首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The arsenal of plants to fight off microorganisms and herbivores include hydroxycinnamic acid amides (HCAA) and their oxidation products. Hydroxycinnamic acid amides are widespread in the plant kingdom and in the recent years our knowledge of their biosynthesis and catabolism has increased substantially. Peroxidases are the primary candidates as the oxidative enzymes responsible for the turnover of hydroxycinnamic acid amide monomers. In barley, hydroxycinnamoylagmatine derivatives accumulate in young seedlings and in tissues infected with fungi. Hydroxycinnamoylagmatine is found as anti-fungal soluble dimers, called hordatines, and it is also a likely constituent of cell walls. Current evidence suggest that peroxidases are involved in the cross-linking of hydroxycinnamoylagmatine with cell wall components and possibly also in the synthesis of hordatines. Epidermal cell walls of barley respond to infection by the powdery mildew fungus with the deposition of polyphenolic material, that apparently contains hydroxycinnamic acid amides, at the site of attempted penetration. Accumulation of these compounds lowers the successful penetration by the fungus. The recent characterization of agmatine coumaroyl transferase (ACT), the N-hydroxycinnamoyltransferase responsible for the synthesis of hydroxycinnamoylagmatine in barley, has indicated that the production of these metabolites is widespread in the plant body and suggests multiple physiological functions for HCAA derivatives. The cloning of ACT has enabled the revelation of homologues genes in several monocots and the presence of a range of structurally diverse HCAAs in cereals suggests that their peroxidase-mediated metabolism is a common theme. The prospects for metabolic engineering of these pathways into other crops are discussed. Abbreviations: HCAA – hydroxycinnamic acid amide; HRPC – horseradish peroxidase C; ACT – agmatine coumaroyl transferase; THT – tyramine hydroxycinnamoyl transferase; HCBT – hydroxycinnamoyl/benzoyl-CoA:anthranilate N-hydroxycinnamoyl/benzoyl transferase; PHT – putrescine hydroxycinnamoyl transferase; SHT – spermidine/spermine hydroxycinnamoyl transferase; HHT – hydroxyanthranilate hydroxycinnamoyl transferase; p-CHA –p-coumaroyl hydroxyagmatine; p-CHDA –p-coumaroyl hydroxydehydroagmatine; PAL – phenylalanine ammonia lyase.  相似文献   

3.
4.
Vesicle fusion processes in plants are important for both development and stress responses. Transgenic potato plants with reduced expression of SYNTAXIN-RELATED1 (StSYR1), a gene encoding the potato homolog of Arabidopsis PENETRATION1 (AtPEN1), display spontaneous necrosis and chlorosis at later stages of development. In accordance with this developmental defect, tuber number, weight and overall yield are significantly reduced in StSYR1-RNAi lines. Enhanced resistance of StSYR1-RNAi plants to Phytophthora infestans, the causal agent of late blight disease of potato, correlates with enhanced levels of salicylic acid, whereas levels of 12-oxophytodienoic acid and jasmonic acid are unaltered. Cultured cells of StSYR1-RNAi lines secrete at least two compounds which are not detectable in the supernatant of control cells, suggesting an involvement of StSYR1 in secretion processes to the apoplast.  相似文献   

5.
6.
7.
8.
9.
10.
11.
The expression patterns of plant defense genes encoding osmotin and osmotin-like proteins imply a dual function in osmotic stress and plant pathogen defense. We have produced transgenic potato (Solanum commersonii Dun.) plants constitutively expressing sense or antisense RNAs from chimeric gene constructs consisting of the cauliflower mosaic virus 35S promoter and a cDNA (pA13) for an osmotin-like protein. Transgenic potato plants expressing high levels of the pA13 osmotin-like protein showed an increased tolerance to the late-blight fungus Phytophthora infestans at various phases of infection, with a greater resistance at an early phase of fungal infection. There was a decrease in the accumulation of osmotin-like mRNAs and proteins when antisense transformants were challenged by fungal infection, although the antisense transformants did not exhibit any alterations in disease susceptibility. Expression of pA13 sense and antisense RNAs had no effect on the development of freezing tolerance in transgenic plants when assayed under a variety of conditions including treatments with abscisic acid or low temperature. These results provide evidence of antifungal activity for a potato osmotin-like protein against the fungus P. infestans, but do not indicate that pA13 osmotin-like protein is a major determinant of freezing tolerance.  相似文献   

