首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Taspase1 catalyzes the proteolytic processing of the mixed lineage leukemia (MLL) nuclear protein, which is required for maintaining Hox gene expression patterns. Chromosomal translocations of the MLL gene are associated with leukemia in infants. Taspase1, a threonine aspartase, is a member of the type 2 asparaginase family, but is the only protease in this family. We report here the crystal structures of human activated Taspase1 and its proenzyme, as well as the characterization of the effects of mutations in the active site region using a newly developed fluorogenic assay. The structure of Taspase1 has significant differences from other asparaginases, especially near the active site. Mutation of the catalytic nucleophile, Thr234, abolishes autocatalytic processing in cis but does not completely block proteolysis in trans. The structure unexpectedly showed the binding of a chloride ion in the active site, and our kinetic studies confirm that chlorides ions are inhibitors of this enzyme at physiologically relevant concentrations.  相似文献   

2.
Taspase1 is a threonine protease responsible for cleaving intracellular substrates. As such, (de)regulated Taspase1 function is expected not only to be vital for ordered development but may also be relevant for disease. However, the full repertoires of Taspase1 targets as well as the exact biochemical requirements for its efficient and substrate-specific cleavage are not yet resolved. Also, no cellular assays for this protease are currently available, hampering the exploitation of the (patho)biological relevance of Taspase1. Here, we developed highly efficient cell-based translocation biosensor assays to probe Taspase1 trans-cleavage in vivo. These modular sensors harbor variations of Taspase1 cleavage sites and localize to the cytoplasm. Expression of Taspase1 but not of inactive Taspase1 mutants or of unrelated proteases triggers proteolytic cleavage and nuclear accumulation of the biosensors. Employing our assay combined with scanning mutagenesis, we identified the sequence and spatial requirements for efficient Taspase1 processing in liquid and solid tumor cell lines. Collectively, our results defined an improved Taspase1 consensus recognition sequence, Q(3)(F/I/L/V)(2)D(1)↓G(1)'X(2)'D(3)'D(4)', allowing the first genome-wide bioinformatic identification of the human Taspase1 degradome. Among the 27 most likely Taspase1 targets are cytoplasmic but also nuclear proteins, such as the upstream stimulatory factor 2 (USF2) or the nuclear RNA export factors 2/5 (NXF2/5). Cleavage site recognition and proteolytic processing of selected targets were verified in the context of the biosensor and for the full-length proteins. We provide novel mechanistic insights into the function and bona fide targets of Taspase1 allowing for a focused investigation of the (patho)biological relevance of this type 2 asparaginase.  相似文献   

3.

Background

Threonine Aspartase 1 (Taspase1) mediates cleavage of the mixed lineage leukemia (MLL) protein and leukemia provoking MLL-fusions. In contrast to other proteases, the understanding of Taspase1''s (patho)biological relevance and function is limited, since neither small molecule inhibitors nor cell based functional assays for Taspase1 are currently available.

Methodology/Findings

Efficient cell-based assays to probe Taspase1 function in vivo are presented here. These are composed of glutathione S-transferase, autofluorescent protein variants, Taspase1 cleavage sites and rational combinations of nuclear import and export signals. The biosensors localize predominantly to the cytoplasm, whereas expression of biologically active Taspase1 but not of inactive Taspase1 mutants or of the protease Caspase3 triggers their proteolytic cleavage and nuclear accumulation. Compared to in vitro assays using recombinant components the in vivo assay was highly efficient. Employing an optimized nuclear translocation algorithm, the triple-color assay could be adapted to a high-throughput microscopy platform (Z''factor = 0.63). Automated high-content data analysis was used to screen a focused compound library, selected by an in silico pharmacophor screening approach, as well as a collection of fungal extracts. Screening identified two compounds, N-[2-[(4-amino-6-oxo-3H-pyrimidin-2-yl)sulfanyl]ethyl]benzenesulfonamide and 2-benzyltriazole-4,5-dicarboxylic acid, which partially inhibited Taspase1 cleavage in living cells. Additionally, the assay was exploited to probe endogenous Taspase1 in solid tumor cell models and to identify an improved consensus sequence for efficient Taspase1 cleavage. This allowed the in silico identification of novel putative Taspase1 targets. Those include the FERM Domain-Containing Protein 4B, the Tyrosine-Protein Phosphatase Zeta, and DNA Polymerase Zeta. Cleavage site recognition and proteolytic processing of these substrates were verified in the context of the biosensor.

