首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Argonaute (AGO) proteins interact with small RNAs to mediate gene silencing. C. elegans contains 27 AGO genes, raising the question of what roles these genes play in RNAi and related gene-silencing pathways. Here we describe 31 deletion alleles representing all of the previously uncharacterized AGO genes. Analysis of single- and multiple-AGO mutant strains reveals functions in several pathways, including (1) chromosome segregation, (2) fertility, and (3) at least two separate steps in the RNAi pathway. We show that RDE-1 interacts with trigger-derived sense and antisense RNAs to initiate RNAi, while several other AGO proteins interact with amplified siRNAs to mediate downstream silencing. Overexpression of downstream AGOs enhances silencing, suggesting that these proteins are limiting for RNAi. Interestingly, these AGO proteins lack key residues required for mRNA cleavage. Our findings support a two-step model for RNAi, in which functionally and structurally distinct AGOs act sequentially to direct gene silencing.  相似文献   

2.

Background

Micro (mi)RNAs are important regulators of plant development. Across plant lineages, Dicer-like 1 (DCL1) proteins process long ds-like structures to produce micro (mi) RNA duplexes in a stepwise manner. These miRNAs are incorporated into Argonaute (AGO) proteins and influence expression of RNAs that have sequence complementarity with miRNAs. Expression levels of AGOs are greatly regulated by plants in order to minimize unwarranted perturbations using miRNAs to target mRNAs coding for AGOs. AGOs may also have high promoter specificity-sometimes expression of AGO can be limited to just a few cells in a plant. Viral pathogens utilize various means to counter antiviral roles of AGOs including hijacking the host encoded miRNAs to target AGOs. Two host encoded miRNAs namely miR168 and miR403 that target AGOs have been described in the model plant Arabidopsis and such a mechanism is thought to be well conserved across plants because AGO sequences are well conserved.

Results

We show that the interaction between AGO mRNAs and miRNAs is species-specific due to the diversity in sequences of two miRNAs that target AGOs, sequence diversity among corresponding target regions in AGO mRNAs and variable expression levels of these miRNAs among vascular plants. We used miRNA sequences from 68 plant species representing 31 plant families for this analysis. Sequences of miR168 and miR403 are not conserved among plant lineages, but surprisingly they differ drastically in their sequence diversity and expression levels even among closely related plants. Variation in miR168 expression among plants correlates well with secondary structures/length of loop sequences of their precursors.

Conclusions

Our data indicates a complex AGO targeting interaction among plant lineages due to miRNA sequence diversity and sequences of miRNA targeting regions among AGO mRNAs, thus leading to the assumption that the perturbations by viruses that use host miRNAs to target antiviral AGOs can only be species-specific. We also show that rapid evolution and likely loss of expression of miR168 isoforms in tobacco is related to the insertion of MITE-like transposons between miRNA and miRNA* sequences, a possible mechanism showing how miRNAs are lost in few plant lineages even though other close relatives have abundantly expressing miRNAs.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1049) contains supplementary material, which is available to authorized users.  相似文献   

3.
4.
ARGONAUTE proteins (AGOs) are known to be key components of the RNA silencing mechanism in eukaryotes that, among other functions, serves to protect against viral invaders. Higher plants encode at least 10 individual AGOs yet the role played by many in RNA silencing-related antiviral defense is largely unknown, except for reports that AGO1, AGO2, and AGO7 play an antiviral role in Arabidopsis (Arabidopsis thaliana). In the plant virus model host Nicotiana benthamiana, Tomato bushy stunt virus (TBSV) P19 suppressor mutants are very susceptible to RNA silencing. Here, we report that a N. benthamiana AGO (NbAGO) with similarity to Arabidopsis AGO2, is involved in antiviral defense against TBSV. The activity of this NbAGO2 is shown to be directly associated with anti-TBSV RNA silencing, while its inactivation does not influence silencing of transiently expressed transgenes. Thus, the role of NbAGO2 might be primarily for antiviral defense.  相似文献   

5.
尖孢镰刀菌古巴专化型Fusarium oxysporum f.sp.cubense是威胁香蕉生产的重要土传病原真菌,其中4号生理小种(Foc4)能感染几乎所有的栽培品系.Argonaute蛋白(AGO)介导的RISC复合体在RNAi干扰中起到重要作用.Foc4含有两个进化上高度保守的AGO蛋白,本研究利用同源重组技术获...  相似文献   

