首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In mammals, the circadian oscillator within the suprachiasmatic nuclei (SCN) entrains circadian clocks in numerous peripheral tissues. Central and peripheral clocks share a molecular core clock mechanism governing daily time measurement. In the rat SCN, the molecular clockwork develops gradually during postnatal ontogenesis. The aim of the present work was to elucidate when during ontogenesis the expression of clock genes in the rat liver starts to be rhythmic. Daily profiles of mRNA expression of clock genes Per1, Per2, Cry1, Clock, Rev-Erbalpha, and Bmal1 were analyzed in the liver of fetuses at embryonic day 20 (E20) or pups at postnatal age 2 (P2), P10, P20, P30, and in adults by real-time RT-PCR. At E20, only a high-amplitude rhythm in Rev-Erbalpha and a low-amplitude variation in Cry1 but no clear circadian rhythms in expression of other clock genes were detectable. At P2, a high-amplitude rhythm in Rev-Erbalpha and a low-amplitude variation in Bmal1 but no rhythms in expression of other genes were detected. At P10, significant rhythms only in Per1 and Rev-Erbalpha expression were present. At P20, clear circadian rhythms in the expression of Per1, Per2, Rev-Erbalpha, and Bmal1, but not yet of Cry1 and Clock, were detected. At P30, all clock genes were expressed rhythmically. The phase of the rhythms shifted between all studied developmental periods until the adult stage was achieved. The data indicate that the development of the molecular clockwork in the rat liver proceeds gradually and is roughly completed by 30 days after birth.  相似文献   

4.
Circadian timing is generated through a unique series of autoregulatory interactions termed the molecular clock. Behavioral rhythms subject to the molecular clock are well characterized. We demonstrate a role for Bmal1 and Clock in the regulation of glucose homeostasis. Inactivation of the known clock components Bmal1 (Mop3) and Clock suppress the diurnal variation in glucose and triglycerides. Gluconeogenesis is abolished by deletion of Bmal1 and is depressed in Clock mutants, but the counterregulatory response of corticosterone and glucagon to insulin-induced hypoglycaemia is retained. Furthermore, a high-fat diet modulates carbohydrate metabolism by amplifying circadian variation in glucose tolerance and insulin sensitivity, and mutation of Clock restores the chow-fed phenotype. Bmal1 and Clock, genes that function in the core molecular clock, exert profound control over recovery from insulin-induced hypoglycaemia. Furthermore, asynchronous dietary cues may modify glucose homeostasis via their interactions with peripheral molecular clocks.  相似文献   

5.
Drosophila clock can generate ectopic circadian clocks   总被引:4,自引:0,他引:4  
Zhao J  Kilman VL  Keegan KP  Peng Y  Emery P  Rosbash M  Allada R 《Cell》2003,113(6):755-766
  相似文献   

6.
Recent studies of several species have reported a latitudinal cline in the circadian clock gene, Clock, which influences rhythms in both physiology and behavior. Latitudinal variation in this gene may hence reflect local adaptation to seasonal variation. In some bird populations, there is also an among-individual association between Clock poly-Q genotype and clutch initiation date and incubation period. We examined Clock poly-Q allele variation in the Barn Swallow (Hirundo rustica), a species with a cosmopolitan geographic distribution and considerable variation in life-history traits that may be influenced by the circadian clock. We genotyped Barn Swallows from five populations (from three subspecies) and compared variation at the Clock locus to that at microsatellite loci and mitochondrial DNA (mtDNA). We found very low variation in the Clock poly-Q region, as >96% of individuals were homozygous, and the two other alleles at this locus were globally rare. Genetic differentiation based on the Clock poly-Q locus was not correlated with genetic differentiation based on either microsatellite loci or mtDNA sequences. Our results show that high diversity in Clock poly-Q is not general across avian species. The low Clock variation in the background of heterogeneity in microsatellite and mtDNA loci in Barn Swallows may be an outcome of stabilizing selection on the Clock locus.  相似文献   

