首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have demonstrated previously that class I(A) phosphoinositide 3-kinases play a major role in regulation of interleukin-3 (IL)-3-dependent proliferation. Investigations into the downstream targets involved have identified the MAPK cascade as a target. Expression of Deltap85 and incubation with LY294002 both inhibited IL-3-induced activation of Mek, Erk1, and Erk2. This was most pronounced during the initial phase of Erk activation. The Mek inhibitor, PD98059, blocked IL-3-driven proliferation, an effect enhanced by Deltap85 expression, suggesting that inhibition of Mek and Erks by Deltap85 contributes to the decrease in IL-3-induced proliferation in these cells but that additional pathways may also be involved. To investigate the mechanism leading to decreased activation of Erks, we investigated effects on SHP2 and Gab2, both implicated in IL-3 regulation of Erk activation. Expression of Deltap85 led to a reduction in SHP2 tyrosine phosphorylation and its ability to interact with Grb2 and Gab2 but increased overall tyrosine phosphorylation of Gab2. LY294002 did not perturb SHP2 interactions, potentially related to differences in the effects of these inhibitors on levels of phosphoinositides. These results imply that the regulation of Erks by class I(A) phosphoinositide 3-kinase may contribute to IL-3-driven proliferation and that both SHP2 and Gab2 are possibly involved in this regulation.  相似文献   

3.
MAPKs are key components of cell signaling pathways with a unique activation mechanism: i.e. dual phosphorylation of neighboring threonine and tyrosine residues. The ERK enzymes form a subfamily of MAPKs involved in proliferation, differentiation, development, learning, and memory. The exact role of each Erk molecule in these processes is not clear. An efficient strategy for addressing this question is to activate individually each molecule, for example, by expressing intrinsically active variants of them. However, such molecules were not produced so far. Here, we report on the isolation, via a specifically designed genetic screen, of six variants (each carries a point mutation) of the yeast MAPK Mpk1/Erk that are active, independent of upstream phosphorylation. One of the activating mutations, R68S, occurred in a residue conserved in the mammalian Erk1 (Arg-84) and Erk2 (Arg-65) and in the Drosophila ERK Rolled (Arg-80). Replacing this conserved Arg with Ser rendered these MAPKs intrinsically active to very high levels when tested in vitro as recombinant proteins. Combination of the Arg to Ser mutation with the sevenmaker mutation (producing Erk2(R65S+D319N) and Rolled(R80S+D334N)) resulted in even higher activity (45 and 70%, respectively, in reference to fully active dually phosphorylated Erk2 or Rolled). Erk2(R65S) and Erk2(R65S+D319N) were found to be spontaneously active also when expressed in human HEK293 cells. We further revealed the mechanism of action of the mutants and show that it involves acquisition of autophosphorylation activity. Thus, a first generation of Erk molecules that are spontaneously active in vitro and in vivo has been obtained.  相似文献   

4.
5.
MEK1 and MEK2 are related protein kinases that participate in the RAS-RAF-MEK-ERK signal transduction cascade. This cascade participates in the regulation of a large variety of processes including apoptosis, cell cycle progression, cell migration, differentiation, metabolism, and proliferation. Moreover, oncogenic mutations in RAS or B-RAF are responsible for a large proportion of human cancers. MEK1 is activated by phosphorylation of S218 and S222 in its activation segment as catalyzed by RAF kinases in an intricate process that involves a KSR scaffold. Besides functioning as a scaffold, the kinase activity of KSR is also required for MEK activation. MEK1 regulation is unusual in that S212 phosphorylation in its activation segment is inhibitory. Moreover, active ERK catalyzes a feedback inhibitory phosphorylation of MEK1 T292 that serves to downregulate the pathway.  相似文献   

6.
The mammalian target of rapamycin, mTOR, is a Ser/Thr kinase that promotes cell growth and proliferation by activating ribosomal protein S6 kinase 1 (S6K1). We previously identified a conserved TOR signaling (TOS) motif in the N terminus of S6K1 that is required for its mTOR-dependent activation. Furthermore, our data suggested that the TOS motif suppresses an inhibitory function associated with the C terminus of S6K1. Here, we have characterized the mTOR-regulated inhibitory region within the C terminus. We have identified a conserved C-terminal "RSPRR" sequence that is responsible for an mTOR-dependent suppression of S6K1 activation. Deletion or mutations within this RSPRR motif partially rescue the kinase activity of the S6K1 TOS motif mutant (S6K1-F5A), and this rescued activity is rapamycin resistant. Furthermore, we have shown that the RSPRR motif significantly suppresses S6K1 phosphorylation at two phosphorylation sites (Thr-389 and Thr-229) that are crucial for S6K1 activation. Importantly, introducing both the Thr-389 phosphomimetic and RSPRR motif mutations into the catalytically inactive S6K1 mutant S6K1-F5A completely rescues its activity and renders it fully rapamycin resistant. These data show that the N-terminal TOS motif suppresses an inhibitory function mediated by the C-terminal RSPRR motif. We propose that the RSPRR motif interacts with a negative regulator of S6K1 that is normally suppressed by mTOR.  相似文献   