6.
Argonaute (AGO) effectors of RNA silencing bind small RNA (sRNA) molecules and mediate mRNA cleavage, translational repression, or epigenetic DNA modification. In many organisms, these targeting mechanisms are devolved to different products of AGO multigene families. To investigate the basis of AGO functional diversification, we characterized three closely related Arabidopsis thaliana AGOs (AGO4, AGO6, and AGO9) implicated in RNA-directed DNA methylation. All three AGOs bound 5′ adenosine 24-nucleotide sRNAs, but each exhibited different preferences for sRNAs from different heterochromatin-associated loci. This difference was reduced when AGO6 and AGO9 were expressed from the AGO4 promoter, indicating that the functional diversification was partially due to differential expression of the corresponding genes. However, the AGO4-directed pattern of sRNA accumulation and DNA methylation was not fully recapitulated with AGO6 or AGO9 expressed from the AGO4 promoter. Here, we show that sRNA length and 5′ nucleotide do not account for the observed functional diversification of these AGOs. Instead, the selectivity of sRNA binding is determined by the coincident expression of the AGO and sRNA-generating loci, and epigenetic modification is influenced by interactions between the AGO protein and the different target loci. These findings highlight the importance of tissue specificity and AGO-associated proteins in influencing epigenetic modifications.  相似文献   

7.
8.
Form, function, and regulation of ARGONAUTE proteins   总被引:2,自引:0,他引:2  
Mallory A  Vaucheret H 《The Plant cell》2010,22(12):3879-3889
  相似文献   

9.
RNAi途径是RdDM途径的衍生途径,其中的AGO、DCL和RDR蛋白在植物的生长发育和响应非生物/生物胁迫过程中发挥重要作用。为了研究RNAi途径的3种主要蛋白在青狗尾草中的序列及结构特征,利用比较基因组学方法,在青狗尾草中鉴定到13个AGO基因、7个DCL基因和4个RDR基因,并对其蛋白质亚细胞定位、系统发育关系、保守结构域进行预测。同时,利用转录组数据分析RNAi途径的3类相关基因在青狗尾草的16种不同生长时期、不同生长条件下的表达模式。蛋白质结构域分析发现,SvDCL3b和SvRDR3缺少重要的结构域。转录组分析发现,SvAGO1bSvDCL1aSvRDR1在各家族中表达量较高,可能在RNAi途径中发挥主要作用,且大多数青狗尾草和谷子的同源基因间的表达模式基本一致。综上,本研究为理解RNAi途径的3种主要基因在调控青狗尾草的表观遗传修饰中的功能和作用提供初步的理论依据,为青狗尾草和谷子之间驯化的分子机制提供 参考。  相似文献   

10.
Argonaute proteins (AGOs) are mediators of gene silencing via recruitment of small regulatory RNAs to induce translational regression or degradation of targeted molecules. Platyhelminths have been reported to express microRNAs but the diversity of AGOs in the phylum has not been explored. Phylogenetic relationships of members of this protein family were studied using data from six platyhelminth genomes. Phylogenetic analysis showed that all cestode and trematode AGOs, along with some triclad planarian AGOs, were grouped into the Ago subfamily and its novel sister clade, here referred to as Cluster 1. These were very distant from Piwi and Class 3 subfamilies. By contrast, a number of planarian Piwi-like AGOs formed a novel sister clade to the Piwi subfamily. Extensive sequence searching revealed the presence of an additional locus for AGO2 in the cestode Echinococcus granulosus and exon expansion in this species and E. multilocularis. The current study suggests the absence of the Piwi subfamily and Class 3 AGOs in cestodes and trematodes and the Piwi-like AGO expansion in a free-living triclad planarian and the occurrence of exon expansion prior to or during the evolution of the most-recent common ancestor of the Echinococcus species studied.  相似文献   

11.
12.
Argonaute (AGO) proteins are critical components of RNA silencing pathways that bind small RNAs and mediate gene silencing at their target sites. We found that Arabidopsis AGO2 is highly induced by the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Further genetic analysis demonstrated that AGO2 functions in antibacterial immunity. One abundant species of AGO2-bound small RNA is miR393b(?), which targets a Golgi-localized SNARE gene, MEMB12. Pst infection downregulates MEMB12 in a miR393b(?)-dependent manner. Loss of function of MEMB12, but not SYP61, another intracellular SNARE, leads to increased exocytosis of an antimicrobial pathogenesis-related protein, PR1. Overexpression of miR393b(?) resembles memb12 mutant in resistance responses. Thus, AGO2 functions in antibacterial immunity by binding miR393b(?) to modulate exocytosis of antimicrobial PR proteins via MEMB12. Since miR393 also contributes to antibacterial responses, miR393(?)/miR393 represent an example of a miRNA(?)/miRNA pair that functions in immunity through two distinct AGOs: miR393(?) through AGO2 and miR393 through AGO1.  相似文献   

