首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seedlings of Ricinus communis L. were cultivated in quartz sandand supplied with media which contained either different concentrationsof nitrate or ammonium nitrogen and were treated with a lowsalt stress. The concentration of ABA was determined in tissuesand in xylem and phloem saps. Between 41 and 51 day after sowing,abscisic acid (ABA) flows between roots and shoots were modelled.Long-distance transport of ABA was not stimulated under conditionsof nitrate deficiency (0.2 mol m–3). However, when ammoniumwas given as the only N source (1.0 mol m–3), ABA transportin both xylem and phloem was increased significantly. Mild saltstress (40 mol m–3 NaCl) increased ABA transport in nitrate-fedplants, but not in ammonium-fed plants. The leaf conductancewas lowered by salt treatment with both nitrogen sources, butit was always lower in ammonium-fed compared to nitrate-fedplants. A negative correlation of leaf conductance to ABA levelsin leaves or flow in xylem was found only in comparison of ammonium-fedto nitrate-fed plants. Key words: Abscisic acid, ammonium, Ricinus communis, phloem, xylem, transport, nitrate, nitrogen nutrition  相似文献   

2.
The abscisic acid (ABA)-deficient mutant of barley, Az34, exhibiteda much reduced rate of leaf expansion at a bulk density of 1.6g cm–3 as compared to the isogenic wild-type variety,Steptoe. Az34 had a consistently lower xylem sap ABA concentrationat 7 d and 14 d after emergence (DAE). The xylem sap data suggestthat ABA present at Steptoe concentrations may have a directrole in maintaining leaf expansion at the sub-critical bulkdensity (1.6 g cm–3 To test this hypothesis, additionof synthetic ABA either to the rooting environment (100 nM)or directly to the xylem sap (5 pg µl–1 to reproducethe xylem sap ABA concentrations found in Steptoe, increasedleaf expansion in Az34 to the wild-type level. Furthermore,feeding Steptoe xylem sap to Az34 produced similar effects.These experiments provide direct evidence of a positive rolefor ABA as a root-to-shoot signal which assists in maintainingleaf growth in plants experiencing subcritical levels of compactionstress. Key words: ABA-deficient mutant, leaf expansion, xylem sap, ABA  相似文献   

3.
Neill, S. J., McGaw, B. A. and Horgan, R. 1986. Ethylene and1-aminocyclopropane-l-carboxylic acid production in flacca,a wilty mutant of tomato, subjected to water deficiency andpretreatment with abscisic acid —J. exp. Bot. 37: 535–541. Plants of Lycoperstcon esculentum Mill. cv. Ailsa Craig wildtype and flacca (flc) were sprayed daily with H2O or 2?10–2mol m–3 abscisic acid (ABA). ABA treatment effected apartial phenotypic reversion of flc shoots; leaf areas wereincreased and transpiration rates decreased. Leaf expansionof wild type shoots was inhibited by ABA. Indoleacetic acid (IAA), ABA and l-aminocyclopropane-l-carboxylicacid (ACC) concentrations were determined by combined gas chromatography-massspectrometry using deuterium-labelled internal standards ABAtreatment for 30 d resulted in greatly elevated internal ABAlevels, increasing from 1?0 to 4?3 and from 0?45 to 4?9 nmolg–1 fr. wt. in wild type and flc leaves respectively.Endogenous IAA and ACC concentrations were much lower than thoseof ABA. IAA content ranged from 0?05 to 0?1 nmol g–1 andACC content from 0?07 to 0?24 nmol g–1 Ethylene emanationrates were similar for wild type and flc shoots. Wilting of detached leaves induced a substantial increase inethylene and ACC accumulation in all plants, regardless of treatmentor type. Ethylene and ACC levels were no greater in flc leavescompared to the wild type. ABA pretreatment did not preventthe wilting-induced increase in ACC and ethylene synthesis. Key words: ABA, ACC, ethylene, wilting, wilty mutants  相似文献   