7.
In mammals, the central clock (the suprachiasmatic nuclei, SCN) is entrained mainly by the light-dark cycle, whereas peripheral clocks in the peripheral tissues are entrained/synchronized by multiple factors, including feeding patterns and endocrine hormones such as glucocorticoids. Clock-mutant mice (Clock/Clock), which have a mutation in a core clock gene, show potent phase resetting in response to light pulses compared with wild-type (WT) mice, owing to the damped and flexible oscillator in the SCN. However, the phase resetting of the peripheral clocks in Clock/Clock mice has not been elucidated. Here, we characterized the peripheral clock gene synchronization in Clock/Clock mice by daily injections of a synthetic glucocorticoid (dexamethasone, DEX) by monitoring in vivo PER2::LUCIFERASE bioluminescence. Compared with WT mice, the Clock/Clock mice showed significantly decreased bioluminescence and peripheral clock rhythms with decreased amplitudes and delayed phases. In addition, the DEX injections increased the amplitudes and advanced the phases. In order to examine the robustness of the internal oscillator, T-cycle experiments involving DEX stimulations with 24- or 30-h intervals were performed. The Clock/Clock mice synchronized to the 30-h T-cycle stimulation, which suggested that the peripheral clocks in the Clock/Clock mice had increased synchronizing ability upon DEX stimulation, to that of circadian and hour-glass type oscillations, because of weak internal clock oscillators.  相似文献   

8.
9.
10.
11.
The Clock gene is a core component of the circadian clock in mammals. We show here that serum levels of triglyceride and free fatty acid were significantly lower in circadian Clock mutant ICR than in wild-type control mice, whereas total cholesterol and glucose levels did not differ. Moreover, an increase in body weight induced by a high-fat diet was attenuated in homozygous Clock mutant mice. We also found that dietary fat absorption was extremely impaired in Clock mutant mice. Circadian expressions of cholecystokinin-A (CCK-A) receptor and lipase mRNAs were damped in the pancreas of Clock mutant mice. We therefore showed that a Clock mutation attenuates obesity induced by a high-fat diet in mice with an ICR background through impaired dietary fat absorption. Our results suggest that circadian clock molecules play an important role in lipid homeostasis in mammals.  相似文献   

12.
Genetic studies have revealed several clock gene variations/mutations involved in the manifestation of sleep disorders or interindividual differences in sleep–wake patterns, but only part of the genetic risk can be explained by the gene variations/mutations identified to date. Recent progress in research into circadian rhythm generation has provided efficient tools for eliciting the molecular basis of clock-relevant sleep disorders, complementing traditional genetic analysis. While the human master clock resides in the suprachiasmatic nucleus of the hypothalamus (central clock), peripheral tissue cells also generate self-sustained circadian oscillations of clock gene expression (peripheral clock), enabling estimation of individual human clock properties through a single collection of skin fibroblasts or venous blood cells. Some of the established cell lines exhibit autonomous circadian oscillations of clock gene expression, and introduction of clock gene variations into these cell lines by gene targeting makes it possible to investigate changes in the circadian phenotype induced by these variations/mutations without the need for generating transgenic animals. Estimation of human clock properties using peripheral tissue cells, in addition to genetic analysis, will facilitate comprehensive explication of the genetic risk of a variety of disorders relevant to biological clock disturbances, including sleep disorders, mood disorders, and metabolic diseases.  相似文献   

13.
M W Merrow  J C Dunlap 《The EMBO journal》1994,13(10):2257-2266
The Neurospora crassa frequency locus encodes a 989 amino acid protein that is a central component, a state variable, of the circadian biological clock. We have determined the sequence of all or part of this protein and surrounding regulatory regions from additional fungi representing three genera and report that there is distinct, preferential conservation of the frequency open reading frame (ORF) as compared with non-coding sequences. Within the coding region, many of the domain hallmarks of the N. crassa protein are highly conserved, especially an internal region bearing the causative mutations in frq1 and frq7, the most extreme alleles in the frequency allelic series. Despite considerable diversity among the strains analyzed in terms of morphology, growth, circadian clock output and frq sequence, the ORF from the most distantly related fungus included in this study (Sordaria fimicola) rescues rhythmicity in a N.crassa frequency null strain. Both sequence conservation, and the ability of frequency from a genus displaying one developmental program to complement circadian defects in a separate genus with a distinct, clock-regulated developmental program, are consistent with a central role of the frequency gene product in a general circadian oscillator capable of controlling diverse outputs in a variety of systems.  相似文献   