13.
14.
miRNAs associate with Argonaute (AGO) proteins to silence the expression of mRNA targets by inhibiting translation and promoting deadenylation, decapping, and mRNA degradation. A current model for silencing suggests that AGOs mediate these effects through the sequential recruitment of GW182 proteins, the CCR4–NOT deadenylase complex and the translational repressor and decapping activator DDX6. An alternative model posits that AGOs repress translation by interfering with eIF4A function during 43S ribosomal scanning and that this mechanism is independent of GW182 and the CCR4–NOT complex in Drosophila melanogaster. Here, we show that miRNAs, AGOs, GW182, the CCR4–NOT complex, and DDX6/Me31B repress and degrade polyadenylated mRNA targets that are translated via scanning‐independent mechanisms in both human and Dm cells. This and additional observations indicate a common mechanism used by these proteins and miRNAs to mediate silencing. This mechanism does not require eIF4A function during ribosomal scanning.  相似文献   

15.
In eukaryotes, ARGONAUTE proteins (AGOs) associate with microRNAs (miRNAs), short interfering RNAs (siRNAs), and other classes of small RNAs to regulate target RNA or target loci. Viral infection in plants induces a potent and highly specific antiviral RNA silencing response characterized by the formation of virus-derived siRNAs. Arabidopsis thaliana has ten AGO genes of which AGO1, AGO2, and AGO7 have been shown to play roles in antiviral defense. A genetic analysis was used to identify and characterize the roles of AGO proteins in antiviral defense against Turnip mosaic virus (TuMV) in Arabidopsis. AGO1, AGO2 and AGO10 promoted anti-TuMV defense in a modular way in various organs, with AGO2 providing a prominent antiviral role in leaves. AGO5, AGO7 and AGO10 had minor effects in leaves. AGO1 and AGO10 had overlapping antiviral functions in inflorescence tissues after systemic movement of the virus, although the roles of AGO1 and AGO10 accounted for only a minor amount of the overall antiviral activity. By combining AGO protein immunoprecipitation with high-throughput sequencing of associated small RNAs, AGO2, AGO10, and to a lesser extent AGO1 were shown to associate with siRNAs derived from silencing suppressor (HC-Pro)-deficient TuMV-AS9, but not with siRNAs derived from wild-type TuMV. Co-immunoprecipitation and small RNA sequencing revealed that viral siRNAs broadly associated with wild-type HC-Pro during TuMV infection. These results support the hypothesis that suppression of antiviral silencing during TuMV infection, at least in part, occurs through sequestration of virus-derived siRNAs away from antiviral AGO proteins by HC-Pro. These findings indicate that distinct AGO proteins function as antiviral modules, and provide a molecular explanation for the silencing suppressor activity of HC-Pro.  相似文献   

16.
RNA silencing refers to a collection of gene regulatory mechanisms that use small RNAs for sequence specific repression. These mechanisms rely on ARGONAUTE (AGO) proteins that directly bind small RNAs and thereby constitute the central component of the RNA-induced silencing complex (RISC). AGO protein function has been probed extensively by mutational analyses, particularly in plants where large allelic series of several AGO proteins have been isolated. Structures of entire human and yeast AGO proteins have only very recently been obtained, and they allow more precise analyses of functional consequences of mutations obtained by forward genetics. To a large extent, these analyses support current models of regions of particular functional importance of AGO proteins. Interestingly, they also identify previously unrecognized parts of AGO proteins with profound structural and functional importance and provide the first hints at structural elements that have important functions specific to individual AGO family members. A particularly important outcome of the analysis concerns the evidence for existence of Gly-Trp (GW) repeat interactors of AGO proteins acting in the plant microRNA pathway. The parallel analysis of AGO structures and plant AGO mutations also suggests that such interactions with GW proteins may be a determinant of whether an endonucleolytically competent RISC is formed.  相似文献   

17.
18.
19.
Cellular micro(mi)RNAs are able to recognize viral RNAs through imperfect micro-homologies. Similar to the miRNA-mediated repression of cellular translation, this recognition is thought to tether the RNAi machinery, in particular Argonaute 2 (AGO2) on viral messengers and eventually to modulate virus replication. Here, we unveil another pathway by which AGO2 can interact with retroviral mRNAs. We show that AGO2 interacts with the retroviral Group Specific Antigen (GAG) core proteins and preferentially binds unspliced RNAs through the RNA packaging sequences without affecting RNA stability or eliciting translation repression. Using RNAi experiments, we provide evidences that these interactions, observed with both the human immunodeficiency virus 1 (HIV-1) and the primate foamy virus 1 (PFV-1), are required for retroviral replication. Taken together, our results place AGO2 at the core of the retroviral life cycle and reveal original AGO2 functions that are not related to miRNAs and translation repression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号