4.
Guttation was used as a non-destructive way to study the flowof water and mineral ions from the roots and compared with parallelmeasurements of root exudation. Guttation of the leaves of barley seedlings depends on age andon the culture solution. Best rates of guttation were obtainedwith the primary leaves of 6- to 7-day-old seedlings grown onfull mineral nutrient solution. The growing leaf tissue becomessaturated with K+ below 1.5 mM K+ in the medium, whereas K+concentration in the guttated fluid still increases furtheras K+ concentration in the medium is raised. At 3 mM K+ averagevalues of guttation were 1.4–2.4 mm3 h–1 per plantwith a K+ concentration of 10–20 mM; for exuding plantsthe flow was 4.2–7.6 mm3 h–1 per plant and K+ concentration35–55 mM. Abscisic acid (ABA) at 10–6 to 10–4 M 0–2h after addition to the root medium increased volume flow ofguttation and exudation and the amount of K+ exported. Threeh after addition of ABA both volume and amount of K+ were reduced.There was an ABA-dependent increase in water permeability (Lp)of exuding roots shortly after ABA addition. Later Lp was decreasedby 35 per cent and salt export by 60 per cent suggesting aneffect of ABA on salt transport to the xylem apart from itseffect on Lp. Benzyladenine (5 x 10–8 to 10–5 M)and kinetin (5 x 10–6 M) progressively reduced volumeflow and K+ export in guttation and exudation and reduced Lp. Guttation showed a qualitatively similar response to phytohormonesas found here and elsewhere using exuding roots. Hordeum vulgare L., barley, guttation, abscisic acid, cytokinins, benzyl adenine, kinetin  相似文献   

5.
Plants of Helianthus annuus were grown in soil in pots suchthat approximately 30% of the root system protruded throughthe base of the pot. After 7 d further growth in aerated nutrientsolution, the attached, protruding roots were air-dried for10–15 min and thereafter surrounded with moist still air,in the dark, for 49 h, whilst the soil was kept at field capacity.The roots of the control plants remained in the nutrient solutionthroughout the experiment. This treatment rapidly reduced the water content of protrudingroots from 20.5 to 17.8 g g–1 dry mass (DM), which remainedless than that of the control roots for the rest of the experiment.This treatment also reduced root turgor and water potential.The abscisic acid (ABA) concentrations in the protruding roots,xylem sap and leaves of the treated plants increased significantly,compared to values recorded for control plants. In treated roots, the ABA concentration was significantly increased4 h after treatment, with a maximum of 4.4+0.1 nmol g–1(DM) after 25 h. The ABA concentration in the xylem sap of thetreated plants was significantly greater than in the controls25 h, 30 h, and 49 h after the partial drying of the roots,with a maximum concentration of approximately 970 pmol ABA cm-3at 49 h. Initially, the ABA concentration in the leaves was0.45 nmol g–1 (DM) which increased significantly to 1.1±0.1 nmol g–1 at 25 h, to 1.7±0.3 nmol g–1at 49 h. Leaf conductance was significantly less in plants with air-driedroots than in the controls 8 h after the start of the treatmentand thereafter. The water relations of the leaves of the treatedplants did not differ from those of the control plants. These results confirm previous reports that ABA is rapidly generatedin partially-dried and attached root systems and demonstratesa concomitant large increase in the ABA content of the xylemsap. It is suggested that partial dehydration of some of theroots of Helianthus annuus, increases ABA concentration in thetranspiration stream and decreases leaf conductance in the absenceof changes in leaf water status. As these responses were initiatedin free-growing roots the stimulus is independent of any increasesin soil shear strength that are associated with soil drying. Key words: Soil drying, roots, ABA, leaf conductance, water relations  相似文献   

6.
Inhibition of Light-Stimulated Leaf Expansion by Abscisic Acid   总被引:9,自引:2,他引:7  
Abscisic acid (ABA) applied to intact bean (Phaseolus vulgaris)leaves or to isolated leaf discs inhibits light-stimulated cellenlargement This effect may be obtained with 10–4 molm–3 ABA, but is more significant at higher concentrations.The inhibition of disc expansion by ABA is greater for discsprovided with an external supply of sucrose than for discs providedwith KC1, and may be completely overcome by increasing the KC1concentration externally to 50 mol m–3. Decreased growthrate of ABA-treated tissue is not correlated with loss of solutesfrom growing cells, but is correlated with a decrease in cellwall extensibility. ABA does not prevent light-stimulated acidificationof the leaf surface, and stimulates the acidification of theexternal solution by leaf pieces. However, the capacity of thecell walls to undergo acid-induced wall loosening is diminishedby ABA-treatment. The possibility that ABA acts directly byinhibiting growth processes at the cellular level, or indirectlyby causing stomatal closure, is discussed. Key words: Phaseolus vulgaris, ABA, Inhibition, Leaf expansion  相似文献   