Conclusions

The assay not only allows to genetically probe Taspase1 structure function in vivo, but is also applicable for high-content screening to identify Taspase1 inhibitors. Such tools will provide novel insights into Taspase1''s function and its potential therapeutic relevance.  相似文献   

4.
Development of selective kinase inhibitors remains a challenge due to considerable amino acid sequence similarity among family members particularly in the ATP binding site. Targeting the activation loop might offer improved inhibitor selectivity since this region of kinases is less conserved. However, the strategy presents difficulties due to activation loop flexibility. Herein, we report the design of receptor-interacting protein kinase 2 (RIPK2) inhibitors based on pan-kinase inhibitor regorafenib that aim to engage basic activation loop residues Lys169 or Arg171. We report development of CSR35 that displayed >10-fold selective inhibition of RIPK2 versus VEGFR2, the target of regorafenib. A co-crystal structure of CSR35 with RIPK2 revealed a resolved activation loop with an ionic interaction between the carboxylic acid installed in the inhibitor and the side-chain of Lys169. Our data provides principle feasibility of developing activation loop targeting type II inhibitors as a complementary strategy for achieving improved selectivity.  相似文献   

5.
6.
Asparaginase depletes circulating asparagine and glutamine, activating amino acid deprivation responses (AADR) such as phosphorylation of eukaryotic initiation factor 2 (p-eIF2) leading to increased mRNA levels of asparagine synthetase and CCAAT/enhancer-binding protein β homologous protein (CHOP) and decreased mammalian target of rapamycin complex 1 (mTORC1) signaling. The objectives of this study were to assess the role of the eIF2 kinases and protein kinase R-like endoplasmic reticulum resident kinase (PERK) in controlling AADR to asparaginase and to compare the effects of asparaginase on mTORC1 to that of rapamycin. In experiment 1, asparaginase increased hepatic p-eIF2 in wild-type mice and mice with a liver-specific PERK deletion but not in GCN2 null mice nor in GCN2-PERK double null livers. In experiment 2, wild-type and GCN2 null mice were treated with asparaginase (3 IU per g of body weight), rapamycin (2 mg per kg of body weight), or both. In wild-type mice, asparaginase but not rapamycin increased p-eIF2, p-ERK1/2, p-Akt, and mRNA levels of asparagine synthetase and CHOP in liver. Asparaginase and rapamycin each inhibited mTORC1 signaling in liver and pancreas but maximally together. In GCN2 null livers, all responses to asparaginase were precluded except CHOP mRNA expression, which remained partially elevated. Interestingly, rapamycin blocked CHOP induction by asparaginase in both wild-type and GCN2 null livers. These results indicate that GCN2 is required for activation of AADR to asparaginase in liver. Rapamycin modifies the hepatic AADR to asparaginase by preventing CHOP induction while maximizing inhibition of mTORC1.  相似文献   

7.
8.
Taspase1 is a threonine protease suspected to process (patho)biologically relevant nuclear and cytoplasmic substrates, such as the mixed lineage leukemia protein. However, neither the mechanisms regulating Taspase1's intracellular localization nor their functional consequences are known. Analysis of endogenous and ectopically expressed Taspase1 detected the protease predominantly in the nucleus accumulating at the nucleolus. Microinjection and ectopic expression studies identified an evolutionarily conserved bipartite nuclear import signal (NLS) (amino acids (197) KRNKRKLELA ERVDTDFMQLKKRR(220) ) interacting with importin-α. Notably, an NLS-mutated, import-deficient Taspase1 was biologically inactive. Although the NLS conferred nuclear transport already of the proenzyme, Taspase1's nucleolar localization required its autoproteolytic processing, triggering its interaction with the nucleolar shuttle protein nucleophosmin. In contrast, (auto)catalytically inactive Taspase1 mutants neither accumulated at the nucleolus nor bound nucleophosmin. Active nuclear import and interaction with nucleophosmin was found to be required for the formation of proteolytically active Taspase1 ensuring to efficiently process its nuclear targets. Intriguingly, coexpression of pathological nucleophosmin variants increased the amount of cytoplasmic Taspase1. Hence, Taspase1 appears to exploit the nuclear export activity of nucleophosmin to gain transient access to the cytoplasm required to also cleave its cytoplasmic substrates. Collectively, we here describe a hitherto unknown mechanism regulating the biological activity of this protease.  相似文献   