7.
Extracellular signal-regulated kinases (Erks), members of the mitogen-activated protein kinase superfamily, play an important role in cell proliferation and differentiation. In this study we employed a dominant negative approach to determine the role of Erks in the regulation of human osteoblastic cell function. Human osteoblastic cells were transduced with a pseudotyped retrovirus encoding either a mutated Erk1 protein with a dominant negative action against both Erk1 and Erk2 (Erk1DN cells) or the LacZ protein (LacZ cells) as a control. Both basal and growth factor-stimulated MAPK activity and cell proliferation were inhibited in Erk1DN cells. Expression of Erk1DN protein suppressed both osteoblast differentiation and matrix mineralization by decreasing alkaline phosphatase activity and the deposition of bone matrix proteins. Cell adhesion to collagen, osteopontin, and vitronectin was decreased in Erk1DN cells as compared with LacZ cells. Cell spreading and migration on these matrices were also inhibited. In Erk1DN cells, expression of alphabeta(1), alpha(v)beta(3), and alpha(v)beta(5) integrins on the surface was decreased. Metabolic labeling indicated that the synthesis of these integrins was inhibited in Erk1DN cells. These data suggest that Erks are not only essential for the growth and differentiation of osteoblasts but also are important for osteoblast adhesion, spreading, migration, and integrin expression.  相似文献   

8.
9.
10.
11.
Here we investigate the role of the Raf-1 kinase in transformation by the v-abl oncogene. Raf-1 can activate a transforming signalling cascade comprising the consecutive activation of Mek and extracellular-signal-regulated kinases (Erks). In v-abl-transformed cells the endogenous Raf-1 protein was phosphorylated on tyrosine and displayed high constitutive kinase activity. The activities of the Erks were constitutively elevated in both v-raf- and v-abl-transformed cells. In both cell types the activities of Raf-1 and v-raf were almost completely suppressed after activation of the cyclic AMP-dependent kinase (protein kinase A [PKA]), whereas the v-abl kinase was not affected. Raf inhibition substantially diminished the activities of Erks in v-raf-transformed cells but not in v-abl-transformed cells, indicating that v-abl can activate Erks by a Raf-1-independent pathway. PKA activation induced apoptosis in v-abl-transformed cells while reverting v-raf transformation without severe cytopathic effects. Overexpression of Raf-1 in v-abl-transformed cells partially protected the cells from apoptosis induced by PKA activation. In contrast to PKA activators, a Mek inhibitor did not induce apoptosis. The diverse biological responses correlated with the status of c-myc gene expression. v-abl-transformed cells featured high constitutive levels of expression of c-myc, which were not reduced following PKA activation. Myc activation has been previously shown to be essential for transformation by oncogenic Abl proteins. Using estrogen-regulated c-myc and temperature-sensitive Raf-1 mutants, we found that Raf-1 activation could protect cells from c-myc-induced apoptosis. In conclusion, these results suggest (i) that Raf-1 participates in v-abl transformation via an Erk-independent pathway by providing a survival signal which complements c-myc in transformation, and (ii) that cAMP agonists might become useful for the treatment of malignancies where abl oncogenes are involved, such as chronic myeloid leukemias.  相似文献   

12.
Signals from the extracellular matrix are essential for the survival of many cell types. Dominant-negative mutants of two members of Rho family GTPases, Rac1 and Cdc42, mimic the loss of anchorage in primary mouse fibroblasts and are potent inducers of apoptosis. This pathway of cell death requires the activation of both the p53 tumor suppressor and the extracellular signal-regulated mitogen-activated protein kinases (Erks). Here we characterize the proapoptotic Erk signal and show that it differs from the classically observed survival-promoting one by the intensity of the kinase activation. The disappearance of the GTP-bound forms of Rac1 and Cdc42 gives rise to proapoptotic, moderate activation of the Raf-MEK-Erk cascade via a signaling pathway involving the kinases phosphatidlyinositol 3-kinase and Akt. Moreover, concomitant activation of p53 and inhibition of Akt are both necessary and sufficient to signal anoikis in primary fibroblasts. Our data demonstrate that the GTPases of the Rho family control three major components of cellular signal transduction, namely, p53, Akt, and Erks, which collaborate in the induction of apoptosis due to the loss of anchorage.  相似文献   