7.
Epidermal strips and leaf fragments of Commelina and leaf fragmentsof maize were incubated on solutions containing naturally-occurringor synthetic cytokinins and/or ABA. The effects of these treatmentson stomatal behaviour were assessed. Cytokinins alone did notpromote stomatal opening in either species but concentrationsof both zeatin and kinetin from 10–3 to 10–1 molm–3 caused some reversal of ABA-stimulated closure ofmaize stomata. The reversal of the ABA effect increased withincreasing cytokinin concentration. Cytokinins had no effecton ABA-stimulated closure of Commelina stomata. When appliedalone, at high concentration (10–1 mol m–3), toCommelina epidermis or leaf pieces both zeatin and kinetin restrictedstomatal opening. Key words: ABA, Cytokinins, Stomata, Maize, Commelina  相似文献   

8.
Yeo, A. R., Yeo, M. E., Caporn, S. J. M., Lachno, D. R. andFlowers, T. J. 1985. The use of 14C-ethane diol as a quantitativetracer for the transpirational volume flow of water and an investigationof the effects of salinity upon transpiration, net sodium accumulationand endogenous ABA in individual leaves of Oryza sativa L.—J.exp. Bot. 36: 1099–1109. Oryza sativa L. (rice) seedlings growing in saline conditionsexhibit pronounced gradients in leaf sodium concentration whichis always higher in the older leaves than the younger ones.Individual leaf transpiration rates have been investigated todiscover whether movement of sodium in the transpiration streamis able to explain these profiles from leaf to leaf. The useof 14C labelled ethane diol to estimate transpiration was evaluatedby direct comparison with values obtained by gas exchange measurements.Ethane diol uptake was linearly related to the transpirationalvolume flow and accurately predicted leaf to leaf gradientsin transpiration rate in saline and non-saline conditions. 14C-ethanediol and 22NaCl were used to compare the fluxes of water andsodium into different leaves. The youngest leaf showed the highesttranspiration rate but the lowest Na accumulation in salineconditions; conversely, the older leaves showed the lower transpirationrates but the greater accumulation of Na. The apparent concentrationof Na in the xylem stream was 44 times lower into the youngerleaf 4 than into the older leaf 1. Exposure to NaCl (50 molm–3) for 24 h elicited an increase in endogenous ABA inthe oldest leaf only, but no significant changes occurred inthe younger leaves. Key words: —Salinity, rice, Oryza sativa L., transpiration, volume flow, abscisic acid  相似文献   

9.
Hordeum vulgare cv. California Mariout was established in sandculture at two different NaCl concentrations (0.5 mol m–3‘control’ and 100 mol m–3) in the presenceof 6.5 mol m–3 K +. Between 16 and 31 d after germination,before stem elongation started, xylem sap was collected by useof a pressure chamber. Collections were made at three differentsites on leaves 1 and 3: at the base of the sheath, at the baseof the blade, i.e. above the ligule, and at the tip of the blade.Phloem sap was collected from leaf 3 at similar sites throughaphid stylets. The concentrations of K +, Na+, Mg2+ and Ca2+were measured. Ion concentrations in xylem sap collected at the base of leaves1 and 3 were identical, indicating there was no preferentialdelivery of specific ions to older leaves. All ion concentrationsin the xylem decreased from the base of the leaf towards thetip; these gradients were remarkably steep for young leaves,indicating high rates of ion uptake from the xylem. The gradientsdecreased with leaf age, but did not disappear completely. In phloem sap, concentrations of K+ and total osmolality declinedslightly from the tip to the base of leaves of both controland salt-treated plants. By contrast, Na+ concentrations inphloem sap collected from salt-treated plants decreased drasticallyfrom 21 mol m–3 at the tip to 7.5 mol m–3 at thebase. Data of K/Na ratios in xylem and phloem sap were used to constructan empirical model of Na+ and K+ flows within xylem and phloemduring the life cycle of a leaf, indicating recirculation ofNa+ within the leaf. Key words: Hordeum vulgare, xylem transport, phloem transport, NaCl-stress  相似文献   