14.
15.
Several studies have shown that mutations and polymorphisms in clock genes are associated with abnormal circadian parameters in humans and also with more subtle non-pathological phenotypes like chronotypes. However, there have been conflicting results, and none of these studies analyzed the combined effects of more than one clock gene. Up to date, association studies in humans have focused on the analysis of only one clock gene per study. Since these genes encode proteins that physically interact with each other, combinations of polymorphisms in different clock genes could have a synergistic or an inhibitory effect upon circadian phenotypes. In the present study, we analyzed the combined effects of four polymorphisms in four clock genes (Per2, Per3, Clock and Bmal1) in people with extreme diurnal preferences (morning or evening). We found that a specific combination of polymorphisms in these genes is more frequent in people who have a morning preference for activity and there is a different combination in individuals with an evening preference for activity. Taken together, these results show that it is possible to detect clock gene interactions associated with human circadian phenotypes and bring an innovative idea of building a clock gene variation map that may be applied to human circadian biology.  相似文献   

16.
The oscillations of circadian genes control the daily circadian clock, regulating a diverse array of physiologies with the 24-hour light/dark cue across a wide variety of organisms. Here we first show that before embryonic circadian rhythms occur, the oscillation (nucleocytoplasmic shuttling) of core circadian gene Clock is tissue-specific and correlated with the state of differentiation during both early development and later pancreas organogenesis. Disruption of Clock as well as Timeless in the embryonic pancreas does not block pancreatic differentiation but alters the balance and maturity of endocrine and exocrine cells. Molecular analysis indicates that inhibition of Clock or Timeless expression disturbs not only cell cycle regulators, but also Wnt- and Notch-signaling components, whose oscillations establish the timing mechanism in somitogenesis. Thus, our results provide new insights about circadian genes' function in control of the timing of differentiation during embryonic development.  相似文献   

17.
18.
19.
The molecular circadian clock mechanism is highly conserved between mammalian and avian species. Avian circadian timing is regulated at multiple oscillatory sites, including the retina, pineal, and hypothalamic suprachiasmatic nucleus (SCN). Based on the authors' previous studies on the rat ovary, it was hypothesized that ovarian clock timing is regulated by the luteinizing hormone (LH) surge. The authors used the chicken as a model to test this hypothesis, because the timing of the endogenous LH surge is accurately predicted from the time of oviposition. Therefore, tissues can be removed before and after the LH surge, allowing one to determine the effect of LH on specific clock genes. The authors first examined the 24-h expression patterns of the avian circadian clock genes of Bmal1, Cry1, and Per2 in primary oscillatory tissues (hypothalamus and pineal) as well as peripheral tissues (liver and ovary). Second, the authors determined changes in clock gene expression after the endogenous LH surge. Clock genes were rhythmically expressed in each tissue, but LH influenced expression of these clock genes only in the ovary. The data suggest that expression of ovarian circadian clock genes may be influenced by the LH surge in vivo and directly by LH in cultured granulosa cells. LH induced rhythmic expression of Per1 and Bmal1 in arrhythmic, cultured granulosa cells. Furthermore, LH altered the phase and amplitude of clock gene rhythms in serum-shocked granulosa cells. Thus, the LH surge may be a mechanistic link for communicating circadian timing information from the central pacemaker to the ovary.  相似文献   

20.
探讨自然光制下正常成年人外周血淋巴细胞钟基因Clock和Bmal1的昼夜节律性表达。用实时定量RT-PCR方法,测定不同昼夜时点(ZT)受试者外周血淋巴细胞总RNA中核心钟基因Clock和Bmal1的mRNA表达量,通过余弦法和Clock Lab软件获取节律参数,并经振幅检验分析是否存在昼夜节律。结果发现正常成年人外周血淋巴细胞钟基因Clock和Bmal1的mRNA表达呈昼夜节律性振荡(P0.05),Clock的峰时和谷时分别位于ZT13和ZT1,Bmal1的峰时和谷时分别位于ZT12和ZT24;两个基因在所检测的各个昼夜时点中表达水平均有明显差异(P0.05),Bmal1的表达水平较Clock降低;二者表达的峰值相位、振幅、峰时和谷时相一致(P0.05),但Bmal1转录的中值水平以及峰时mRNA水平和谷时mRNA水平降低(P0.05)。提示正常成年人外周血淋巴细胞钟基因Clock和Bmal1的表达存在同步化的昼夜节律性转录特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号