13.
We report a novel mechanism for dopamine D(1) receptor (D(1) R)-mediated extracellular signal-regulated kinases (Erk) activation in rat striatum. Erk signaling depends on phosphorylation and dephosphorylation events mediated by specific kinases and phosphatases. The tyrosine phosphatase Shp-2, that is required for Erk activation by tyrosine kinase receptors, has been recently shown to regulate signaling downstream of few G protein-coupled receptors. We show that the D(1) R interacts with Shp-2, that D(1) R stimulation results in Shp-2 tyrosine phosphorylation and activation in primary striatal neuronal cultures and that D(1) R/Shp-2 interaction is required for transmitting D(1) R-dependent signaling to Erk1/2 activation. D(1) R-mediated Erk1/2 phosphorylation in cultured striatal neurons is in fact abolished by over-expression of the inactive Shp-2(C/S) mutant and by small interfering RNA-induced Shp-2 silencing. Moreover, by using selective inhibitors we show that both D(1) R-induced Shp-2 activation and Erk1/2 phosphorylation are dependent on the cyclic AMP/protein kinase A pathway and require Src. These results, which were substantiated also in transfected human embryonic kidney 293 cells, provide a novel mechanism by which to converge D(1) R signaling to the Erk pathway and suggest that Shp-2 or the D(1) R/Shp-2 interface could represent a potential drug target for disorders of dopamine transmission involving malfunctioning of D(1) R signaling.  相似文献   

14.
GNAQ mutations at codon 209 have been recently identified in approximately 50% of uveal melanomas (UM) and are reported to be oncogenic through activating the MAPK/Erk1/2 pathway. Protein kinase C (PKC) is a component of signaling from GNAQ to Erk1/2. Inhibition of PKC might regulate GNAQ mutation-induced Erk1/2 activation, resulting in growth inhibition of UM cells carrying GNAQ mutations. UM cells carrying wild type or mutant GNAQ were treated with the PKC inhibitor enzastaurin. Effects on proliferation, apoptosis, and signaling events were evaluated. Enzastaurin downregulated the expression of several PKC isoforms including PKCβII PKCθ, PKCε and/or their phosphorylation in GNAQ mutated cells. Downregulation of these PKC isoforms in GNAQ mutated cells by shRNA resulted in reduced viability. Enzastaurin exhibited greater antiproliferative effect on GNAQ mutant cells than wild type cells through induction of G1 arrest and apoptosis. Enzastaurin-induced G1 arrest was associated with inhibition of Erk1/2 phosphorylation, downregulation of cyclin D1, and accumulation of cyclin dependent kinase inhibitor p27(Kip1). Furthermore, enzastaurin reduced the expression of antiapoptotic Bcl-2 and survivin in GNAQ mutant cells. Inhibition of Erk1/2 phosphorylation with a MEK specific inhibitor enhanced the sensitivity of GNAQ wild type cells to enzastaurin, accompanied by p27(Kip1) accumulation and/or inhibition of enzastaurin-induced survivin and Bcl-2 upregulation. PKC inhibitors such as enzastaurin have activity against UM cells carrying GNAQ mutations through inhibition of the PKC/Erk1/2 pathway and induction of G1 arrest and apoptosis. Inhibition of the PKC pathway provides a basis for clinical investigation in patients with UM.  相似文献   