10.
Sycamore seedlings were grown with their root systems dividedequally between two containers. Water was withheld from onecontainer while the other container was kept well-watered. Effectsof soil drying on stomatal behaviour, shoot water status, andabscisic acid (ABA) concentration in roots, xylem sap and leaveswere evaluated. At 3 d, root ABA in the drying container increased significantly,while the root ABA in the unstressed container of the same plantsdid not differ from that of the control. The increase in rootABA was associated with the increase in xylem sap ABA and withthe decrease in stomatal conductance without any significantperturbation in shoot water status. At 7 d, despite the continuous increase in root ABA concentration,xylem sap ABA showed a marked decline when soil water contentwas depleted below 013 g g–1. This reduction in xylemsap ABA coincided with a partial recovery of stomatal conductance.The results indicate that xylem sap ABA is a function of rootABA as well as the flow rate of water from roots to shoots,and that this ABA can be a sensitive indicator to the shootof the effect of soil drying. Key words: Acer pseudoplatanus L., soil drying, stomatal behaviour, xylem sap ABA  相似文献   

11.
Wild-type (Steptoe) and abscisic acid (ABA)-deficient mutant(Az34) genotypes of barley were grown in compacted soil to examinethe potential role of ABA as a root-to-shoot signal. Root andshoot growth and leaf conductance were all reduced when plantswere grown in compacted soil with a bulk density of 1.7g cm–3,relative to uncompacted control plants (1.1 g cm–3. Theseeffects occurred in the absence of detectable changes in leafwater status or foliar abscisic acid (ABA) content. Analysisof Steptoe and Az34 xylem sap showed that the ABA concentrationwas greatly increased at 6 d after emergence (6 DAE) when seedlingswere grown in compacted soil (1.7 g cm–3); however, ABAconcentrations were never as high in the mutant as in the wildtype. The increase in xylem sap ABA concentration observed athigh bulk density was closely correlated with reductions inleaf conductance, but not leaf area. These increases were transitory,and xylem sap ABA concentrations subsequently decreased towardsthe control level by 18 DAE in both genotypes. The ABA-deficient mutant, Az34, produced a much lower leaf areathan Steptoe at a bulk density of 1.6 g cm–3. Examinationof epidermal characteristics indicates that this effect resultedmainly from reductions in cell expansion rather than cell division,suggesting that the higher ABA concentrations detected in xylemsap from the wild-type Steptoe may have exerted a positive rolein maintaining leaf expansion in this treatment. The possibleinvolvement of ABA as a root-to-shoot signal mediating the effectsof compaction stress is discussed. Key words: Soil compaction, bulk density, ABA, ABA-deficient mutant, leaf growth  相似文献   

12.
Plants of Helianthus annuus were pot-grown in soil, with approximately30% of the root system protruding through the base. After 7d, the upper part of the root system of half of the plants wasexposed to drought (internal roots) while the lower part waskept in aerated nutrient solution (protruding root). The treatmentrapidly reduced the internal roots' water content from 26.1to 21.9 g g–1 dry weight (DW), while in protruding rootsof stressed plants it slowly and continuously decreased from31.9 to 25.2 g g–1 DW. Leaf water content rapidly decreasedin treated plants from 7.4 to 6.4 g g–1 DW in the first2d and then reached a plateau. In stressed plants leaf stomatalresistance was significantly higher in the first 3 d while leafwater potential was lower only on the last day. Abscisic acid (ABA) concentration in treated plants increasedsignificantly compared to the controls. In treated internalroots, ABA rose from the first day, reaching a maximum of 1.48±0.49nmol g–1 DW after 3 d. In treated protruding roots a maximumof 0.99±0.09 nmol g–1 DW was reached after 1 d.ABA concentration in the xylem sap increased 2 d and 3 d afterthe start of soil drying, with a maximum of 113±12nmoll–1 during the third day. The ABA rise in the leaves oftreated plants was less significant. Indol-3yl-acetic acid (IAA) concentration in internal rootsof treated plants reached a maximum of 22.54±3.34 nmolg–1 DW on the third day, then decreased dramatically.The protruding root system of control plants showed a maximumvalue of 16.05±1.77 nmol g–1 DW on the sixth day. Little difference in cytokinin content of xylem sap was notedbetween control and treated plants. Hormonal variations in different parts of the plant are discussedin relation to drought stress. Key words: Soil drying, roots, ABA, IAA, cytokinins  相似文献   

