrats (totaling 4 ha for trees and lianas, 0.16 ha for understory plants) enumerated 312 species in 103 families: 1968 trees (144 species), 2250 lianas (60 species), and 6123 understory plants (108 species). Tree species density, stem density, and basal area were higher in the three larger (> 100 ha) rain forest fragments but were negatively correlated with disturbance scores rather than area per se. Liana species density, stem density, and basal area were higher in moderately disturbed and lower in heavily disturbed fragments than in the three larger fragments. Understory species density was highest in the highly disturbed 18‐ha fragment, due to weedy invasive species occurring with rain forest plants. Nonmetric multidimensional scaling and Mantel tests revealed significant and similar patterns of floristic variation suggesting similar effects of disturbance on community compositional change for the three life‐forms. The five fragments encompassed substantial plant diversity in the regional landscape, harbored at least 70 endemic species (3.21% of the endemic flora of the Western Ghats–Sri Lanka biodiversity hotspot), and supported many endemic and threatened animals. The study indicates the significant conservation value of rain forest fragments in the Western Ghats, signals the need to protect them from further disturbances, and provides useful benchmarks for restoration and monitoring efforts.  相似文献   

19.
The influence of a population of the understorey woody bamboo Merostachys riedeliana and different flooding regimes on tree community dynamics in a section of tropical semideciduous forest in South-Eastern Brazil was examined. A forest section with an area of 1.6 ha composed of 71 adjacent plots was located on a slope ending at the river margin. The section was divided into five topographical sectors according to the mean duration of river floods. In 1991 and 1998 all trees with a diameter at the base of the trunk ≥ 5 cm were measured, identified and tagged, and all live bamboo culms were counted. Annualised estimates of the rates of tree mortality and recruitment, gain and loss of tree basal area, and change in bamboo density were calculated for each of the 71 plots and five topographical sectors as well as for diameter classes and tree species. To segregate patterns arising from spatially autocorrelated events, geostatistical analyses were used prior to statistical comparisons and correlations. In general, mortality rates were not compensated by recruitment rates but there was a net increase in basal area in all sectors, suggesting that the tree community as a whole was in a building phase. Tree community dynamics of the point bar forest (Depression and Levée sectors) differed from that of the upland forest (Ridgetop, Middle Slope and Lower Slope sectors) in the extremely high rates of gain in basal area. The predominant and specialised species, Inga vera and Salix humboldtiana, are probably favoured by relaxed competition in an environment stressed by long-lasting floods. In the upland forest, mortality rates were highest at the Middle Slope, particularly for smaller trees, while recruitment rates were lowest. As bamboo clumps were concentrated in this sector, the locally higher instability in the tree community probably resulted from the direct interference of bamboos. The density of bamboo culms in the upland forest was negatively correlated with the rates of tree recruitment and gain in basal area, and positively correlated with tree mortality rates. Bamboos therefore seemed to restrict the recruitment, growth and survival of trees. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Yi Ding  Runguo Zang 《Biotropica》2009,41(5):618-624
Lianas are an integral part of tropical forest ecosystems, which usually respond strongly to severe disturbances, such as logging. To compare the effect of different logging systems on the lianas diversity in tropical rain forest, we recorded all lianas and trees ≥1 cm dbh in two 40-year-old forest sites after clear cutting (CC) and selective cutting (SC) as well as in an old-growth (OG) lowland tropical rain forest on Hainan Island in south China. Results showed that OG contained fewer liana stems and lower species richness (stems: 261, richness: 42 in 1 ha) than CC (606, 52) and SC (727, 50). However, OG had the highest Fisher's α diversity index (17.3) and species richness per stem (0.184). Species composition and dbh class distribution of lianas varied significantly with different logging systems. The mean liana dbh in OG (22.1 cm) were higher than those in CC (7.0 cm) and SC (10.4 cm). Stem twining was the most frequent climbing mechanism represented in the forest, as shown by the greatest species richness, abundance, basal area, and host tree number with this mechanism. The percent of host tree stems ≥4 cm dbh hosting at least one liana individual in SC (39%) was higher than CC (23%) and OG (19.5%). Large host trees (dbh≥60 cm) were more likely to be infested by lianas in SC and OG. Our study demonstrated that logging disturbance could significantly change the composition and structure of liana communities in the lowland tropical rain forest of south China.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号