12.
Methyl ester of jasmonic acid (Me-JA) influences the induced resistance of potato tubers to late blight caused byPhytophthora infestans. Treatment of potato tuber disk surfaces with Me-JA solution or exposure to an atmosphere containing Me-JA vapors (10−6–10−5 M) increased the rate of rishitin biosynthesis induced by arachidonic acid orP. infestans. Methyl jasmonate increased the sensitivity of potato tissue to arachidonic acid. As a result, in the presence of Me-JA, the protective properties of arachidonic acid were observed at lower concentrations than in the absence of Me-JA. In addition, Me-JA reduced the adverse effects of lipoxygenase inhibitors (salicylhydroxamic acid and esculetin) on the induced resistance of potato tubers to late blight. Therefore, the synergistic interaction of Me-JA and biogenic elicitors can be regarded as part of a mechanism of potato defense against diseases.  相似文献   

13.
Fusarium head blight (FHB) resistance in wheat is considered to be polygenic in nature. Cell wall fortification is one of the best resistance mechanisms in wheat against Fusarium graminearum which causes FHB. Metabolomics approach in our study led to the identification of a wide array of resistance‐related (RR) metabolites, among which hydroxycinnamic acid amides (HCAAs), such as coumaroylagmatine and coumaroylputrescine, were the highest fold change RR metabolites in the rachis of a resistant near‐isogenic line (NIL‐R) upon F. graminearum infection. Placement of these metabolites in the secondary metabolic pathway led to the identification of a gene encoding agmatine coumaroyl transferase, herein referred to as TaACT, as a candidate gene. Based on wheat survey sequence, TaACT was located within a FHB quantitative trait loci on chromosome 2DL (FHB QTL‐2DL) between the flanking markers WMC245 and GWM608. Phylogenetic analysis suggested that TaACT shared closest phylogenetic relationship with an ACT ortholog in barley. Sequence analysis of TaACT in resistant and susceptible NILs, with contrasting levels of resistance to FHB, led to the identification of several single nucleotide polymorphisms (SNPs) and two inversions that may be important for gene function. Further, a role for TaACT in FHB resistance was functionally validated by virus‐induced gene silencing (VIGS) in wheat NIL‐R and based on complementation studies in Arabidopsis with act mutant background. The disease severity, fungal biomass and RR metabolite analysis confirmed TaACT as an important gene in wheat FHB QTL‐2DL, conferring resistance to F. graminearum.  相似文献   

14.
Natural variation of plant pathogen resistance is often quantitative. This type of resistance can be genetically dissected in quantitative resistance loci (QRL). To unravel the molecular basis of QRL in potato (Solanum tuberosum), we employed the model plant Arabidopsis thaliana for functional analysis of natural variants of potato allene oxide synthase 2 (StAOS2). StAOS2 is a candidate gene for QRL on potato chromosome XI against the oömycete Phytophthora infestans causing late blight, and the bacterium Erwinia carotovora ssp. atroseptica causing stem black leg and tuber soft rot, both devastating diseases in potato cultivation. StAOS2 encodes a cytochrome P450 enzyme that is essential for biosynthesis of the defense signaling molecule jasmonic acid. Allele non-specific dsRNAi-mediated silencing of StAOS2 in potato drastically reduced jasmonic acid production and compromised quantitative late blight resistance. Five natural StAOS2 alleles were expressed in the null Arabidopsis aos mutant under control of the Arabidopsis AOS promoter and tested for differential complementation phenotypes. The aos mutant phenotypes evaluated were lack of jasmonates, male sterility and susceptibility to Erwinia carotovora ssp. carotovora. StAOS2 alleles that were associated with increased disease resistance in potato complemented all aos mutant phenotypes better than StAOS2 alleles associated with increased susceptibility. First structure models of ‘quantitative resistant’ versus ‘quantitative susceptible’ StAOS2 alleles suggested potential mechanisms for their differential activity. Our results demonstrate how a candidate gene approach in combination with using the homologous Arabidopsis mutant as functional reporter can help to dissect the molecular basis of complex traits in non model crop plants.  相似文献   

15.
Levels of katahdinone (solavetivone), lubimin, rishitin, and phytuberin, sesquiterpenoid stress metabolites of white potato (Solanum tuberosum), were monitored in tuber slices which were challenged with an extract of Phytophthora infestans and incubated under controlled atmospheres. A mixture of ethylene in air enhanced stress metabolite production. This enhancement was amplified by higher partial pressures of oxygen. Stress metabolite production was inhibited by salicylhydroxamic acid. These results suggest the involvement of cyanide-resistant respiration in the production of potato stress metabolites, compounds which may serve as phytoalexins.  相似文献   

16.

Background

The filamentous oomycete plant pathogen Phytophthora infestans causes late blight, an economically important disease, on members of the nightshade family (Solanaceae), such as the crop plants potato and tomato. The related plant Nicotiana benthamiana is a model system to study plant-pathogen interactions, and the susceptibility of N. benthamiana to Phytophthora species varies from susceptible to resistant. Little is known about the extent to which plant basal immunity, mediated by membrane receptors that recognise conserved pathogen-associated molecular patterns (PAMPs), contributes to P. infestans resistance.