13.
Maize (Zea mays L.) was grown in quartz sand culture eitherwith a normal root system (controls) or with seminal roots only(‘single-rooted’). Development of adventitious rootswas prevented by using plants with an etiolated mesocotyl andthe stem base was positioned 5–8 cm above the sand. Eventhough the roots of the single-rooted plants were sufficientlysupplied with water and nutrients, the leaves experienced waterdeficits and showed decreased transpiration as trans plrationalwater flow was restricted by the constant number of xylem vesselspresent in the mesocotyl. As a consequence of this restriction,transpirational water flow velocities in the metaxylem vesselsreached mean values of 270 m h–1 and phloem transportvelocities of 5.2 m h–1. Despite limited xylem transportmineral nutrient concentrations in leaf tissues were not decreasedin single-rooted plants, but shoot and particularly stem developmentwas somewhat inhibited. Due to the lack of adventitious rootsthe shoot:root ratio was strongly increased in the single-rootedplants, but the seminal roots showed compensatory growth comparedto those in control plants. Consistent with decreased leaf conductance,ABA concentrations in leaves of single-rooted plants were elevatedup to 10-fold, but xylem sap ABA concentrations in these plantswere lower than in controls, in good agreement with the well-wateredconditions experienced by the seminal roots. Surprisingly, however,ABA concentrations in tissues of the seminal roots of the single-rooted plants were clearly increased compared to the controls,presumably due to increased ABA import via phloem from the water-stressedleaves. The results are discussed in relation to the role ofABA as a shoot to root signal. Key words: Zea mays, seminal roots, plant development, xylem transport, mineral nutrition, ABA, shoot-to-root signal  相似文献   

14.
The effect of development on leaf elongation rate (LER) andthe distribution of relative elemental growth rate (REGR), epidermalcell length, and xyloglucan endotransglycosylase (XET) activitythrough the growing zone of the third leaf of maize was investigated.As the leaf aged and leaf elongation slowed, the length of thegrowing zone (initially 35 mm) and the maximal REGR (initially0.09 mm mm–1 h–1) declined. The decline in REGRwas not uniform through the growth profile. Leaf ageing sawa maintenance of REGR towards the base of the leaf. Epidermalcell size was not constant at a given position in the growingzone, but was seen to increase as the leaf aged. There was apeak of XET activity close to the base of the growing zone.The peak of XET activity preceded the zone of maximum REGR.XET activity declined as leaves aged and their elongation rateslowed. When leaf elongation was complete a distinct peak ofXET activity remained close to the base of the leaf. Key words: Leaf elongation rate (LER), relative elemental growth rate (REGR), xyloglucan endotransglycosylase (XET)  相似文献   

15.
Seedlings of cotton (Gossypium hirsutum L. cv. Acala SJ-2) weregrown in modified Hoagland nutrient solution with various combinationsof NaCl and CaCl2. Marking experiments and numerical analysiswere conducted to characterize the spatial and temporal patternsof cotton root growth at varied Na/Ca ratios. At 1 mol m–3Ca, 150 mol m–3 NaCl reduced overall root elongation rateto 60% of the control, while increasing Ca to 10 mol m–3at the same NaCl concentration restored the elongation rateto 80% of the control. Analysis of the spatial distributionof elongation revealed that the presence of 150 mol m–3NaCl in the medium shortened the growth zone by about 2 mm fromthe approximate 10 mm in the control and also reduced the relativeelemental elongation rate (i.e. the longitudinal strain rate,defined as the derivatives of displacement velocity of a cellularparticle with respect to position on root axis). Supply of 10mol m–3 Ca at the high salt condition restored partiallythe relative elemental elongation rate, but not the length ofthe growth zone. Compared to the control, the growth trajectoriesshowed that at 1 mol m–3 CaCl2 it took more time for acellular particle to move through the growth zone at 150 molm–3 NaCl, while at 10 mol m–3 CaCl it took lesstime and there was no difference between the NaCl treatments Key words: Gossypium hirsutum, salinity stress, root growth kinematics  相似文献   