15.
Benzo[a]pyrene-7,8-diol-9,10-epoxide (B[a]PDE), the major metabolite of B[a]P, has been well recognized as one ubiquitous carcinogen, but the molecular mechanism involved in its carcinogenic effect remains obscure. In the present study, we found that bronchial epithelial cells (Beas-2B) and hepatocytes treated with B[a]PDE presented a significant increase of cyclin D1 expression. Moreover, Akt, p70s6k, and MAPKs including JNK, Erks, and p38 were notably activated in B[a]PDE-treated Beas-2B cells, whereas NF-κB, NFAT, and Egr-1 were not. Our results demonstrated that JNK and Erks were required in B[a]PDE-induced cyclin D1 expression because the inhibition of JNK or Erks by a selective chemical inhibitor or dominant negative mutant robustly impaired the cyclin D1 induction by B[a]PDE. Furthermore, we found that overexpression of the dominant negative mutant of p85 (regulatory subunit of phosphatidylinositol 3-kinase) or Akt dramatically suppressed B[a]PDE-induced JNK and Erk activation as well as cyclin D1 expression, suggesting that cyclin D1 induction by B[a]PDE is via the phosphatidylinositol 3-kinase/Akt/MAPK-dependent pathway. In addition, we clarified that p70s6k is also involved in B[a]PDE-induced cyclin D1 expression because rampamycin pretreatment dramatically reduced cyclin D1 induction by B[a]PDE. More importantly, we demonstrated that up-regulated cyclin D1 by B[a]PDE plays a critical role in oncogenic transformation and tumorigenesis of Beas-2B cells. These results not only broaden our knowledge of the molecular mechanism of B[a]PDE carcinogenicity but also lead to the further study of chemoprevention of B[a]PDE-associated human cancers.  相似文献   

16.
p70S6 kinase (S6K1) plays a pivotal role in hypertrophic cardiac growth via ribosomal biogenesis. In pressure-overloaded myocardium, we show S6K1 activation accompanied by activation of protein kinase C (PKC), c-Raf, and mitogen-activated protein kinases (MAPKs). To explore the importance of the c-Raf/MAPK kinase (MEK)/MAPK pathway, we stimulated adult feline cardiomyocytes with 12-O-tetradecanoylphorbol-13-acetate (TPA), insulin, or forskolin to activate PKC, phosphatidylinositol-3-OH kinase, or protein kinase A (PKA), respectively. These treatments resulted in S6K1 activation with Thr-389 phosphorylation as well as mammalian target of rapamycin (mTOR) and S6 protein phosphorylation. Thr-421/Ser-424 phosphorylation of S6K1 was observed predominantly in TPA-treated cells. Dominant negative c-Raf expression or a MEK1/2 inhibitor (U0126) treatment showed a profound blocking effect only on the TPA-stimulated phosphorylation of S6K1 and mTOR. Whereas p38 MAPK inhibitors exhibited only partial effect, MAPK-phosphatase-3 expression significantly blocked the TPA-stimulated S6K1 and mTOR phosphorylation. Inhibition of mTOR with rapamycin blocked the Thr-389 but not the Thr-421/Ser-424 phosphorylation of S6K1. Therefore, during PKC activation, the c-Raf/MEK/extracellular signal-regulated kinase-1/2 (ERK1/2) pathway mediates both the Thr-421/Ser-424 and the Thr-389 phosphorylation in an mTOR-independent and -dependent manner, respectively. Together, our in vivo and in vitro studies indicate that the PKC/c-Raf/MEK/ERK pathway plays a major role in the S6K1 activation in hypertrophic cardiac growth.  相似文献   

17.
Fibroblast growth factor receptors 3 (FGFR3) with K644M/E substitutions are associated to the severe skeletal dysplasias: severe achondroplasia with developmental delay and achanthosis nigricans(SADDAN) and thanatophoric dysplasia(TDII). The high levels of kinase activity of the FGFR3-mutants cause uncompleted biosynthesis that results in the accumulation of the immature/mannose-rich, phosphorylated receptors in the endoplasmic reticulum (ER) and STATs activation. Here we report that FGFR3 mutants activate Erk1/2 from the ER through an FRS2-independent pathway: instead, a multimeric complex by directly recruiting PLCgamma, Pyk2 and JAK1 is formed. The Erk1/2 activation from the ER however, is PLCgamma-independent, since preventing the PLCgamma/FGFR3 interaction by the Y754F substitution does not inhibit Erks. Furthermore, Erk1/2 activation is abrogated upon treatment with the Src inhibitor PP2, suggesting a role played by a Src family member in the pathway from the ER. Finally we show that the intrinsic kinase activity by mutant receptors is required to allow signaling from the ER. Overall these results highlight how activated FGFR3 exhibits signaling activity in the early phase of its biosynthesis and how segregation in a sub-cellular compartment can affect the FGFR3 multi-faceted capacity to recruit specific substrates.  相似文献   

