首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

DAZAP1 (DAZ Associated Protein 1) was originally identified by a yeast two-hybrid system through its interaction with a putative male infertility factor, DAZ (Deleted in Azoospermia). In vitro, DAZAP1 interacts with both the Y chromosome-encoded DAZ and an autosome-encoded DAZ-like protein, DAZL. DAZAP1 contains two RNA-binding domains (RBDs) and a proline-rich C-terminal portion, and is expressed most abundantly in the testis. To understand the biological function of DAZAP1 and the significance of its interaction with DAZ and DAZL, we isolated and characterized the mouse Dazap1 gene, and studied its expression and the subcellular localization of its protein product.  相似文献   

2.
3.

Background  

The plant peroxisomal multifunctional protein (MFP) possesses up to four enzymatic activities that are involved in catalyzing different reactions of fatty acid β-oxidation in the peroxisome matrix. In addition to these peroxisomal activities, in vitro assays revealed that rice MFP possesses microtubule- and RNA-binding activities suggesting that this protein also has important functions in the cytosol.  相似文献   

4.

Background

The exosome complex is an essential RNA 3′-end processing and degradation machinery. In archaeal organisms, the exosome consists of a catalytic ring and an RNA-binding ring, both of which were previously reported to assume three-fold symmetry.

Methodology/Principal Findings

Here we report an asymmetric 2.9 Å Sulfolobus solfataricus archaeal exosome structure in which the three-fold symmetry is broken due to combined rigid body and thermal motions mainly within the RNA-binding ring. Since increased conformational flexibility was also observed in the RNA-binding ring of the related bacterial PNPase, we speculate that this may reflect an evolutionarily conserved mechanism to accommodate diverse RNA substrates for degradation.

Conclusion/Significance

This study clearly shows the dynamic structures within the RNA-binding domains, which provides additional insights on mechanism of asymmetric RNA binding and processing.  相似文献   

5.

Background  

Staphylococcus aureus immunodominant surface antigen B (IsaB) elicits an immune response during septicemia and is generally classified as a virulence factor, but its biological function remains completely undefined. In an attempt to identify staphylococcal RNA-binding proteins, we designed an RNA Affinity Chromatography assay and subsequently isolated IsaB.  相似文献   

6.

Background  

RNA-binding motif protein 19 (RBM19, NCBI Accession # NP_083038) is a conserved nucleolar protein containing 6 conserved RNA recognition motifs. Its biochemical function is to process rRNA for ribosome biogenesis, and it has been shown to play a role in digestive organ development in zebrafish. Here we analyzed the role of RBM19 during mouse embryonic development by generating mice containing a mutation in the Rbm19 locus via gene-trap insertion.  相似文献   

7.

Backround  

The emergence of Mycobacterium tuberculosis strains resistant to antituberculosis agents has recently received increased attention owing largely to the dramatic outbreaks of multi drug resistance tuberculosis (MDR-TB).  相似文献   

8.

Background  

The Arabidopsis ortholog of the 30 kD subunit of the mammalian Cleavage and Polyadenylation Specificity Factor (AtCPSF30) is an RNA-binding endonuclease that is associated with other Arabidopsis CPSF subunits (orthologs of the 160, 100, and 73 kD subunits of CPSF). In order to further explore the functions of AtCPSF30, the subcellular distribution of the protein was examined by over-expressing fusion proteins containing fluorescent reporters linked to different CPSF subunits.  相似文献   

9.

Background and Objective

Genes encoding RNA-binding proteins, including FUS and TDP43, play a central role in different neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Recently, a mutation located in the nuclear export signal (NES) of the FUS gene has been reported to cause an autosomal dominant form of familial Essential tremor.

Material and Methods

We sequenced the exons coding the NES domains of five RNA-binding proteins (TARDBP, hnRNPA2B1, hnRNPA1, TAF15 and EWSR1) that have been previously implicated in neurodegeneration in a series of 257 essential tremor (ET) cases and 376 healthy controls. We genotyped 404 additional ET subjects and 510 healthy controls to assess the frequency of the EWSR1 p.R471C substitution.