16.
Ward, D. A. and Drake, B. G. 1988. Osmotic stress temporarilyreverses the inhibitions of photosynthesis and stomatal conductanceby abscisic acid—evidence that abscisic acid induces alocalized closure of stomata in intact, detached leaves.—J.exp. Bot 39: 147–155. The influence of osmotic stress on whole leaf gas exchange wasmonitored in detached leaves of Glycine max supplied with anexogenous concentration (10–5 mol dm–3) of ±abscisicacid (ABA) sufficient to inhibit net photosynthesis and stomatalconductance by 60% and 70%, respectively, under a saturatingirradiance and normal air. Raising the osmotic (sorbitol) concentrationof the ABA solutions feeding leaves elicited rapid and synchronousreversals of the ABA-dependent inhibitions of net photosynthesisand conductance. These reversals reached a peak simultaneously,after which photosynthesis and conductance declined. The magnitudeof the transient stimulations at peak height was dependent uponthe sorbitol concentration of the ABA feeding solution, althoughthe time-course of the transients (half time, 4–6 min)was similar for the different osmotic concentrations applied.Irrespective of transient size the relative changes of photosynthesisand conductance were comparable; consequently the calculatedpartial pressure of CO2 in the substomatal space (Ci) remainedrelatively constant during the transient phase. In contrastto the ABA-treated leaves, elevating the osmotic concentrationof the distilled water supply feeding control leaves stimulatedconductance to a much greater relative extent than photosynthesis.The co-stimulations of photosynthesis and conductance inducedin ABA-treated leaves by osmotic shock were not due to a restrictionin the transpirational uptake of ABA and occurred irrespectiveof the source osmoticum applied. These data are consistent with the hypothesis that the ABA-dependentinhibition of photosynthesis at constant Ci is an artifact causedby the spatially heterogeneous closure of stomata in responseto ABA. Alternative explanations for the responses are, however,considered. Key words: Abscisic acid, photosynthesis, osmotic stress, Glycine max, stomatal conductance  相似文献   

17.
The characteristics of ABA-induced changes in the fluxes ofCO2 and water vapour from whole leaves of spring wheat (Triticumaestivum cv. Wembley) were examined. Aqueous solutions of ABAwere supplied via the transpiration stream to intact leavesof different ages mounted within a gas exchange cuvette. ABA caused a reduction in stomatal conductance (g) that wasproportional to the concentration in the solution fed to theleaf. For the maintenance of a reduction in g there was a requirementfor a continual supply of ABA. At concentrations greater than10–2 mol m–3 ABA reduced g by at least 50% of thecontrol value, while 1.0 mol m–3 closed stomata within2 h. Concentrations as low as 10–3 mol m–3 produceda 20% reduction in g. As leaves aged they became less responsiveto applied ABA. The possibility that the stomatal response may change aftera leaf has previously experienced a pulse of ABA was exploredby repeating the exposure of a leaf to 10–2 mol m–3ABA. The first pulse of ABA produced a greater reduction ing than a subsequent exposure the following day. This declinein response of g to ABA on repeated exposure was maintainedwith leaves of different ages. The characteristics of the stomatal response to ABA are discussedin the context of what is known about the location of receptorsfor the hormone. It seems likely that a failure to respond toABA that has previously accumulated in the guard cells shouldbe viewed by means of maximizing the sensitivity to the currentsupply of ABA. It is suggested that the smaller response ofthe stomata of older leaves to ABA makes them more susceptibleto water stress, so that they can act as sensors for decliningwater potentials to give early protection to younger, metabolicallyactive leaves. Key words: Abscisic acid, leaf age, stomatal conductance, Triticum aestivum  相似文献   