9.
10.
11.
Yeast cell wall assembly is a highly regulated and dynamic process. A class of cell surface aspartic peptidases anchored by a glycosylphosphatidylinositol (GPI) group, collectively known as yapsins, was proposed to be involved in cell wall construction. The Saccharomyces cerevisiae Yps1p, the prototypal yapsin, is processed internally within a loop region to produce an α/β two-subunit enzyme. Here we investigated the activation mechanism of GPI-anchored Yps1p and identified some of its substrates. We report that all activation steps of GPI-Yps1p take place at the cell surface and are regulated by the environmental pH. GPI-Yps1p is active in vivo at pH 6.0 and pH 3.0 and functions as a sheddase for a subset of GPI-anchored enzymes, including itself and the Gas1 glucanosyltransferase. Importantly, while native GPI-Yps1p weakly suppresses many phenotypes associated with the yeast kex2 Δ mutant, loop mutants that interfere with conversion into the two-subunit enzyme restore the kex2 Δ phenotypes to near wild type level. We propose that cleavage of this internal loop region plays an important regulatory function through stimulating its shedding activity. Collectively, our data provide a direct link between the pH regulation of yeast cell wall assembly and the activity of a yapsin.  相似文献   

12.
A highly conserved lysine in subdomain II is required for high catalytic activity among the protein kinases. This lysine interacts directly with ATP and mutation of this residue leads to a classical "kinase-dead" mutant. This study describes the biophysical and functional properties of a kinase-dead mutant of cAMP-dependent kinase where Lys72 was replaced with His. Although the mutant protein is less stable than the wild-type catalytic subunit, it is fully capable of binding ATP. The results highlight the effect of the mutation on stability and overall organization of the protein, especially the small lobe. Phosphorylation of the activation loop by a heterologous kinase, 3-phosphoinositide-dependent protein kinase-1 (PDK-1) also contributes dramatically to the global organization of the entire active site region. Deuterium-exchange mass spectrometry (DXMS) indicates a concerted stabilization of the entire active site following the addition of this single phosphate to the activation loop. Furthermore the mutant C-subunit is capable of binding both the type I and II regulatory subunits, but only after phosphorylation of the activation loop. This highlights the role of the large lobe as a scaffold for the regulatory subunits independent of catalytic competency and suggests that kinase dead members of the protein kinase superfamily may still have other important biological roles although they lack catalytic activity.  相似文献   

13.
Gabriel M  Telmer PG  Marsolais F 《Planta》2012,235(5):1013-1022
Structural determinants responsible for the substrate preference of the potassium-independent (ASPGA1) and -dependent (ASPGB1) asparaginases from Arabidopsis thaliana have been investigated. Like ASPGA1, ASPGB1 was found to be catalytically active with both l-Asn and β-Asp-His as substrates, contrary to a previous report. However, ASPGB1 had a 45-fold higher specific activity with Asn as substrate than ASPGA1. A divergent sequence between the two enzymes forms a variable loop at the C-terminal of the alpha subunit. The results of dynamic simulations have previously implicated a movement of the C-terminus in the allosteric transduction of K+-binding at the surface of LjNSE1 asparaginase. In the crystal structure of Lupinus luteus asparaginase, most residues in this segment cannot be visualized due to a weak electron density. Exchanging the variable loop in ASPGA1 with that from ASPGB1 increased the affinity for Asn, with a 320-fold reduction in K m value. Homology modeling identified a residue specific to ASPGB1, Phe162, preceding the variable loop, whose side chain is located in proximity to the beta-carboxylate group of the product aspartate, and to Gly246, a residue participating in an oxyanion hole which stabilizes a negative charge forming on the side chain oxygen of asparagine during catalysis. Replacement with the corresponding leucine from ASPGA1 specifically lowered the V max value with Asn as substrate by 8.4-fold.  相似文献   

14.
The glucagon-like peptide 1 (GLP1) receptor is an important drug target within the B family of G protein-coupled receptors. Its natural agonist ligand, GLP1, has incretin-like actions and the receptor is a recognized target for management of type 2 diabetes mellitus. Despite recent solution of the structure of the amino terminus of the GLP1 receptor and several close family members, the molecular basis for GLP1 binding to and activation of the intact receptor remains unclear. We previously demonstrated molecular approximations between amino- and carboxyl-terminal residues of GLP1 and its receptor. In this work, we study spatial approximations with the mid-region of this peptide to gain insights into the orientation of the intact receptor and the ligand-receptor complex. We have prepared two new photolabile probes incorporating a p-benzoyl-l-phenylalanine into positions 16 and 20 of GLP1(7-36). Both probes bound to the GLP1 receptor specifically and with high affinity. These were each fully efficacious agonists, stimulating cAMP accumulation in receptor-bearing CHO cells in a concentration-dependent manner. Each probe specifically labeled a single receptor site. Protease cleavage and radiochemical sequencing identified receptor residue Leu(141) above transmembrane segment one as its site of labeling for the position 16 probe, whereas the position 20 probe labeled receptor residue Trp(297) within the second extracellular loop. Establishing ligand residue approximation with this loop region is unique among family members and may help to orient the receptor amino-terminal domain relative to its helical bundle region.  相似文献   