Principal Findings

We found that different species of Phytophthora have varying degrees of virulence on N. benthamiana ranging from avirulence (incompatible interaction) to moderate virulence through to full aggressiveness. The leucine-rich repeat receptor-like kinase (LRR-RLK) BAK1/SERK3 is a major modulator of PAMP-triggered immunity (PTI) in Arabidopsis thaliana and N. benthamiana. We cloned two NbSerk3 homologs, NbSerk3A and NbSerk3B, from N. benthamiana based on sequence similarity to the A. thaliana gene. N. benthamiana plants silenced for NbSerk3 showed markedly enhanced susceptibility to P. infestans infection but were not altered in resistance to Phytophthora mirabilis, a sister species of P. infestans that specializes on a different host plant. Furthermore, silencing of NbSerk3 reduced the cell death response triggered by the INF1, a secreted P. infestans protein with features of PAMPs.

Conclusions/Significance

We demonstrated that N. benthamiana NbSERK3 significantly contributes to resistance to P. infestans and regulates the immune responses triggered by the P. infestans PAMP protein INF1. In the future, the identification of novel surface receptors that associate with NbSERK3A and/or NbSERK3B should lead to the identification of new receptors that mediate recognition of oomycete PAMPs, such as INF1.  相似文献   

17.
18.
The elicitor arachidonic acid in combination with jasmonic acid (JA) induced a higher level of defense against the late blight agent in potato (Solanum tuberosum L.) tissues than in combination with salicylic acid (SA). On the contrary, the elicitor chitosan displayed a higher inductive effect in combination with SA as compared with JA. The optimal concentrations of tested compounds were selected for designing the compositions activating wound repair, induction of proteinase inhibitors, and resistance to the biotrophic pathogen Phytophthora infestans (Mont.) de Bary. It was demonstrated that the compositions of elicitor and systemic signal molecules provided a faster spreading of an inducing effect in the potato tissues.  相似文献   

19.
Phytophthora infestans, the causal agent of late blight, is a major threat to commercial potato production worldwide. Significant costs are required for crop protection to secure yield. Many dominant genes for resistance (R-genes) to potato late blight have been identified, and some of these R-genes have been applied in potato breeding. However, the P. infestans population rapidly accumulates new virulent strains that render R-genes ineffective. Here we introduce a new class of resistance which is based on the loss-of-function of a susceptibility gene (S-gene) encoding a product exploited by pathogens during infection and colonization. Impaired S-genes primarily result in recessive resistance traits in contrast to recognition-based resistance that is governed by dominant R-genes. In Arabidopsis thaliana, many S-genes have been detected in screens of mutant populations. In the present study, we selected 11 A. thaliana S-genes and silenced orthologous genes in the potato cultivar Desiree, which is highly susceptible to late blight. The silencing of five genes resulted in complete resistance to the P. infestans isolate Pic99189, and the silencing of a sixth S-gene resulted in reduced susceptibility. The application of S-genes to potato breeding for resistance to late blight is further discussed.  相似文献   

20.

Background

Resistance in plants to pathogen attack can be qualitative or quantitative. For the latter, hundreds of quantitative trait loci (QTLs) have been identified, but the mechanisms of resistance are largely unknown. Integrated non-target metabolomics and proteomics, using high resolution hybrid mass spectrometry, were applied to identify the mechanisms of resistance governed by the fusarium head blight resistance locus, Fhb1, in the near isogenic lines derived from wheat genotype Nyubai.

Findings

The metabolomic and proteomic profiles were compared between the near isogenic lines (NIL) with resistant and susceptible alleles of Fhb1 upon F. graminearum or mock-inoculation. The resistance-related metabolites and proteins identified were mapped to metabolic pathways. Metabolites of the shunt phenylpropanoid pathway such as hydroxycinnamic acid amides, phenolic glucosides and flavonoids were induced only in the resistant NIL, or induced at higher abundances in resistant than in susceptible NIL, following pathogen inoculation. The identities of these metabolites were confirmed, with fragmentation patterns, using the high resolution LC-LTQ-Orbitrap. Concurrently, the enzymes of phenylpropanoid biosynthesis such as cinnamyl alcohol dehydrogenase, caffeoyl-CoA O-methyltransferase, caffeic acid O-methyltransferase, flavonoid O-methyltransferase, agmatine coumaroyltransferase and peroxidase were also up-regulated. Increased cell wall thickening due to deposition of hydroxycinnamic acid amides and flavonoids was confirmed by histo-chemical localization of the metabolites using confocal microscopy.

Conclusion

The present study demonstrates that the resistance in Fhb1 derived from the wheat genotype Nyubai is mainly associated with cell wall thickening due to deposition of hydroxycinnamic acid amides, phenolic glucosides and flavonoids, but not with the conversion of deoxynivalenol to less toxic deoxynivalenol 3-O-glucoside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号