Results

We identified a rare EWSR1 p.R471C substitution, which is highly conserved, in a single subject with familial ET. The pathogenicity of this substitution remains equivocal, as DNA samples from relatives were not available and the genotyping of 404 additional ET subjects did not reveal any further carriers. No other variants were observed with significant allele frequency differences compared to controls in the NES coding regions.

Conclusions

The present study demonstrates that the NES domains of RNA-binding proteins are highly conserved. The role of the EWSR1 p.R471C substitution needs to be further evaluated in future studies.  相似文献   

10.

Background  

Genotyping of epidemic Clostridium difficile strains is necessary to track their emergence and spread. Portability of genotyping data is desirable to facilitate inter-laboratory comparisons and epidemiological studies.  相似文献   

11.

Background  

In computational analysis, the RING-finger domain is one of the most frequently detected domains in the Arabidopsis proteome. In fact, it is more abundant in Arabidopsis than in other eukaryotic genomes. However, computational analysis might classify ambiguous domains of the closely related PHD and LIM motifs as RING domains by mistake. Thus, we set out to define an ordered set of Arabidopsis RING domains by evaluating predicted domains on the basis of recent structural data.  相似文献   

12.

Background  

Extracellular domains of the Notch family of signalling receptors contain many EGF repeat domains, as do their major ligands. Some EGF repeats are modified by O-fucosylation, and most have no identified role in ligand binding.  相似文献   

13.

Background  

Ribonucleoproteins carry out a variety of important tasks in the cell. In this study we show that a number of these contain a novel module, that we speculate mediates RNA-binding.  相似文献   

14.

Background  

In mice, germ cells are specified through signalling between layers of cells comprising the primitive embryo. The function of Dppa3 (also known as Pgc7 or stella), a gene expressed in primordial germ cells at the time of their emergence in gastrulating embryos, is unknown, but a recent study has claimed that it plays a central role in germ cell specification.  相似文献   

15.
16.

Background  

Cyclic nucleotides are ubiquitous intracellular messengers. Until recently, the roles of cyclic nucleotides in plant cells have proven difficult to uncover. With an understanding of the protein domains which can bind cyclic nucleotides (CNB and GAF domains) we scanned the completed genomes of the higher plants Arabidopsis thaliana (mustard weed) and Oryza sativa (rice) for the effectors of these signalling molecules.  相似文献   

17.

Background  

Recent years have seen the emergence of genome annotation methods based on the phylo-grammar, a probabilistic model combining continuous-time Markov chains and stochastic grammars. Previously, phylo-grammars have required considerable effort to implement, limiting their adoption by computational biologists.  相似文献   

18.

Background  

Exploring the genetic mechanisms underlying speciation is a hot topic in modern genetics and evolutionary studies. Distortion of marker transmission ratio is frequently ascribed to selection against alleles that cause hybrid incompatibility. The natural introgression between P. massoniana and P. hwangshanensis and their distribution ranges lead to the emergence of the two species as desirable organisms to study the genetic mechanisms for speciation.  相似文献   

19.

Background  

Recently, HEN1 protein from Arabidopsis thaliana was discovered as an essential enzyme in plant microRNA (miRNA) biogenesis. HEN1 transfers a methyl group from S-adenosylmethionine to the 2'-OH or 3'-OH group of the last nucleotide of miRNA/miRNA* duplexes produced by the nuclease Dicer. Previously it was found that HEN1 possesses a Rossmann-fold methyltransferase (RFM) domain and a long N-terminal extension including a putative double-stranded RNA-binding motif (DSRM). However, little is known about the details of the structure and the mechanism of action of this enzyme, and about its phylogenetic origin.  相似文献   

20.

Background  

Across all sequenced bacterial genomes, the number of domains n c in different functional categories c scales as a power-law in the total number of domains n, i.e. , with exponents α c that vary across functional categories. Here we investigate the implications of these scaling laws for the evolution of domain-content in bacterial genomes and derive the simplest evolutionary model consistent with these scaling laws.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号