15.
Thanatophoric dysplasia type II (TDII) is a neonatal lethal skeletal dysplasia caused by a recurrent Lys-650-->Glu mutation within the highly conserved activation loop of the kinase domain of fibroblast growth factor receptor 3 (FGFR3). We demonstrate here that this mutation results in profound constitutive activation of the FGFR3 tyrosine kinase, approximately 100-fold above that of wild-type FGFR3. The mechanism of FGFR3 activation in TDII was probed by constructing various point mutations in the activation loop. Substitutions at position 650 indicated that not only Glu but also Asp and, to a lesser extent, Gln and Leu result in pronounced constitutive activation of FGFR3. Additional mutagenesis within the beta10-beta11 loop region (amino acids Tyr-647 to Leu-656) demonstrated that amino acid 650 is the only residue which can activate the receptor when changed to a Glu, indicating a specificity of position as well as charge for mutations which can give rise to kinase activation. Furthermore, when predicted sites of autophosphorylation at Tyr-647 and Tyr-648 were mutated to Phe, either singly or in combination, constitutive kinase activity was still observed in response to the Lys-650-->Glu mutation, although the effect of these mutations on downstream signalling was not investigated. Our data suggest that the molecular effect of the TDII activation loop mutation is to mimic the conformational changes that activate the tyrosine kinase domain, which are normally initiated by ligand binding and autophosphorylation. These results have broad implications for understanding the molecular basis of other human developmental syndromes that involve mutations in members of the FGFR family. Moreover, these findings are relevant to the study of kinase regulation and the design of activating mutations in related tyrosine kinases.  相似文献   

16.
Understanding the molecular basis of natural ligand binding and activation of the glucagon-like peptide 1 (GLP1) receptor may facilitate the development of agonist drugs useful for the management of type 2 diabetes mellitus. We previously reported molecular approximations between carboxyl-terminal residues 24 and 35 within GLP1 and its receptor. In this work, we have focused on the amino-terminal region of GLP1, known to be critical for receptor activation. We developed two high-affinity, full agonist photolabile GLP1 probes having sites of covalent attachment in positions 6 and 12 of the 30-residue peptide (GLP1(7–36)). Both probes bound to the receptor specifically and covalently labeled single distinct sites. Chemical and protease cleavage of the labeled receptor identified the juxtamembrane region of its amino-terminal domain as the region of covalent attachment of the position 12 probe, whereas the region of labeling by the position 6 probe was localized to the first extracellular loop. Radiochemical sequencing identified receptor residue Tyr145, adjacent to the first transmembrane segment, as the site of labeling by the position 12 probe, and receptor residue Tyr205, within the first extracellular loop, as the site of labeling by the position 6 probe. These data provide support for a common mechanism for natural ligand binding and activation of family B G protein-coupled receptors. This region of interaction of peptide amino-terminal domains with the receptor may provide a pocket that can be targeted by small molecule agonists.  相似文献   

17.
Hsieh JJ  Cheng EH  Korsmeyer SJ 《Cell》2003,115(3):293-303
The Mixed-Lineage Leukemia gene (MLL/HRX/ALL1) encodes a large nuclear protein homologous to Drosophila trithorax that is required for the maintenance of HOX gene expression. MLL is cleaved at two conserved sites generating N320 and C180 fragments, which heterodimerize to stabilize the complex and confer its subnuclear destination. Here, we purify and clone the protease responsible for cleaving MLL. We entitle it Taspase1 as it initiates a class of endopeptidases that utilize an N-terminal threonine as the active site nucleophile to proteolyze polypeptide substrates following aspartate. Taspase1 proenzyme is intramolecularly proteolyzed generating an active 28 kDa alpha/22 kDa beta heterodimer. RNAi-mediated knockdown of Taspase1 results in the appearance of unprocessed MLL and the loss of proper HOX gene expression. Taspase1 coevolved with MLL/trithorax as Arthropoda and Chordata emerged from Metazoa suggesting that Taspase1 originated to regulate complex segmental body plans in higher organisms.  相似文献   