18.
Ligand activation of the fibroblast growth factor receptor (FGFR) represses myogenesis and promotes activation of extracellular signal-regulated kinases 1 and 2 (Erks). The precise mechanism through which the FGFR transmits both of these signals in myoblasts remains unclear. The SH2 domain-containing protein tyrosine phosphatase, SHP-2, has been shown to participate in the regulation of FGFR signaling. However, no role for SHP-2 in FGFR myogenic signaling is known. In this study, we show that stimulation of C2C12 myoblasts with FGF-2 induces SHP-2 complex formation with tyrosyl-phosphorylated FGFR substrate 2 alpha (FRS-2 alpha). Both the catalytic activity and, to a much lesser extent, the Grb2 binding-tyrosyl phosphorylation sites of SHP-2 are required for maximal FGF-2-induced Erk activity and Elk-1 transactivation. When overexpressed in C2C12 myoblasts, wild-type SHP-2, but not a catalytically inactive SHP-2 mutant, potentiates the suppressive effects of FGF-2 on muscle-specific gene expression. In addition, expression of a constitutively active mutant of SHP-2 is sufficient to prevent myogenesis. The constitutively active mutant of SHP-2 induces hyper-tyrosyl phosphorylation of FRS-2 alpha but fails to stimulate or potentiate either FGF-2-induced Erk activation or Elk-1 transactivation. These data suggest that in myoblasts, SHP-2 represses myogenesis via a pathway that is independent of the Erks. We propose that SHP-2 plays a pivotal role in FGFR signaling in myoblasts via both Erk-dependent and Erk-independent pathways.  相似文献   

19.
Chromosome condensation during the G2/M progression of mouse pachytene spermatocytes induced by the phosphatase inhibitor okadaic acid (OA) requires the activation of the MAPK Erk1. In many cell systems, p90Rsks are the main effectors of Erk1/2 function. We have identified p90Rsk2 as the isoform that is specifically expressed in mouse spermatocytes and have shown that it is activated during the OA-triggered meiotic G2/M progression. By using the MEK inhibitor U0126, we have demonstrated that activation of p90Rsk2 during meiotic progression requires activation of the MAPK pathway. Immunofluorescence analysis indicates that activated Erks and p90Rsk2 are tightly associated with condensed chromosomes during the G2/M transition in meiotic cells. We also found that active p90Rsk2 was able to phosphorylate histone H3 at Ser10 in vitro, but that the activation of the Erk1/p90Rsk2 pathway was not necessary for phosphorylation of H3 in vivo. Furthermore, phosphorylation of H3 was not sufficient to cause condensation of meiotic chromosomes in mouse spermatocytes. Other proteins known to associate with chromatin may represent effectors of Erk1 and p90Rsk2 during chromosome condensation. Nek2 (NIMA-related kinase 2), which associates with chromosomes, plays an active role in chromatin condensation and is stimulated by treatment of pachytene spermatocytes with okadaic acid. We show that inhibition of the MAPK pathway by preincubation of spermatocytes with U0126 suppresses Nek2 activation, and that incubation of spermatocyte cell extracts with activated p90Rsk2 causes stimulation of Nek2 kinase activity. Furthermore, we show that the Nek2 kinase domain is a substrate for p90Rsk2 phosphorylation in vitro. These data establish a connection between the Erk1/p90Rsk2 pathway, Nek2 activation and chromosome condensation during the G2/M transition of the first meiotic prophase.  相似文献   

20.
The mitogen-activated protein kinase (MAPK) is a pivotal point of convergence for many signaling pathways in eukaryotes. In the classical MAPK cascade, a signal is transmitted via sequential phosphorylation and activation of MAPK kinase kinase, MAPK kinase (MKK), and MAPK. The activation of MAPK is dependent on dual phosphorylation of a TXY motif by an MKK, which is considered the sole kinase to phosphorylate and activate MAPK. Here, we report a novel regulatory mechanism of MAPK phosphorylation and activation besides the canonical MAPK cascade. A rice (Oryza sativa) calcium-dependent protein kinase (CDPK), CPK18, was identified as an upstream kinase of MAPK (MPK5) in vitro and in vivo. Curiously, CPK18 was shown to phosphorylate and activate MPK5 without affecting the phosphorylation of its TXY motif. Instead, CPK18 was found to predominantly phosphorylate two Thr residues (Thr-14 and Thr-32) that are widely conserved in MAPKs from land plants. Further analyses reveal that the newly identified CPK18-MPK5 pathway represses defense gene expression and negatively regulates rice blast resistance. Our results suggest that land plants have evolved an MKK-independent phosphorylation pathway that directly connects calcium signaling to the MAPK machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号