18.
Endogenous abscisic acid contents were measured by gas-liquidchromatography in shoots of Suaeda maritima growing both inthe steady state over a range of salinities and over a time-coursefollowing an increase in the culture solution salinity of betweenapproximately 100 and 400 mol m–3 NaCl. In steady-stateplants, the ABA content was maximal in the absence of salt at41 ng g–1 fr. wt., declining to a minimum at 200 mol m–3NaCl of 24 ng g–1 fr. wt. Increase of culture solutionsalinity resulted in a marked increase in shoot ABA which wasmaximal after 6 h or 24 h in plants previously growing at 200mol m–3 NaCl and in the absence of salt, respectively.Additionally, culture solution water potentials were loweredby 1.0 MPa (equivalent to raising the salt concentration byaround 200 mol m–3); this resulted in a similar increasein endogenous ABA content to that brought about by an iso-osmoticsalt increase. Results are discussed in relation to the possiblerole of ABA in halophyte salt tolerance mechanisms. Key words: Suaeda, halophyte, abscisic acid, salt tolerance  相似文献   

19.
ABA Levels and Effects in Chilled and Hardened Phaseolus vulgaris   总被引:3,自引:0,他引:3  
Leaf abscisic acid (ABA) levels of chilled P. vulgaris weremeasured after 18 h chilling at 5°C, at a saturation deficitof 1.24 g m–3 (SD), and after chilling in a water-saturatedatmosphere. Changes were also followed during a chill hardeningperiod of 4 d at 12°C, 2.1 g m–3 SD. It was foundthat hardening resulted in an almost 5. fold increase in ABAlevels after 3 d at 12°C, and this decreased to approximatelycontrol levels on the fourth day. Subsequent chilling of hardenedplants produced no change in ABA levels from that of controlplants (22° C). In contrast, non-hardened plants chilledat 1.24 g m–3 SD had ABA levels almost 3 times the levelof control plants. However, chilling in a water-saturated atmosphereresulted in a decrease in ABA levels. In addition, the response of leaf diffusion resistance (LDR)to exogenous ABA fed via the transpiration stream was measuredat 5 ° C and 22° C in hardened and non-hardened plants.Use of tritium-labelled ABA was made to calculate the stomatalsensitivity to ABA. It was found that exogenous ABA caused anincreased in LDR at 22°C in both hardened and non-hardenedplants. However, the sensitivity of the hardened plants to ABAwas greater in terms of rate of closure and amount of ABA requiredto close the stomata. At 5°C, however, ABA caused stomatalopening and the maintainance of open stomata in non-hardenedplants. In hardened plants, ABA caused stomatal closure at 5°C.These results are discussed in relation to the locking-openresponse of chilled P. vulgaris stomata. Key words: Chilling, Stomata, ABA, Phaseolus vulgaris  相似文献   

20.
Plants of Lupinus albus were grown for 51 d under control (1.1mol m–3 NaCl) and saline (40 mol m–3 NaCl) conditions.Plants were harvested and changes of carbon, nitrogen and abscisicacid (ABA) contents of individual organs were determined 41d and 51 d after germination. In the period between the twoharvests xylem and phloem saps were collected and respirationand photosynthesis of individual organs were measured. Usingflows of carbon, C/ABA ratios and increments of ABA flows ofABA in phloem and xylem and rates of biosynthesis and degradationof ABA were calculated. Both under control and saline conditionsnet biosynthesis occurred in the root, the basal strata of leavesand in the inflorescence. Metabolic degradation of ABA tookplace in the stem internodes and apical leaf strata. Salt stress increased xylem transport of ABA up to 10-fold andphloem transport to the root up to 5-fold relative to that ofthe controls. A considerable amount of ABA in the xylem saporiginated from biosynthesis in the roots, i.e. 55% in salt-treatedand smaller than 28% in control plants. The remaining part ofABA in the xylem sap originated from the shoot: it was translocatedin the phloem from fully differentiated leaves towards the rootand from there it was recirculated back to the aerial partsof the plant. The data suggest that ABA may serve as a hormonalstress signal from the root system. Key words: Lupinus albus, salt stress, abscisic acid, long distance transport  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号