18.
An L-asparaginase has been purified some 250-fold from extracts of Klebsiella aerogenes to near homogeneity. The enzyme has a molecular weight of 141,000 as measured by gel filtration and appears to consist of four subunits of molecular weight 37,000. The enzyme has high affinity for L-asparagine, with a Km below 10(-5) M, and hydrolyzes glutamine at a 20-fold lower rate, with a Km of 10(-3) M. Interestingly, the enzyme exhibits marked gamma-glutamyltransferase activity but comparatively little beta-aspartyl-transferase activity. A mutant strain lacking this asparaginase has been isolated and grows at 1/2 to 1/3 the rate of the parent strain when asparagine is provided in the medium as the sole source of nitrogen. This strain grows as well as the wild type when the medium is supplemented with histidine or ammonia. Glutamine synthetase activates the formation of L-asparaginase. Mutants lacking glutamine synthetase fail to produce the asparaginase, and mutants with a high constitutive level of glutamine synthetase also contain the asparaginase at a high level. Thus, the formation of asparaginase is regulated in parallel with that of other enzymes capable of supplying the cell with ammonia or glutamate, such as histidase and proline oxidase. Formation of the asparaginase does not require induction by asparaginase and is not subject to catabolite repression.  相似文献   

19.
VEGFR-1 is a kinase-defective receptor tyrosine kinase (RTK) and negatively modulates angiogenesis by acting as a decoy receptor. The decoy characteristic of VEGFR-1 is required for normal development and angiogenesis. To date, there is no molecular explanation for this unusual characteristic of VEGFR-1. Here we show that the molecular mechanisms underlying the decoy characteristic of VEGFR-1 is linked to the replacement of a highly conserved amino acid residue in the activation loop. This amino acid is highly conserved among all the type III RTKs and corresponds to aspartic acid, but in VEGFR-1 it is substituted to asparagine. Mutation of asparagine (Asn(1050)) within the activation loop to aspartic acid promoted enhanced ligand-dependent tyrosine autophosphorylation and kinase activation in vivo and in vitro. The mutant VEGFR-1 (Asp(1050)) promoted endothelial cell proliferation but not tubulogenesis. It also displayed an oncogenic phenotype as its expression in fibroblast cells elicited transformation and colony growth. Furthermore, mutation of the invariable aspartic acid to asparagine in VEGFR-2 lowered the autophosphorylation of activation loop tyrosines 1052 and 1057. We propose that the conserved aspartic acid in the activation loop favors the transphosphorylation of the activation loop tyrosines, and its absence renders RTK to a less potent enzyme by disfavoring transphosphorylation of activation loop tyrosines.  相似文献   

20.
Mutants of Escherichia coli have been isolated which are resistant to beta-aspartyl hydroxamate, a lethal substrate of asparaginase II in fungi and a substrate for asparaginase II in E. coli. Among the many phenotypic classes observed, a single mutant (designated GU16) was found with multiple defects affecting asparaginases I and II and aspartase. Other asparaginase II-deficient mutants have also been derived from an asparaginase I-deficient mutant. The mutant strain, GU16, was unable to utilize asparagine and grew poorly on aspartate as the sole source of carbon; transformation of this strain with an E. coli recombinant plasmid library resulted in a large recombinant plasmid which complemented both these defects. Two subclones were isolated, designated pDK1 and pDK2; the former complemented the partial defect in the utilization of aspartate, although its exact function was not established. pDK2 encoded the asparaginase I gene (ansA), the coding region of which was further defined within a 1.7-kilobase fragment. The ansA gene specified a polypeptide, identified in maxicells, with a molecular weight of 43,000. Strains carrying recombinant plasmids encoding the ansA gene overproduced asparaginase I approximately 130-fold, suggesting that the ansA gene might normally be under negative regulation. Extracts from strains overproducing asparaginase I were electrophoresed, blotted, and probed with asparaginase II-specific antisera; no cross-reaction of the antisera with asparaginase I was observed, indicating that asparaginases I and II are not appreciably related immunologically. When a DNA fragment containing the ansA gene was used to probe Southern blots of restriction endonuclease-digested E. coli chromosomal DNA, no homologous sequences were revealed other than the expected ansA-containing fragments. Therefore, the genes encoding asparaginases I and II are highly sequence related.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号